
Diagnostic Accuracy Study Medicine®

OPEN
Development and validati
on of a novel and robust
blood small nuclear RNA signature in diagnosing
autism spectrum disorder
Jinxia Zhou, MD, Qian Hu, MD, Xijia Wang, MD, Wei Cheng, MD, Chunlian Pan, MD

∗
, Xiaobin Xing, MD

∗

Abstract
Reliable molecular signatures are needed to improve the early and accurate diagnosis of autism spectrum disorder (ASD), and indicate
physicians to provide timely intervention. This study aimed to identify a robust blood small nuclear RNA (snRNA) signature in diagnosing
ASD. 186blood samples in themicroarray datasetwere randomly divided into the training set (n=112) and validation set (n=72). Then, the
microarray probe expression profileswere re-annotated into the expression profiles of 1253 snRNAs though probe sequencemapping. In
the training set, least absolute shrinkage and selection operator (LASSO) penalized generalized linearmodel was adopted to identify the 9-
snRNA signature (RNU1-16P, RNU6-1031P, RNU6-258P, RNU6-335P, RNU6-485P, RNU6-549P, RNU6-98P, RNU6ATAC26P, and
RNVU1-15), and a diagnostic scorewas calculated for each sample according to the snRNA expression levels and themodel coefficients.
The score demonstrated a good diagnostic ability for ASD in the training set (area under receiver operating characteristic curve (AUC)=
0.90), validation set (AUC=0.87), and the overall (AUC=0.88). Moreover, the blood samples of 23 ASD patients and 23 age- and gender-
matchedcontrolswere collected as the external validation set, inwhich the signature also showedagooddiagnostic ability for ASD (AUC=
0.88). In subgroup analysis, the signature was robust when considering the confounders of gender, age, and disease subtypes, and
displayed a significantly better performance among the female and younger cases (P= .039; P= .002). In comparison with a 55-gene
signature deriving from the same dataset, the snRNA signature showed a better diagnostic ability (AUC: 0.88 vs 0.80, P= .049). In
conclusion, this study identified a novel and robust blood snRNA signature in diagnosing ASD, which might help improve the diagnostic
accuracy for ASD in clinical practice. Nevertheless, a large-scale prospective study was needed to validate our results.

Abbreviations: ASD = autism spectrum disorder, AUC = area under ROC curve, dNTPs = deoxy-ribonucleoside triphosphate,
GWAS = genome-wide association study, LASSO = least absolute shrinkage and selection operator, PDD-NOS = pervasive
developmental disorder-not otherwise specified, ROC = receiver operating characteristic, snRNAs = small nuclear RNAs.
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1. Introduction Despite of the disease onsite before 3 years old, most children are
Autism spectrum disorder (ASD) is a heterogeneous set of
neurodevelopmental diseases, characterized by deficits in social
communication and verbal/nonverbal interaction, as well as
restricted and repetitive patterns of interests and behaviors. It has
a high prevalence of approximately 0.3% to 1.2%, with 3 main
subtypes of autistic disorder, Asperger’s disorder and pervasive
developmental disorder-not otherwise specified (PDD-NOS).[1]
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diagnosed with ASD after 4 years old.[2] Early intensive
behavioral interventions could improve the outcomes (eg,
language skills, cognitive performance, and adaptive behavior
skills) in some young children with ASD.[3] Thus, it has a critical
need in clinical practice to increase the diagnostic accuracy for
ASD. Reliable molecular signatures could help improve the early
and accurate diagnosis of ASD, and indicate physicians to
provide timely intervention. Small noncoding RNAs have been
indicated as new class of biomarkers in ASD, but few studies
focused on the subtype of small nuclear RNAs (snRNAs).[4]

As the componentsof spliceosome, snRNAswere fairly conserved
with a uridine-rich noncoding sequence of less than 200 nt, and
involved in the splicing of precursor messenger RNA (mRNA).[4]

SnRNAs could be divided into 2 main categories according to the
common sequences and interactive proteins. Sm-class of snRNAs
(U1,U2, U4, andU5), characterized by a 50 trimethylguanosine cap,
were synthesized by RNA polymerase II and bound several Sm
proteins. Lsm snRNAs (U6 and other snRNAs), characterized by a
monomethylphosphate 50 cap, were transcribed by polymerase III
and acted as a binding site for Lsmproteins. Spliceosomes have been
reported in the pathogenesis of nervous system diseases, demon-
strating a potential involvement of snRNA.[5]

With great advances in microarray technologies, gene expres-
sion profiles were more available, and we could further adopt the
method of probe re-annotation to extract the snRNA expression
profiles. In this study, we aimed to develop and validate a novel
and robust snRNA signature in diagnosing ASD, which might
help improve the diagnostic accuracy for ASD in clinical practice.
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2. Methods

2.1. Data preparation

The database of gene expression omnibus (http://www.ncbi.nlm.
nih.gov/geo/) was reviewed to search proper datasets, which met
the following criteria:
(1)
 detected blood gene expression profiles of both ASD patients
and controls;
(2)
 availability of clinical data and probe sequences;

(3)
 the sample size was large enough.
Then, the tab-delimited expression value-matrix table was
downloaded and log2-transformed. The study was approved by
the ethnic committee of Puren Hospital Affiliated to Wuhan
University of Science and Technology.

2.2. Probe re-annotation

First, we obtained the microarray probe sequences from the
Affymetrix product website (http://www.affymetrix.com), as well
as the human genome sequences (GRCh38.p12) and compre-
hensive gene annotation from the GENCODE database (https://
www.gencodegenes.org).[6] Then, the HISAT software (hierar-
chical indexing for spliced alignment of transcripts) was applied
to identify probe-matched sequences. Transcripts were included
according to the following criteria:
(1)
 mappedby at least 1 probe sequence andwithout anymismatch;

(2)
 each probe was matched to only 1 transcript in probe-

transcript pairs.
When multiple probes matched to an identical gene, the
average expression value across these probes was calculated to
represent the corresponded gene. SnRNA expression profiles
were extracted according to the RNA types.

2.3. SnRNA signature construction, evaluation, and
validation

The samples were randomly divided into the training set and
validation set according to the ratio of 6:4. In the training set, a
least absolute shrinkage and selection operator (LASSO)
penalized generalized linear model was adopted to identify
significant snRNAs. The penalty parameter was estimated by 10-
fold cross-validation at 1 standard error beyond the minimum
partial likelihood deviance. Then, the coefficients of significant
snRNAs in the model were extracted to calculate a diagnostic
score for each sample in the training set, validation set, and the
overall. In receiver operating characteristic (ROC) curve analysis,
area under ROC curve (AUC) was calculated to evaluate the
diagnostic ability of the signature. Moreover, subgroup analysis
was conducted on gender, age, and disease subtypes to assess the
diagnostic stability of the signature, and DeLong’s test for 2 ROC
curves was performed to investigate the difference between
subgroups. Finally, we also compared the snRNA signature with
a 55-gene signature which derived from the same dataset.[7]

2.4. External validation

The blood samples of 23 ASD and 23 age- and gender-matched
controls were obtained in Puren Hospital from September 2015 to
July 2017. Written informed consent was provided before sample
collection, and the present study protocol was approved by the
ethnic committee of PurenHospital. Then, total RNAwas extracted
2

using TRIzol reagent (Invitrogen, Waltham, MA), and stored at
-80°C. The RNA concentration and purity were measured by the
NanoDrop spectrophotometer (Thermo Fisher, Waltham, MA).
Total RNA was synthesized into first-strand complementary DNA
using fluorescent-labeled deoxy-ribonucleoside triphosphate
(dNTPs) (Thermo Fisher, Waltham, MA), before hybridization
with a customized microarray which tailed and fixed 9 snRNA
probes (CapitalBio, China). The probe sequences were as follows:

RNU1-16P: GGGACTATGTTCGTGTTCTCTCCTG
RNU6-1031P: AAAATTGGAGTGATACAGAGAACAT
RNU6-258P: AAGTCGTGAAATAGTCCATATGTTA
RNU6-335P: TGCAAATTTGTGAAGAGGCACATTT
RNU6-485P: CCCTGTGCAAGGATGATATGCAAAT
RNU6-549P: GCTCACTTCAGTGGTACATATACTA
RNU6-98P: CAAATTCGAGAAATGTAGGAATTTT
RNU6ATAC26P: GAGAAGGTTAGCACTTCCCTTGGCA
RNVU1-15: GAACTCGACTGCATAACTTGTGATA

Finally, the snRNA expression levels were detected by the
GenePix microarray scanner (Axon Instrument, Union City, CA),
and a diagnostic score was calculated for each sample according
to the signature formula.
2.5. Statistical analysis

All statistical analyses were conducted using R 3.6.0 software. The
generalized linearmodelwasconstructedwithglmnet2.0-18package,
and ROC curve analysis was performed with ROCR 1.0-7 package.
A 2-sided P-value< .05 was considered statistically significant.
3. Results

3.1. Characteristic of included dataset

The included microarray dataset of GSE18123 was based on the
platform of GPL6244 (Affymetrix Human Gene 1.0 ST Array
[HuGene-1_0-st]), with a total of 104 ASD (80 males [76.9%]
and average age 8.1 years [2–21]) and 82 controls (48 males
[58.3%] and average age 8.0 years [2–22]). The subtypes of
autistic disorder, Asperger disorder, and PDD-NOS accounted
for 39.4% (n=41), 14.4% (n=15), and 46.2% (n=48),
respectively. Then, 186 samples were randomly divided into
the training set (n=112) and validation set (n=74).

3.2. Data preprocessing and sample clustering

The GPL6244 platform contained 861493 sequences (25bp)
aligning to 33297 probes. After probe re-annotation, a total of
8077RNAs (32 types) were identifiedwith 18329 specific probes,
among which there were 1253 snRNAs (U1, U2, U4, U5, U6, U7,
U11, and U12) mapping to 2561 probes.
Then, samples were clustered according to the distance in

Pearson correlation matrices. When adopted the expression
profiles of probes and genes, no outliers were detected (height
<0.2) (Fig. 1). However, it was more discrete when based on the
snRNA expression profiles, indicating a potential differential
expression of snRNAs in ASD.

3.3. Signature construction, evaluation, and validation

In the training set, the LASSO penalized generalized linear model
identified 9 significant snRNAs, which demonstrated an obvious
discrepancy between ASD and control samples (Table 1). A
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http://www.affymetrix.com/
https://www.gencodegenes.org/
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Figure 1. Sample clustering based on the expression profiles of probes, genes, and snRNAs. snRNAs =small nuclear RNAs.

Table 1

Nine snRNAs in the blood diagnostic signature of autism spectrum disorder.

snRNA symbol snRNA name Genomic location Size (bases) Probe ID Ensembl ID

RNU1-16P U1 Small Nuclear 16 Chr13: 113,478,915-113,479,078 164 7972921 ENSG00000202347
RNU6-1031P U6 Small Nuclear 1031 Chr1: 67,541,127-67,541,233 107 7902225 ENSG00000207504
RNU6-258P U6 Small Nuclear 258 Chr17: 20,126,388-20,126,488 101 8013448 ENSG00000212186
RNU6-335P U6 Small Nuclear 335 Chr4: 183,675,603-183,675,715 113 8103892 ENSG00000201433
RNU6-485P U6 Small Nuclear 485 Chr12: 7,118,785-7,118,891 107 7953620 ENSG00000200345
RNU6-549P U6 Small Nuclear 549 Chr15: 64,671,263-64,671,369 107 7984215 ENSG00000207162
RNU6-98P U6 Small Nuclear 98 ChrX: 132,580,117-132,580,223 107 8175193 ENSG00000206900
RNU6ATAC26P U6atac Small Nuclear 26 Chr3: 57,619,447-57,619,572 126 8080683 ENSG00000210841
RNVU1-15 Variant U1 Small Nuclear 15 Chr1: 144,412,576-144,412,740 165 7919556; 7919560 ENSG00000207205

snRNAs= small nuclear RNAs.
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Figure 2. ROC curve analysis of the diagnostic signature. AUC=area under receiver operating characteristic curve, ROC= receiver operating characteristic.
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diagnostic score was calculated for each sample according to the
snRNA expression levels weighted by their coefficients in the
LASSO model.
Diagnostic score=RNVU1-15

∗
0.186 + RNU1-16P

∗
0.141 +

RNU6-258P
∗
0.119+RNU6-485P

∗
(�0.244)+RNU6-549P

∗
0.125

+ RNU6ATAC26P
∗
(�0.147) + RNU6-1031P

∗
0.100 + RNU6-

335P
∗
(�0.124) + RNU6-98P

∗
0.014.

The score displayed a good diagnostic ability for ASD in the
training set (AUC=0.90), validation set (AUC=0.87), and the
Figure 3. ROC curve analysis of the diagnostic signature in the subgroups of differe
receiver operating characteristic.
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overall (AUC=0.88) (Fig. 2). The score had a better performance
among the females than males in the training set (AUC: 0.98 vs
0.86, P< .001) and the overall (AUC: 0.93 vs 0.85, P= .039), but
it was not significant in the validation set (AUC: 0.89 vs 0.85,
P= .661) (Fig. 3). It was also more accurate among the younger
cases (<6 years) in the training set (AUC: 0.98 vs 0.83, P< .001)
and the overall (AUC: 0.93 vs 0.84, P= .002), but it was not
significant in the validation set (AUC: 0.90 vs 0.86, P= .619)
(Fig. 4).
nce genders. AUC=area under receiver operating characteristic curve, ROC=



Figure 4. ROC curve analysis of the diagnostic signature in the subgroups of difference ages. AUC=area under receiver operating characteristic curve. ROC=
receiver operating characteristic.
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As for disease subtypes, the score had a good power in
diagnosing autistic disorder (AUC: 0.85 in training set, 0.86 in
validation set, and 0.85 in the overall), PDD-NOS (AUC: 0.92 in
training set, 0.89 in validation set, and 0.89 in the overall), and
Asperger disorder (AUC: 0.91 in training set, 0.89 in validation
set, and 0.88 in the overall) (Fig. 5).

3.4. External validation

The blood samples were collected from 23 ASD patients (14
males [60.9%], and average age 8.0 years [2–16]), and 23 age-
and gender-matched controls. According to the signature
formula, the score displayed a good diagnostic ability for ASD
(AUC=0.88) (Fig. 6).

3.5. Comparison with a 55-gene signature

The 55-gene signature derived from the same dataset. In
the training set, the 55-gene signature showed a better
performance than the snRNA signature (AUC: 0.99 vs 0.90,
P< .001), which might contribute to the co-linearity and thus
make the regression coefficients unreliable (Fig. 7). In the
validation set, the 55-gene signature displayed a poorer
performance than the snRNA signature (AUC: 0.87 vs 0.58,
P< .001). In general, the snRNA signature showed a better
diagnostic ability than the 55-gene signature (AUC: 0.88 vs
0.80, P= .049).
5

4. Discussion

In this study, we adopted the methods of probe re-annotation
and penalized generalized linear model to identify a novel and
robust blood snRNA signature in diagnosing ASD. The signature
showed a good stability in the subgroup analyses of age, gender,
and disease subtypes. To further validate the robustness of
the signature, the blood samples of 23 ASD patients and 23 age-
and gender-matched controls were collected, and a customized
microarraywasused todetect the snRNAexpressionand calculate
the score. The signature also demonstrated a good diagnostic
ability for ASD. The 55-gene signature was the first systematic
blood transcriptome signature for ASD diagnosis, which had the
largest sample size and the cross-validation between 2 large-scale
datasets based on different microarray platforms (GPL6244 and
GPL570). Compared with the 55-gene signature, the 9-snRNA
signature also showed a higher diagnostic efficiency.
The snRNA signature consisted of 9 snRNAs (RNU1-16P,

RNU6-1031P, RNU6-258P, RNU6-335P, RNU6-485P, RNU6-
549P, RNU6-98P, RNU6ATAC26P, and RNVU1-15). RNU1-
16P had a moderate to high expression in nervous system (brain,
cortex, and cerebellum) and whole blood (based on the GTEx
database). In genome-wide association study (GWAS) Catalog,
RNU6-1031P was associated with the human phenotypes of
mean corpuscular hemoglobin, red blood cell distribution width,
and vital capacity, while RNU6-258P was related with intelli-
gence.[8] Compared with normally developed children, the

http://www.md-journal.com


Figure 5. ROC curve analysis of the diagnostic signature in the subgroups of difference disease subtypes. AUC=area under receiver operating characteristic
curve. ROC= receiver operating characteristic.
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intelligence development in ASD children was significantly
delayed.[9,10] There were positive correlations between age and
mean corpuscular volume, and red cell distribution width in ASD
children, and 24.1% cases had iron deficiency and 15.5% had
anemia.[11] RNU6-549P was associated with the GWAS
phenotypes of mathematical ability, self-reported educational
attainment, coronary artery disease, and factor VII activating
protease measurement. Previous studies suggested impaired
metacognitive monitoring, mathematics under-achievement,
and educational needs in ASD.[12–14] RNU6-98P was associated
with the GWAS phenotype of self-reported educational attain-
ment. RNU6ATAC26P had a moderate to high expression in
nervous system and whole blood. RNVU1-15 had a moderate to
6

high expression in nervous system and whole blood. It was
associated with U1 snRNP (GO:0005685), mRNA 50-splice site
recognition (GO:0000395), pre-mRNA 50-splice site binding
(GO:0030627). A growing number of alternative splicing
regulators have been reported in relation with ASD.[15,16]

The limitations in this study should be also acknowledged.
First, the sample size is not as large as we expected. Second, the
method of probe re-annotation could not cover all snRNAs. In
the future, a large-scale prospective designed study was needed to
validate this snRNA signature.
In conclusion, through probe re-annotation and penalized

generalized linear model, we identified a novel and robust blood
snRNA signature in diagnosing ASD, which might help improve



Figure 6. ROC curve analysis of the diagnostic signature in the external validation set. AUC=area under receiver operating characteristic curve. ROC= receiver
operating characteristic.

Figure 7. ROC curve analysis of the 55-gene diagnostic signature. AUC=area under receiver operating characteristic curve. ROC= receiver operating
characteristic.
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the diagnostic accuracy for ASD in clinical practice. Nevertheless,
a large-scale prospective study was needed to validate our results.
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