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Simple Summary: Investigating the interspecific interactions between species provides a suitable
model for understanding the mechanisms of coexistence between sympatric species. We assessed
the spatial and temporal partitioning of spaces between Japanese serows (Capricornis crispus) and
sika deer (Cervus nippon), which are usually allopatric, in an area with early-stage invasion of sika
deer into Japanese serow habitat. The habitat selection and activity patterns of the two species
were evaluated using camera traps. Both species were recorded in >25% of the same camera sites
and showed similar selection tendencies for water resources. The Japanese serows selected steep
slopes, whereas the sika deer selected areas distant from human settlements, resulting in low spatial
overlap. Additionally, the Japanese serows were more active during the daytime, whereas the sika
deer were active at the crepuscule. The observed spatial and temporal partitioning likely reduces
their encounter rates, thereby minimizing possible interference competition. However, spatial and
temporal overlaps between the two species are likely to increase as the density of sika deer increases,
potentially resulting in a decline in the density of Japanese serows with smaller body sizes. Trapping
for deer management should be focused on areas with gentle slopes, away from valleys and human
settlements, to reduce the unintentional capture of Japanese serows.

Abstract: The Japanese serow (Capricornis crispus) and sika deer (Cervus nippon) in Japan are usually
allopatric. However, a recent expansion in the distribution range of sika deer, combined with an
increase in abundance, has resulted in an overlap of the distribution ranges of the two species. We
examined the habitat selection and activity patterns of Japanese serows and sika deer using camera
traps placed at 83 sites within a 210 km2 study area, where the distribution range of these two species
has recently overlapped. Although both species were photographed throughout the study area, we
observed a low spatial overlap between them. The Japanese serows selected steep slopes, and the
sika deer selected areas far away from human settlements. In addition, the Japanese serows and sika
deer exhibited temporal partitioning with diurnal and crepuscular activity patterns, respectively. The
observed partitioning could be explained by differences in their species-specific habitat selections,
rather than competition, because the photographic capture rate of the Japanese serows was not
affected by that of the sika deer and vice versa. These partitioning behaviors are likely to reduce the
rate of encounters between the two ungulates, which enables their coexistence considering the sika
deer density remains low.

Keywords: Capricornis crispus; Cervus nippon; activity level; camera trap; habitat use; interference
competition; niche; overlap; spatial partitioning; temporal partitioning

1. Introduction

Interspecific interactions influence species abundance and community composition [1].
Predation exerts significant influence on the dynamics of prey populations and their com-
munities [2–6]. To reduce predation risk, herbivores may change their foraging behavior
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and habitat use [7–10]. Interspecific competition also influences species abundance, habitat
use, and diet [11–15]. Ecologically similar sympatric species elude or reduce competition
by spatial and temporal partitioning of habitat, or by exploiting different food resources,
which may promote coexistence [16–28]. Studies on interspecific interactions are crucial for
understanding the mechanisms of coexistence between sympatric species.

The distribution ranges of various deer species have expanded in recent decades
worldwide, with drastic increases in abundance [29], thereby prompting more studies on
the interspecific interactions between deer and other species; the modification of vegetation
due to increased deer foraging has been well-documented [29–31]. By modifying vegetation,
deer indirectly affect the population and community composition of small animals utilizing
the vegetation as food resources or resting and breeding sites [29,32–35]. An increase in
browsing pressure by deer can also lead to significant declines in the population of some
large mammals through interspecific competition. For example, abundant white-tailed deer
(Odocoileus virgininianus) caused an indirect extirpation of the black bear (Ursus americanus)
population on Anticosti Island by over-browsing berry-producing shrubs [5]. Studies on
interspecific competition among sympatric deer and other species are essential to identify
ways of preventing such significant declines in wildlife populations.

Two ungulates, the sika deer (Cervus nippon) and the Japanese serow (Capricornis
crispus), are normally allopatric in Japan [36,37]. However, recent population growth and
range expansion in sika deer have resulted in an overlap in the distribution ranges of these
two ungulates. Comparatively little is known about interspecific competition between
Japanese serows and sika deer in regions where they occur sympatrically. However,
declines in the population of Japanese serows, with increasing sika deer populations,
have been reported in some areas in Japan [36,38]. This may be a result of interspecific
competition between these two species. Although two comparative studies on the food
habits of Japanese serows and sika deer exhibited differences in feeding selection between
the two species living in the same area [39,40], their food habits were found to be similar in
the area where the food supply was scarce due to heavy grazing by sika deer [41]. These
results indicate that the extent of interspecific competition between the two ungulates
could increase with the increasing population of sika deer.

However, even if there is a high dietary overlap between Japanese serows and sika deer
in the same area, differences in their habitat use have been shown [42]. Takada et al. [43]
also demonstrated that Japanese serows and sika deer have exhibited differences in their
habitat use in terms of vegetation and topography. However, these two studies on habitat
use were conducted at a relatively finer scale (1–2 km2) in areas where densities of sika
deer are relatively high (10.4–15.0 individuals/km2). Since studies at different scales often
yield a different numerical result or pattern [44], we also need to compare the habitat
use between the two ungulates at a broader scale. In addition, in other areas with high
sika deer densities (mean of 17.9 individuals/km2), the Japanese serows selectively chose
habitats to avoid sika deer [37]. Since the spatial partitioning may be a result of previous
competitive interactions and competitive exclusion [45–47], the Japanese serows may have
shifted or might shift their ecological niche in the future in areas with relatively higher
densities of sika deer. To adequately assess the interspecific competition between Japanese
serows and sika deer, comparisons should be also made in areas with low sika deer
densities. In addition to habitat and feeding-related drivers, time is a critical dimension in
ecology [48]. Temporal partitioning may lead to a reduced competition where interspecific
competition might otherwise occur [21,49]. Although the activity pattern of sika deer have
been well documented [50–54], a systematic survey on the activity pattern of Japanese
serow populations is lacking; only one study has included an individual radio-collared
Japanese serow [55]. Therefore, whether Japanese serows and sika deer exhibit temporal
partitioning in sympatric areas remains unclear.

On an evolutionary timescale, to minimize the loss of fitness incurred through com-
petition, natural selection would be expected to promote clear partitioning in resource
use between regularly interacting sets of species. Thus, evidence for actual competition
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between members of an established community of large herbivores is generally difficult to
obtain [47]. Therefore, simultaneous studies on habitat use and activity between Japanese
serows and sika deer, at different stages of range expansion of the sika deer, provides a
model to comprehend the mechanisms of coexistence, not only for the two species but
also for other ungulate communities. The assessment of the interspecific competition
between Japanese serows and sika deer is also essential for the conservation of Japanese
serows, which are solitary and territorial animals that typically live in low densities [56,57].
Although the Japanese serow has been legally protected since 1955, the species is listed
as a threatened local population in four regions of Japan [58]. However, recently, many
individual Japanese serows have been unintentionally captured in snare traps set for the
management of sika deer, and approximately 30% of these captured individuals sustained
injuries in the process [59]. Additional knowledge about the habitat selection behavior in
sympatric populations of these two ungulates can enable effective management of sika
deer and reduce the unintentional capture of Japanese serows.

The purpose of this study was to compare the habitat selection and activity patterns of
sympatric Japanese serows and sika deer, using camera traps in an area with an early-stage
invasion of sika deer into the habitat occupied by populations of Japanese serows at the
landscape scale, i.e., the third-order habitat selection process defined by Johnson [60]. Since
Japanese serows and sika deer are usually allopatric [36,37], we hypothesized that the
two species may exhibit spatial partitioning in areas where their distribution has recently
overlapped. Even if ungulates overlapped spatially, differences in activity patterns may
reduce the risk of encounters [49,61]. Therefore, we also hypothesized that Japanese serows
and sika deer may exhibit temporal partitioning in the sympatric area.

2. Materials and Methods
2.1. Study Area

The study was conducted in Tsumagoi Village (337.58 km2), Gunma Prefecture, cen-
tral Honshu, Japan, which is located in a cool temperate zone (36◦31.0′ N, 138◦31.49′ E;
700–2550 m elevation; Figure 1). The study area is an important cabbage (Brassica oleracea
var. capitata) growing area. Moreover, the tourism industry is important, and there are
several leisure facilities, such as campgrounds, golf courses, cottage areas, hot-spring
areas, and skiing areas. The vegetation of the study area is dominated by deciduous
broadleaved trees and conifers. According to data collected from Tashiro Weather Station
(1230 m), located in the southern part of Tsumagoi, between 1980 and 2010, the mean
annual temperature was 7.1 ◦C (−4.6 ◦C in January and 19.5 ◦C in August) and the mean
annual precipitation was 1506 mm. The ground was typically covered with snow from
mid-December to mid-April.

The mean ± standard deviation (SD) of the population density estimated by
the block count method [62], which was conducted in four areas in October 2012, was
1.77 ± 1.70–2.28 ± 2.66 for Japanese serows and 1.40 ± 0.95/km2 for sika deer. The Gunma
Prefecture regarded Tsumagoi as a low density area for sika deer (<1.5 individuals/km2

in 2012, computed from Gunma [63]). Thus, we considered that the deer density was low
during the study period. In Tsumagoi, the presence of sika deer was not observed during
the 1996 survey, but the 2008 survey first confirmed the sparse distribution of sika deer [64].
Additionally, there were no reports of crop damage by sika deer before 2008; however, such
reports have gradually increased since 2013 [65]. Therefore, we considered that the sika
deer range has recently expanded into the study area, possibly between 1996 and 2008.
In this area, almost no deer were observed by camera traps during the months between
December and April in the period 2013–2015, possibly because they had migrated to other
areas (Y Seki, unpublished data).
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Figure 1. Study area in Tsumagoi, central Honshu, Japan. Camera traps were placed at 83 sites
to monitor Japanese serows and sika deer between July and September 2012. The study area was
divided into approximately 1.7 × 1.7 km grids. The map was created based on national land use
information (Ministry of Land, Infrastructure, Transport and Tourism of Japan) and 6–7th Japanese
National Survey of the Natural Environment (Ministry of the Environment of Japan).

2.2. Camera Trapping

We divided the study area into approximately 1.7 × 1.7 km grids obtained by equally
dividing the Secondary Area Partition (approximately 10 km2) into 36 units. We used
20 camera traps (Ltl-Acorn 5210A, Zhuhai Ltl Acorn Electronics Co., Ltd., Guangdong,
China) to investigate the activity and habitat use patterns of Japanese serows and sika
deer. Between July and September 2012, we placed camera traps at a total of 83 sites (one
camera inside each grid cell) in the study area, covering an area of approximately 210 km2

(866–2046 m elevation; Figure 1). The traps were moved to new locations approximately
every two weeks. The mean ± SD of the distance between two adjacent cameras was
1241 ± 294 m (range of 856–2400 m). The circular size (1.21 km2), calculated from the mean
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distance between two adjacent cameras, was larger than the mean size of the annual home
range of Japanese serows [56,57] and that of the summer home range of sika deer [66,67].

The traps were placed at a height of approximately 0.7–1.0 m above the ground, along
animal trails, and were not baited. We set the delay period between consecutive events at
1 min and set three burst shots for each event.

2.3. Environmental Variables

We used geographic information system software (QGIS version 2.18.16, https://
www.npackd.org/p/qgis64/2.18.16, access date 26 November 2021) to evaluate the camera
trap detection rates of the Japanese serows and sika deer. The vegetation maps used were
at a scale of 1:25,000 and based on the 6–7th Japanese National Survey of the Natural Envi-
ronment and base map information developed by the Geospatial Information Authority
of Japan. Several environmental variables that may influence the habitat use of these two
species were used [37,68–71], including land cover types (deciduous broadleaved forest,
coniferous forest, grassland, and farmland), distributions of human land-use (human set-
tlements and road) and water resources, and angle of terrain (hereafter referred to as slope).
We obtained the areas of each land cover type and mean slope within buffers of 200 m radii
around each camera site, along with distances to the nearest roads, human settlements, and
water resources. The resulting buffer area size (12.6 ha) is close in value to the mean home
range size of Japanese serows (12.7 ha, computed from Kishimoto and Kawamich [56] and
Ochiai and Susaki [57]). We calculated the mean slope within each buffer using points
generated every 20 m (1 point per 400 m2).

2.4. Data Analysis

To assess spatial overlap between Japanese serows and sika deer, we calculated
Pianka’s index (α; [72]), where α can range from 0 (no overlap) to 1 (complete overlap),
using the photographic capture rates (the number of independent photographs per camera-
trap day of sika deer or Japanese serows) at each site. Based on Yasuda [73], consecutive
photographs of conspecifics were defined as independent when separated by more than
30 min. Therefore, the same species photographed more than once by the same camera
within 30 min was counted as a single event.

The effects of environmental variables on the occurrence of Japanese serows and sika
deer at the capture sites were analyzed using a linear regression model. Because there were
a large number of sites where the presence of Japanese serows and/or sika deer were not
photographed, the following model was assumed to follow a zero-inflated Poisson (ZIP)
distribution [74]:

ZIP(y|q, λ) =

{
Bernoulli (0|q) + Bernoulli (1|q)× Poisson (y|λ) i f y = 0

Bernoulli (1|q)× Poisson (y|λ) i f y ≥ 1

log (λ) = β0 + β1z1 + β2z2 + β3z3 + β4z4 + β5z5 + β6z6 + β7z7 + log T

where y is the number of independent photographs at each site, q is the probability indicat-
ing the species presence at each site, λ is the expected number of independent photographs,
β0 is a constant (intercept), β1–7 are parameters, z1–7 are covariates, and T is each camera-
trap day at each site. The covariates (z1–7) represent the mean slope (◦), distance (km)
to the nearest road, distance to the nearest human settlements, distance to the nearest
water resource, area (km2) of deciduous broadleaved forest, area of coniferous forest, and
photographic capture rate of the other study species, respectively.

We created separate models for each species (hereafter referred to as the serow and sika
models). Grassland and farmland areas with a variance inflation factor (VIF) larger than 5
were excluded from the analyses to avoid multicollinearity. A VIF exceeding 5 suggests
that the model is unstable and has a poor performance [75]. The VIF values of the other
variables used in the analyses were <3.73.

https://www.npackd.org/p/qgis64/2.18.16
https://www.npackd.org/p/qgis64/2.18.16
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Prior to the analysis, all covariates were standardized to have a mean of 0 and a stan-
dard deviation of 1. Non-informative priors were used for prior distribution of the parame-
ters. Posterior distributions of all parameters were estimated using the Markov chain Monte
Carlo (MCMC) method. Four chains were used for initialization, with 2000 iterations; the
first 1000 of which were used for burn-in; the MCMC chains were unthinned. MCMC
sampling was considered to be converged when the “R hat” value was <1.1 [76].

To estimate activity patterns and activity levels (the proportion of time that animals
spend active) of Japanese serows and sika deer, we fitted non-parametric circular kernel
density models [77]. The median time between the first and last consecutive photographs
of each species was considered the time of a capture event. We converted local time
stamps of independent detections into radian units. We estimated their activity level with
10,000-times smoothed bootstrapping and carried out the randomization test and Wald
test to detect differences in activity pattern and activity level between the two species. To
determine interspecific overlaps in daily activity, we then estimated the coefficient of tem-
poral overlap (∆4) ranging from 0 (no overlap) to 1 (complete overlap) [78]. We generated
10,000 times smoothed bootstrapping to assess the reliability of the ∆4 estimator and to
estimate a 95% confidence interval. Statistical significances in interspecific differences of
daily activity patterns were assessed using Watson’s two-sample test [79].

We defined spatial (α) and temporal (∆4) overlap indices with ≤50th percentile as
“low”, between 50th< and ≤75th percentiles as “moderate”, and >75th percentile as “high”
following previous studies [80–82]. All statistical analyses were performed in R (v4.0.2; [83])
using “car” package [84,85] for the VIF analysis, the “rstan” package [86,87] for estimation
of the posteriors, the Stan code from the “brms” package [88,89] to construct the serow and
sika models, the “activity” package [77,90] to estimate activity patterns and activity levels
of Japanese serows and sika deer, and the “overlap” [91] and the “CircStats” packages [92]
to estimate ∆4 and to assess its significance.

3. Results

The cumulative trapping effort over the study period was 1245 camera days. The total
number of independent photographs was 96 for the Japanese serows and 88 for the sika
deer. Out of 83 camera sites, Japanese serows were photographed at 46 sites and sika deer
at 35 sites. The mean ± SD of photographic capture rate (at sites with recorded presence)
for each species was 2.09 ± 1.13 for the Japanese serows and 2.51 ± 2.97 for the sika deer.
The number of camera sites at which both species, only one species, and neither species
were photographed was 21, 39 (25 for the Japanese serows and 14 for the sika deer), and
23 sites, respectively. Both species were photographed throughout the study area (Figure 2).
However, we observed low spatial overlap (α = 0.34) between the two species.

The photographic capture rate of the Japanese serows was significantly positively
correlated with the mean slope, and significantly negatively correlated with the distance
to the nearest water resource (Figure 3), indicating that this species selected steep slopes
and areas close to water resources. The photographic capture rate of the sika deer was
significantly positively correlated with the distance to the nearest human settlements, and
significantly negatively correlated with the distance to water resources (Figure 3), indicating
that this species also selected areas close to water resources, and that they avoided areas
close to human settlements. Habitat selection within each species was not affected by the
photographic capture rates of the other study species (Figure 3).

Circular kernel density models indicated that the Japanese serows were more active
during the daytime, whereas the sika deer were active at the crepuscule (Figure 4). Their
activity patterns were significantly different (p < 0.001). We also observed significant
temporal partitioning between the two species (mean ∆4 = 0.692; 95% confidence interval,
0.565–0.783; p < 0.001; Figure 5). The activity levels (the ratio of the areas under and
above the curve of the circular probability density function in Figure 4) estimated for the
Japanese serows and sika deer were 0.501 (95% confidence interval, 0.349–0.585) and 0.530
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(0.355–0.604), respectively, and there was no significant difference (W = 0.105 ± 0.087,
p = 0.745).
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Figure 4. Circular kernel density models showing the overall daily activity patterns of Japanese
serow and sika deer in Tsumagoi, central Honshu, Japan. Dashed lines indicate the 95 % confidence
intervals. The dark gray-shaded, light gray-shaded, and white areas indicate nighttime, dawn and
dusk, and daytime, respectively. The day division was according to Ikeda et al. [52]: dawn (1 h
before and after sunrise), dusk (1 h before and after sunset), daytime (from 1 h after sunrise to 1 h
before sunset), and nighttime (from 1 h after sunset to 1 h before sunrise). Data on the time of sunrise
and sunset in Maebashi (36◦23′ N, 139◦4′ E), recorded by the National Astronomical Observatory of
Japan, were used.



Animals 2021, 11, 3398 9 of 15Animals 2021, 11, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 5. Comparison of daily activity patterns of Japanese serows and sika deer in Tsumagoi, 

central Honshu, Japan. The grey-shaded area indicates the mean coefficient of overlap, Δ4, be-

tween both species. 

4. Discussion 

Our results show that the two species exhibited temporal partitioning in their activity 

patterns, with the Japanese serows and sika deer demonstrating diurnal and crepuscular 

activity patterns, respectively (Figures 4 and 5). The activity pattern in the sika deer ob-

served in our study is consistent with previous reports of the species in other areas 

[50,52,53,93–96]. Although several studies described lower nighttime activity in other 

populations [50,52,53,94,96], a greater shift toward nocturnality has been apparent in ar-

eas with intense human activities [51,54,94,95]. Therefore, the low activity of the sika deer 

during the daytime probably resulted from the avoidance of humans [52,54,97]. Although 

little is known concerning the activity patterns of Japanese serows, the observed activity 

patterns of the Japanese serows were also consistent with a previous report that a radio-

collared female was more active during the daytime than nighttime [55]. The Japanese 

serow has been legally protected since 1955, which might contribute to their diurnal ac-

tivity. Despite this, and in contrast to the relatively well-known ecology of sika deer, there 

is a gap in the literature regarding the factors influencing the activity patterns of serow 

species. The few studies detailing the known activity patterns of other serow species of 

the genus Capricornis reported rather drastic differences. For example, mainland serows 

(C. sumatraensis) were observed to be more active at night [98], red serows (C. rubidus) 

from the afternoon through to midnight [99], Chinese serows (C. milneedwardsii) at dawn 

and dusk [61], and Himalayan serows (C. thar) more frequently in the morning and night 

[100]. Chen et al. [99] revealed that the time at which Chinese serows were more active 

changed from afternoon and midnight in the dry season to between sunrise and noon in 

the wet season, likely to avoid interference competition with red serows. 

The Japanese serows and sika deer were recorded at more than 25% of the same cam-

era sites (Figure 2), but spatial overlap indices between them were low. In addition, alt-

hough the two species exhibited similar positive selections for habitats close to water re-

sources, the Japanese serows prioritized steep slopes, whereas the sika deer showed a 
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both species.

4. Discussion

Our results show that the two species exhibited temporal partitioning in their activity
patterns, with the Japanese serows and sika deer demonstrating diurnal and crepus-
cular activity patterns, respectively (Figures 4 and 5). The activity pattern in the sika
deer observed in our study is consistent with previous reports of the species in other
areas [50,52,53,93–96]. Although several studies described lower nighttime activity in other
populations [50,52,53,94,96], a greater shift toward nocturnality has been apparent in areas
with intense human activities [51,54,94,95]. Therefore, the low activity of the sika deer dur-
ing the daytime probably resulted from the avoidance of humans [52,54,97]. Although little
is known concerning the activity patterns of Japanese serows, the observed activity patterns
of the Japanese serows were also consistent with a previous report that a radio-collared
female was more active during the daytime than nighttime [55]. The Japanese serow has
been legally protected since 1955, which might contribute to their diurnal activity. Despite
this, and in contrast to the relatively well-known ecology of sika deer, there is a gap in the
literature regarding the factors influencing the activity patterns of serow species. The few
studies detailing the known activity patterns of other serow species of the genus Capricornis
reported rather drastic differences. For example, mainland serows (C. sumatraensis) were
observed to be more active at night [98], red serows (C. rubidus) from the afternoon through
to midnight [99], Chinese serows (C. milneedwardsii) at dawn and dusk [61], and Himalayan
serows (C. thar) more frequently in the morning and night [100]. Chen et al. [99] revealed
that the time at which Chinese serows were more active changed from afternoon and
midnight in the dry season to between sunrise and noon in the wet season, likely to avoid
interference competition with red serows.

The Japanese serows and sika deer were recorded at more than 25% of the same
camera sites (Figure 2), but spatial overlap indices between them were low. In addition,
although the two species exhibited similar positive selections for habitats close to water
resources, the Japanese serows prioritized steep slopes, whereas the sika deer showed a
significant avoidance of human settlements (Figure 3). Because neither species’ habitat
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selection was significantly affected by the photographic capture rate of the other (Figure 3),
the observed results could be explained by species-specific requirements rather than by
interspecific competition. Our observations that Japanese serows select steep slopes are
corroborated by reports describing this habitat selection in other areas where sika deer
density was low (<1 individual/km2) [101], and where sika deer density was generally
high [37,42,43,102,103]. The results indicate that Japanese serows do not select steep slopes
to avoid sika deer. In fact, ungulate species with shorter limbs (such as Japanese serows)
are specialized for climbing and navigating mountainous habitats, whereas those with
longer limbs (such as sika deer) are specialized for speed, to run away from predators in
open habitats [104,105]. Moreover, the utilization of steep-sloping terrain such as cliffs is
a fundamental predator avoidance strategy in caprids [106]. In a study investigating this
specific aspect of Japanese serow behavior, Takada et al. [107] suggested that their selection
for steep and low-visibility habitats can be attributed to security. Thus, predator avoidance
mechanisms could be a major factor influencing the difference in the observed selection for
steep slopes between the Japanese serows and sika deer.

In contrast to Japanese serows, the most significant factor determining sika deer occur-
rence was (a disinclined) proximity to human settlements (Figure 3). Human disturbance
likely influences the behavior, habitat use, and activity patterns of sika deer [52,54,97,108–111].
As deer species are extremely sensitive to human disturbance [47], the negative selection
for human proximity may be a consequence of spatial human avoidance of sika deer.
However, Japanese serows appear less sensitive to human presence, as the recorded abun-
dance of Japanese serows tended to be high in areas close to human settlements (Figure 3).
The difference between the sika deer and Japanese serows regarding the avoidance of
human settlements could be a consequence of the difference in hunting pressure of each
species; specifically, the sika deer is a game species, whereas the Japanese serow is a legally
protected species.

We observed that the Japanese serows and sika deer selected areas close to water
resources (Figure 3). Similarly, Ishida et al. [101] revealed that both these ungulate species
were typically observed around valley-like terrain. Water is a critical resource for Cervidae
and Bovidae in arid regions [112–115]. Although the climate in Japan is humid, the drinking
water behaviors of the Japanese serows and sika deer observed in several areas [116–118]
suggest that water is an important factor determining the behavior of these ungulates. To
adequately assess the importance of water resources for Japanese serows and sika deer,
systematic surveys for water use by these ungulates need to be conducted.

Japanese serows are smaller than sika deer (29.0–56.5 kg [119] versus
37.6–100.0 kg [120]), and larger species are typically superior to smaller ones [46]. Indeed,
Japanese serows tend to avoid sika deer when they encounter each other, whereas sika deer
likely ignore the presence of Japanese serows [121]. Although the Japanese serows and
sika deer exhibited similar positive selection for water resources (Figure 3), the temporal
partitioning observed between the two species reduced their encounter rates, minimizing
possible interference competition between them. Similar partitioning mechanisms are
known to occur not only within other sympatric herbivore communities [49,61,99,100,122]
but also within sympatric carnivore communities [21,123]. However, Koganezawa [36]
revealed that population densities of Japanese serows decreased in areas where sika deer
density exceeded 25 individuals/km2; however, their densities were not significantly dif-
ferent in an area where sika deer density was <10 individuals/km2. As the population
density of sika deer increases, the encounter rate between the two species is also expected
to increase, due to a moderate temporal overlap between them (Figure 5), which may
influence the population levels of Japanese serows.

Although snare traps have been widely used for sika deer management, Japanese
serows have typically been unintentionally captured, and many individuals have been
injured in the process, sometimes fatally [59,124]. Our study sheds light on possible
measures that can be adopted to minimize the risks of these accidents. The Japanese serows
and sika deer selected areas close to water resources (Figure 3). The Japanese serows also
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selected steep slopes, whereas sika deer did not show any preference for slopes (Figure 3).
In addition, both ungulates exhibited opposing tendencies with regard to the proximity
of human settlements, with the Japanese serows tending to select areas close to human
settlements, whereas sika deer selected areas far from human settlements (Figure 3). While
trapping near human settlements reduces trapping effort from an accessibility perspective,
this may increase the unintentional capture of Japanese serows. Thus, to reduce the
unintentional capture of Japanese serows, sika deer trapping efforts near valleys should be
minimized and instead focused on areas with gentler slopes away from human settlements.

5. Conclusions

The results of this study support our hypotheses that Japanese serows and sika
deer exhibit spatial as well as temporal partitioning. This partitioning likely reduces the
encounter rates between the two species, minimizing possible interference competition
between them. However, spatial and temporal overlaps between Japanese serows and
sika deer are likely to increase with the increase in sika deer density, which may result in
a decline in the population density or a niche shift of Japanese serows with smaller body
size. To better understand the factors influencing declines in the population of Japanese
serows, more research needs to be conducted in areas with varied sika deer densities. Our
study also identifies the following possible avenues to reduce the unintentional capture of
the threatened Japanese serow in trapping efforts aimed at sika deer: trapping should be
focused on areas with gentler slopes, away from valleys and human settlements.
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