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Abstract: Introduction: Automated echocardiography image interpretation has the potential to
transform clinical practice. However, neural networks developed in general cohorts may underper-
form in the setting of altered cardiac anatomy. Methods: Consecutive echocardiographic studies
of patients with congenital or structural heart disease (C/SHD) were used to validate an existing
convolutional neural network trained on 14,035 echocardiograms for automated view classification.
In addition, a new convolutional neural network for view classification was trained and tested
specifically in patients with C/SHD. Results: Overall, 9793 imaging files from 262 patients with
C/SHD (mean age 49 years, 60% male) and 62 normal controls (mean age 45 years, 50.0% male) were
included. Congenital diagnoses included among others, tetralogy of Fallot (30), Ebstein anomaly
(18) and transposition of the great arteries (TGA, 48). Assessing correct view classification based on
284,250 individual frames revealed that the non-congenital model had an overall accuracy of 48.3%
for correct view classification in patients with C/SHD compared to 66.7% in patients without cardiac
disease. Our newly trained convolutional network for echocardiographic view detection based on
over 139,910 frames and tested on 35,614 frames from C/SHD patients achieved an accuracy of 76.1%
in detecting the correct echocardiographic view. Conclusions: The current study is the first to validate
view classification by neural networks in C/SHD patients. While generic models have acceptable
accuracy in general cardiology patients, the quality of image classification is only modest in patients
with C/SHD. In contrast, our model trained in C/SHD achieved a considerably increased accuracy
in this particular cohort.

Keywords: deep learning; neural network; structural heart disease; congenital heart disease;
echocardiography

1. Introduction

Transthoracic echocardiography represents one of the main diagnostic modalities
in modern clinical cardiology with a broad range of uses and indications [1]. While
traditionally manually interpreted by cardiologists, novel computer-based technologies
allow deep neural networks (DNN) to increasingly assist in the assessment of acquired
images [2–5]. This may especially aid sonographers with infrequent echocardiography
practice [6,7] and expand the conduction of echocardiography to settings thought to be
outside the scope of this modality, such as primary care or medical care in remote areas [8].
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As the necessary first step in the automated interpretation of echocardiography images,
views need to be correctly identified. Similar to other cardiac imaging modalities such
as magnetic resonance imaging (MRI) or computer tomography (CT), echocardiography
studies require a multitude of views depicting the cardiac structures. Theoretically, an
infinite number of different views are possible, but 27 of these have been identified as
the views that should be taken during the performance of a comprehensive transthoracic
echocardiography examination, with a core 15–20 views employed in almost all studies
depending on the diagnostic question [1]. Importantly, by dissecting cardiac chambers and
valves at different angles through a differently rotated two-dimensional echocardiography
probe, operators depict specific parts of the structure of interest [9] with some anatomic
abnormalities only detectable in a few views. Conversely, in the important question of
regional wall motion abnormalities, the information of up to seven views (apical two-,
three- and four-chamber, parasternal short axis at the level of the mitral valve, papillary
muscles and apex and parasternal long axis) needs to be combined to analyze all segments
of the left ventricle [10]. Therefore, misidentification on automated analysis may impede
patient care and could potentially delay a correct diagnosis [11].

In this regard, a recent study by Zhang et al. [12] proposed and validated a convo-
lutional neural network to assess echocardiographic images and classify them according
to the depicted echocardiographic view. While the authors report a high accuracy in the
identification of the correct echocardiographic view, it is unclear whether these findings
can be applied to patients with congenital or structural heart disease (C/SHD). The present
study was, therefore, conducted to assess the performance of a DNN trained and validated
in a cohort of general cardiology patients concerning its performance in classifying views
depicting structural and congenital heart disease and compare it to a DNN specifically
trained in C/SHD.

2. Methods

The present study was conducted according to the Declaration of Helsinki and its later
amendments. The project was approved by the local ethics committee (Approval number
2020-751-f-S).

2.1. Imaging Database

Echocardiograms of patients with congenital and structural heart disease were selected
retrospectively from the routine clinical imaging database of the Department of Cardiology
III—Adult Congenital and Valvular Heart Disease at the University Hospital Muenster.
Echocardiograms were chosen for diversity of underlying disease etiology (see Table 1),
comprehensiveness of echocardiographic views and quality of acquired loops. In addition,
echocardiograms of patients without a cardiac abnormality were prospectively included
according to the aforementioned criteria. The examinations were performed on different
echocardiography machines from different vendors (especially GE Vivid E9, Vivid E95,
Vivid 7; Philips EPIC 7C, EPIC 7G, iE33). Two-dimensional (2D) echocardiographic studies
performed according to current guideline recommendations [1] were anonymized, exported
and converted into individual frames in a PNG format for automated analysis. In total,
individual frames of 17 separate TTE views were obtained. Figure 1 details the utilized
echocardiography views.
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Table 1. Characteristics of the patient population with congenital or structural heart disease.

Diagnosis Number (%) Mean Age in Years Male (%)

Ebstein anomaly 18 (7%) 40 14 (78%)

Hypoplastic left heart 3 (1%) 23 2 (67%)

Tricuspid atresia 1 (<1%) 36 1 (100%)

Non-compaction
cardiomyopathy 9 (3%) 37 7 (78%)

Transposition of the great
arteries (TGA) 48 (18%) 39 25 (52%)

Tetralogy of Fallot 30 (11%) 47 15 (50%)

Incomplete
atrio-ventricular septal

defect
6 (2%) 39 1 (17%)

Complete
atrio-ventricular septal

defect
5 (2%) 55 2 (40%)

Double outlet right
ventricle 1 (<1%) 50 1 (100%)

Atrial septal defect 7 (3%) 37 4 (57%)

Amyloidosis 23 (9%) 68 20 (87%)

Hypertrophic obstructive
cardiomyopathy 7 (3%) 58 3 (43%)

Fabry disease 11 (4%) 60 7 (64%)

Dilatative
cardiomyopathy 54 (21%) 58 35 (65%)

Congenitally corrected
TGA 34 (13%) 48 18 (53%)

Muscular ventricular
septal defect 5 (2%) 42 1 (20%)

All patients 262 49 ± 17 156 (60%)

2.2. Convolutional Neural Networks

The source code and model weights of the DNN trained with a general dataset were
obtained from https://bitbucket.org/rahuldeo/echocv (accessed on 20 March 2021) and
the training and validation methodology was previously published by Zhang et al. [12]. To
summarize, a 13-layer convolutional neural network (VGG 13) was trained with images
assigned an individual view label and five-fold cross-validation was used to assess accuracy.
Because of a lack of images for some uncommon views in the C/SHD-cohort, we decided
to use 17 instead of the original 23 different views. Additionally, for ease of comparison,
we assessed single echocardiographic frames individually instead of averaging accuracy
across frames of the same image loop.

For the DNN trained with a C/SHD-specific dataset, our echocardiographic dataset
was split into a training/validation group (80%) and a test group (20%). Frames from
patients of the test group were not used for model training to ensure the external validity
of the new model. Image resolution was reduced to 150 × 150 pixels and a greyscale of
256 shades.

https://bitbucket.org/rahuldeo/echocv
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Figure 1. Representative images of the included seventeen separate echocardiographic views. (1) = 
Parasternal long axis (PLAX) left ventricle, (2) = PLAX zoomed MV, (3) = PLAX RV inflow, (4) = 
Parasternal short axis (PSAX) focus on AV, (5) = PSAX papillary muscles, (6) = PSAX apex, (7) = 
PSAX zoomed AV, (8) = PSAX MV, (9) = Apical 4 chamber (A4C), (10) = A4C zoomed left ventricle, 
(11) = Apical 5 chamber, (12) = Apical 2 chamber (A2C), (13) = A2C zoomed left ventricle, (14) = 
Apical 3 chamber (A3C), (15) = A3C zoomed left ventricle, (16) = Subcostal 4 chamber, (17) = Su-
prasternal aortic arch. 

2.2. Convolutional Neural Networks 
The source code and model weights of the DNN trained with a general dataset were 

obtained from https://bitbucket.org/rahuldeo/echocv (accessed on 20 March 2021) and 
the training and validation methodology was previously published by Zhang et al. [12]. 
To summarize, a 13-layer convolutional neural network (VGG 13) was trained with im-
ages assigned an individual view label and five-fold cross-validation was used to assess 
accuracy. Because of a lack of images for some uncommon views in the C/SHD-cohort, 
we decided to use 17 instead of the original 23 different views. Additionally, for ease of 
comparison, we assessed single echocardiographic frames individually instead of aver-
aging accuracy across frames of the same image loop. 

For the DNN trained with a C/SHD-specific dataset, our echocardiographic dataset 
was split into a training/validation group (80%) and a test group (20%). Frames from pa-
tients of the test group were not used for model training to ensure the external validity of 

Figure 1. Representative images of the included seventeen separate echocardiographic views.
(1) = Parasternal long axis (PLAX) left ventricle, (2) = PLAX zoomed MV, (3) = PLAX RV inflow,
(4) = Parasternal short axis (PSAX) focus on AV, (5) = PSAX papillary muscles, (6) = PSAX apex,
(7) = PSAX zoomed AV, (8) = PSAX MV, (9) = Apical 4 chamber (A4C), (10) = A4C zoomed left
ventricle, (11) = Apical 5 chamber, (12) = Apical 2 chamber (A2C), (13) = A2C zoomed left ventri-
cle, (14) = Apical 3 chamber (A3C), (15) = A3C zoomed left ventricle, (16) = Subcostal 4 chamber,
(17) = Suprasternal aortic arch.

During training image augmentation with random rotations (±10◦), width and height
shifts (10 and 5%, respectively) as well as shears and zoom (up to 10% and 5%, respectively)
were applied to the echocardiographic images at run-time. To this end a pre-trained VGG-
19 network implemented in Tensorflow/Keras was utilized as described before (https:
//arxiv.org/abs/1409.1556, accessed on 20 March 2021). For transfer learning weights
of the convolutional base were initially frozen and the model was trained for 50 epochs.
Subsequently weights from convolutional layer 3, block 4 upwards were unfrozen and the
model trained for an additional 80 epochs. This approach was chosen to protect previously
learned representations and to ensure the best possible accuracy while avoiding overfitting.
This was done by continuously inspecting training and validation accuracy/loss. The
model accuracy was quantified as the percentage of correctly classified frames. Training
and testing were performed on an Intel i9 platform with GPU support (Nvidia GX 2080Ti).

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
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Analyses were performed using RStudio Version 1.4.1717/R-package version 4.1.0. For
further information, see the Supplementary Materials.

2.3. Statistical Analysis

For the direct comparison of the different DNN’s accuracy, a contingency table of
correctly and incorrectly identified views was created and analyzed with the Chi-square
test with SPSS Version 27 (IBM Corporation, Somers, NY, USA). Statistical significance was
defined as a two-sided alpha level of 0.05 or less.

3. Results
3.1. Deep Neural Network (DNN) Trained with a General Dataset

Transthoracic echocardiograms of 262 patients with C/SHD were identified for inclu-
sion. Patient characteristics and individual congenital or structural abnormalities of the
population are depicted in Table 1. In addition, echocardiography studies of 62 patients
(mean age 45 years, 50.0% male) without a cardiac abnormality were identified and in-
cluded for automated view classification. In total, 9793 TTE loops were included for the
patient group with C/SHD. Of these, 8371 loops were acquired on GE ultrasound systems
(Vivid 7 or Vivid E95) and 1422 loops were acquired on Philips ultrasound systems (Epiq).
For the group with normal cardiac anatomy, 706 loops were included in the analysis. In
total, 284,250 individual frames were assessed for view classification by the DNN trained
with a general dataset in the present study. Overall, the accuracy of the DNN trained with
a general dataset concerning view classification was 48.3% in patients with C/SHD (see
Table 2) on a frame by frame basis. The highest accuracy was achieved in the identification
of the parasternal long axis (76.5% correct) and the subcostal 4 chamber view (87.7% correct).
In contrast, the DNN had a low accuracy in distinguishing the different parasternal short
axis views and apical views (see Table 2).

The DNN’s accuracy for view classification was 66.7% overall in patients without a
cardiac abnormality (see Table 3). In this group of patients, identification of the parasternal
long axis and subcostal 4 chamber view remained very accurate (98.4% and 100%, respec-
tively), but the differentiation between separate parasternal short axis and apical views
was higher compared with C/SHD-frames. For example, a parasternal short axis view at
the level of the papillary muscles was correctly identified by the DNN in 63.0% of frames
depicting C/SHD compared with 79.4% of frames without cardiac abnormality and the
apical 4 chamber view was correctly identified in 52.7% of frames with C/SHD versus
77.5% of frames without cardiac abnormality.

3.2. DNN Trained with a Congenital or Structural Heart Disease (C/SHD)-Specific Dataset

A new convolutional neural network was independently trained on 139,910 frames
depicting C/SHD and subsequently tested on a dataset of 35,614 frames. Table 4 depicts a
cross matrix of this DNN’s accuracy in the identification of the 17 utilized echocardiographic
views. The overall accuracy across all views was 76.1%. Similar to the DNN trained with a
general dataset, the parasternal long axis and subcostal views were distinguished with a
high accuracy by the DNN trained with a C/SHD-specific dataset. However, this DNN
showed a higher accuracy over the DNN trained with a general dataset in the classification
of parasternal short axis and apical views. For example, the DNN trained with a C/SHD-
specific dataset was able to detect a parasternal short axis view of the mitral valve with
an accuracy of 52% compared to an accuracy of 11.3% by the DNN trained with a general
dataset. Additionally, the apical 2-, 3-, 4- and 5-chamber views were able to be distinguished
with a very high accuracy by the DNN trained with a C/SHD-specific dataset (80%, 88%,
78% and 91%, respectively) compared to the DNN by Zhang et al. (31.3%, 28.5%, 52.7%
and 25.5%, respectively). This resulted in a highly statistically significant difference in
the accuracy of the DNN trained with a C/SHD-specific dataset compared with the DNN
trained with a general dataset in the view classification of patients with C/SHD (p < 0.001).
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Table 2. Confusion matrix of the general algorithm results in classification of echocardiographic views of patients with CSHD. A2C = Apical 2 chamber, A3C = Apical
3 chamber, A4C = Apical 4 chamber, PLAX = Parasternal long axis, PSAX = Parasternal short axis. Background colors depict strength of classification.

General Algorithm Interpretation in %

Ground truth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 other
PLAX left ventricle (1) 76.5 5.9 0.4 4.8 0.4 0.4 0.2 3.6 0.2 7.9
PLAX zoomed MV (2) 33.3 33.3 33.3

PLAX RV inflow (3) 18.2 40.9 18.2 4.5 9.1 4.5 4.5
PSAX focus on AV (4) 6.5 0.7 69.9 0.3 0.3 4.794 8.2 0.3 8.9

PSAX papillary muscles (5) 7.7 2.7 5.4 63.0 0.8 0.3 3.8 0.5 0.3 0.3 0.3 10.2 4.8
PSAX apex (6) 9.6 0.8 3.2 59.7 3.2 1.6 0.8 11.3 2.4 7.3

PSAX zoomed AV (7) 40.0 20.0 40.0
PSAX MV (8) 20.8 0.4 2.0 7.5 33.8 0.5 0.4 11.3 0.5 1.1 0.2 0.5 0.2 10.7 0.2 10.0

Apical 4 chamber (9) 1.8 0.2 0.5 3.1 0.3 52.7 1.9 23.7 1.1 2.4 1.1 3.0 2.6 3.3
A4C zoomed left ventricle (10) 2.8 2.8 4.7 0.5 10.4 62.7 0.5 10.4 0.5 0.9 0.5 3.3

Apical 5 chamber (11) 2.7 2.7 0.9 20.0 26.4 25.5 1.8 2.7 1.8 4.5 10.9
Apical 2 chamber (12) 5.6 0.9 0.6 3.8 0.6 4.1 2.8 31.3 30 3.7 4.0 4.4 8.1

A2C zoomed left ventricle (13) 2.2 3.3 1.1 1.1 15.4 2.2 57.1 1.1 6.6 3.3 6.6
Apical 3 chamber (14) 14.4 1.6 1.0 5.5 0.3 2.6 2.0 0.7 1.0 1.6 28.5 31.3 1.3 8.8

A3C zoomed left ventricle (15) 11.1 11.1 11.1 11.1 11.1 44.4
Subcostal 4 chamber (16) 0.5 1.0 1.0 1.5 0.5 87.7 7.8

Suprasternal aortic arch (17) 1.9 17.9 6.0 6.0 1.5 19.4 34.3 13.0
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Table 3. Confusion matrix of general algorithm results in classification of echocardiographic views of patients without cardiac abnormality. A2C = Apical 2 chamber,
A3C = Apical 3 chamber, A4C = Apical 4 chamber, PLAX = Parasternal long axis, PSAX = Parasternal short axis. Background colors depict strength of classification.

General Algorithm Interpretation in %

Ground truth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 other
PLAX left ventricle (1) 98.4 1.6
PLAX zoomed MV (2) 33.3 66.6

PLAX RV inflow (3) 75.0 25.0
PSAX focus on AV (4) 19.4 2.8 63.8 8.3 2.8 2.8

PSAX papillary muscles (5) 7.2 1.0 2.0 1.0 79.4 6.2 3.1
PSAX apex (6) 94.5 0 5.5

PSAX zoomed AV (7) -
PSAX MV (8) 10.6 2.1 2.1 4.3 48.9 19.1 10.6 2.1

Apical 4 chamber (9) 0.7 77.5 20.5 1.3
A4C zoomed left ventricle (10) 16.7 66.7 4.2 4.2 4.2 4.2

Apical 5 chamber (11) 14.3 35.7 21.4 28.6
Apical 2 chamber (12) 57.1 21.4 21.4

A2C zoomed left ventricle (13) 11.1 11.1 22.2 22.2 11.1 11.1 11.1
Apical 3 chamber (14) 13.3 6.7 6.7 6.7 6.7 33.3 26.7

A3C zoomed left ventricle (15) 66.7 33.3
Subcostal 4 chamber (16) 100

Suprasternal aortic arch (17) 20.0 40.0 40.0
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Table 4. Confusion matrix of the results of the CSHD-specific algorithm in classification of echocardiographic views of patients with CSHD. A2C = Apical 2 chamber,
A3C = Apical 3 chamber, A4C = Apical 4 chamber, CSHD = Congenital or structural heart disease, PLAX = Parasternal long axis, PSAX = Parasternal short axis.
Background colors depict strength of classification.

CSHD-Specific Algorithm Interpretation in %

Ground truth

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 other
PLAX left ventricle (1) 94 2 1 1 1 1
PLAX zoomed MV (2) 94 5 1

PLAX RV inflow (3) 1 80 1 9 3 4 2
PSAX focus on AV (4) 2 3 88 2 1 3

PSAX papillary muscles (5) 1 1 68 26 3 1 1
PSAX apex (6) 2 48 6 2 26 6 6 3 6 1

PSAX zoomed AV (7)
PSAX MV (8) 1 1 46 52

Apical 4 chamber (9) 1 1 91 4 1 1 1
A4C zoomed left ventricle (10) 10 69 20 1

Apical 5 chamber (11) 21 1 78
Apical 2 chamber (12) 6 6 80 5 2 1

A2C zoomed left ventricle (13) 3 6 27 32 32
Apical 3 chamber (14) 4 3 2 3 88

A3C zoomed left ventricle (15) 3 90 7
Subcostal 4 chamber (16) 100

Suprasternal aortic arch (17) 6 1 93
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4. Discussion

The present study is the first to directly compare the accuracy of a convolutional
neural network developed in general cardiology cohorts with a neural network trained
with a C/SHD-specific dataset for echocardiogram view classification. We were able
to demonstrate the superiority of a DNN trained with a C/SHD-specific dataset in the
identification of echocardiographic views in this distinct group of patients.

Automated view classification is an important part of completely autonomous echocar-
diography interpretation by deep neural networks [13]. Zhang et al. [12] as well as other
working groups [13,14] and our present study document the high accuracy in the identifi-
cation of echocardiographic views by a DNN trained and validated in a cohort of general
cardiology patients when applied to these patients or patients without a cardiac abnor-
mality. However, the present study indicates that this DNN’s precision is considerably
decreased in a patient population with underlying congenital or structural heart disease.
This is comprehensible from a clinical point of view as patients with a diverse set of
congenital and structural heart diseases such as our included patient population display
various abnormalities ranging from displaced or abnormally configured valves (Ebstein
anomaly) to atypically configured (non-compaction cardiomyopathy) or virtually absent
heart chambers (hypoplastic left heart syndrome). Since patients with C/SHD are at an
increased risk of morbidity and mortality [15,16], misidentification in automated clinical
workflows may impede care in this patient population already at a far greater risk than the
general population.

A recent study by Narang et al. [6] evaluated a deep neural network in guiding
medical personnel previously untrained in echocardiography to obtain diagnostic TTE
images for evaluation of right- and left-ventricular function and the presence of pericar-
dial effusion. While the need for manual acquisition of images and the range of different
imaging planes may slow the automation of echocardiography, this demonstrates the pro-
found changes in the practice of echocardiography possible with the utilization of artificial
intelligence [17,18]. Although likely increasing efficiency in the diagnosis and treatment of
common cardiac conditions such as ischemic cardiomyopathy, comparatively rare disorders
such as a congenital heart disease may be underdiagnosed or misclassified by DNNs not
trained in these specific conditions. This may be especially important in common echocar-
diography indications such as the quantification of ejection fraction or pericardial effusion.
Further studies should aim to integrate or combine models trained in general cardiology
and C/SHD cohorts to avoid possible blind spots concerning uncommon diseases.

While a previous study has reported on convolutional neural networks trained and
validated for view classification in patients with atrial or ventricular septal defects [19],
the present DNN was trained in a larger and more diverse patient population. Atrial
and ventricular septal defects are an important and common congenital malformation,
but their presence usually does not substantially alter the overall structure of the cardiac
chambers. Conversely, our included patient population contained patients with a variety of
congenital and structural heart diseases which may substantially alter the cardiac structures
and, therefore, present an independent challenge in view classification for both human
interpreters and artificial intelligence.

Limitations

The present study was conducted as a single-center experiment and echocardiographic
studies were gathered from a large tertiary university center for adult congenital heart dis-
ease. Therefore, included images may be of greater homogeneity than might be achievable
in a community, multi-center setting. However, included images were obtained across
different ultrasonography systems by multiple echocardiographers with considerable vari-
ation in underlying disease and image quality. Importantly, studies were acquired across
the spectrum of inpatient and outpatient indications and a diverse range of underlying
disease etiologies. We focused on exploring the importance of disease-specific datasets
for accurate view-classification. Alternatively, a systematic exploration of various CNN
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designs and their impact on the accuracy of view detection could have been investigated.
Further work is required to assess whether optimizing the underlying CNN model would
improve classification results beyond using disease-specific datasets.

5. Conclusions

Automated view classification is an important part of echocardiographic interpreta-
tion by deep neural networks. While a convolutional neural network trained in general
cardiology patients showed acceptable accuracy in this cohort, echocardiographic views
in patients with congenital or structural heart disease were frequently misidentified. In
this regard, a convolutional neural network trained specifically in this subset of patients
showed a much improved accuracy, highlighting the need for specific neural networks in
this important group of patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11030690/s1. Codes of the generation and training: the
VGG19 deep learning network.
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