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Abstract. Although acute myocardial infarction is one of the 
most common fatal diseases worldwide, the understanding of 
its underlying pathogenesis continues to develop. Myocardial 
ischemia/reperfusion  (I/R) can restore myocardial oxygen 
and nutrient supply. However, a large number of studies have 
demonstrated that recovery of blood perfusion after acute 
ischemia causes reperfusion injury to the heart. With progress 
made in the understanding of the underlying mechanisms of 
myocardial I/R and oxidative stress, a novel area of research 
that merits greater study has been identified, that of I/R‑induced 
endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can 
alter the function of the ER, leading to the accumulation of 
unfolded/misfolded proteins. The resulting ERS then induces 
the activation of signal transduction pathways, which in turn 
contribute to the development of I/R injury. The mechanism 
of I/R injury, and the causal relationship between I/R and ERS 
are reviewed in the present article.
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1. Introduction

Myocardial infarction (MI) is one of the leading causes of 
mortality worldwide and occurs due to the acute occlusion 
of the coronary arteries (1). Although revascularization treat‑
ment has conferred proven efficacy for patients with MI, it also 
causes undesired ischemia/reperfusion (I/R) injury following 
the restoration of epicardial blood flow (2,3). I/R injury is 
defined as tissue injury that occurs when the blood supply to 
organs is interrupted and then returns (4). To the frustration of 
interventional cardiologists and other health professionals, the 
desire of whom is the fast restoration of blood flow to the heart 
muscle, successful therapeutic strategies that can prevent I/R 
injury in the clinic have yet to be established (5).

The endoplasmic reticulum (ER) is an important 
organelle for eukaryotic cell survival and development (6,7). 
It is responsible for the biosynthesis, folding, assembly and 
modification of most secreted and transmembrane proteins. 
Furthermore, it serves a role in cellular lipid and steroid 
synthesis (8). Approximately 33% of cellular protein produc‑
tion and folding occurs in the ER  (9). Excessive protein 
synthesis, beyond the capacity of the folding mechanism 
in cells, or excess accumulation of unfolded/misfolded 
proteins in the ER lumen will disrupt ER homeostasis 
and trigger the unfolded protein response (UPR), eventu‑
ally leading to ER stress (ERS) (10). Events in the process 
of I/R can alter ER function and consequently influence 
the accumulation of unfolded/misfolded proteins. The 
resulting ERS then induces the activation of three signal 
transduction pathways, including the protein kinase R‑like 
endoplasmic reticulum kinase (PERK)‑eukaryotic transla‑
tion initiation factor 2A  (eIF2a)‑activating transcription 
factor (ATF) 4‑C/EBP homologous protein (CHOP) pathway, 
pro‑ATF6‑ATF6‑CHOP pathway and inositol requiring 
enzyme 1 (IRE1)‑X‑box binding protein 1 (XBP1) pathway, 
which in turn promote the development of I/R injury (11). 

The aim of the present review was to summarize current 
understanding of the multifactorial mechanisms that 
contribute to the genesis of I/R injury, and the relationship 
between I/R and ERS. In addition, possible future targets of 
therapeutic interventions to enhance recovery after I/R were 
discussed.
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2. Mechanisms of I/R injury

Calcium (Ca2+) overload. Ca2+ overload is a complex process 
that serves a fundamental role in I/R damage. During 
ischemia, anaerobic metabolism dominates, which causes a 
reduction in intracellular pH. To buffer the resulting accumu‑
lation of hydrogen ions, the sodium ion exchanger discharges 
excessive hydrogen ions, resulting in a sodium ion influx (12). 
Simultaneously, ischemia also depletes ATP, which inactivates 
ATPases such as the Na+/K+ ATPase and reduces the efflux 
of Ca2+ whilst restricting the re‑uptake of Ca2+ into the ER, 
causing Ca2+ overload  (13). Opening of the mitochondrial 
permeability transition pore (MPTP) also occurs with the 
aforementioned physiological changes in the cell, leading to the 
dissipation of mitochondrial membrane potential and further 
impairments to ATP production (14). Ca2+ reuptake into the 
ER/sarcoplasmic reticulum (SR) via the SR/ER Ca2+ ATPase 
(SERCA) is damaged by I/R, whereas Ca2+ release through 
the ryanodine receptor is enhanced, both of which potentiate 
an increase in Ca2+ levels in the cytosol (15). The ryanodine 
receptor is a Ca2+ channel that is located on the ER/SR network. 
It rapidly releases Ca2+ from the ER/SR network and exerts a 
wide range of physiological functions, such as functioning in 
myocardial cell excitation and Ca2+‑dependent acceleration of 
ATP production, which serve an important role in maintaining 
the intracellular Ca2+ balance (15,16).

Ca2+ overload can damage cardiac function. Rapid 
accumulation of Ca2+ in cardiomyocytes after reperfusion can 
induce dynamic uncoupling, increase electrical conduction 
dispersion, and facilitate re‑entry formation and arrhythmias. 
In addition, it can induce early or late depolarization contact, 
ventricular tachycardia or even ventricular fibrillation with 
short syndromic intervals (17,18). Ca2+ overload also promotes 
the damage or death of cardiomyocytes during reperfusion in 
multiple ways. The opening of the MPTP results in a large 
number of hydrogen ions entering the mitochondrial matrix 
from the mitochondrial intermembrane space, leading to 
the dissipation of the transmembrane potential gradient and 
obstruction of the electron transport chain. Water can also 
simultaneously enter the matrix down an osmotic gradient, 
causing mitochondrial edema, rupture or disintegration, which 
may lead to cell necrosis (19). Upon myocardial I/R, SERCA 
accelerates Ca2+ uptake and renders the cytoplasmic SR cycle 
in a state of high load, which leads to Ca2+ oscillation and 
affects the expression of Ca2+ in cells (20). Intracellular Ca2+ 
overload can result in excessive myocardial fiber contraction, 
which not only damages the cells themselves, but can also cause 
metabolic disorders or damage the structure of adjacent cells 
by mechanical forces such as traction (21). Increases in intra‑
cellular Ca2+ during myocardial ischemia can promote calpain 
translocation, but low intracellular pH in ischemia prevents it 
from being activated. During blood flow reperfusion, with the 
recovery of intracellular pH, calpain can be activated (22). The 
calpain family of cysteine proteases is activated by the elevation 
of Ca2+. Excessive calpain degrades a multitude of intracellular 
proteins in the cytoskeleton, ER and mitochondria, in turn 
causing damage to cells or organelles (23). 

Accumulation of reactive oxygen species (ROS). ROS are a 
group of unstable, active molecules, including superoxide (O2

‑), 

hydrogen peroxide (H2O2) and hydroxyl radicals, which were 
first described as free radicals in skeletal muscle (24). ROS 
are generally considered to be toxic byproducts of aerobic 
respiration and are the major cause of macromolecular 
damage (25). ROS are produced by organelles and enzymes, 
including: i) Mitochondria, where oxygen functions as the 
terminal electron acceptor of the electron transport chain; 
ii) the ER, where H2O2 is produced as a by‑product of protein 
folding; iii) peroxisomes, where enzymes that produce H2O2, 
such as polyamine oxidase, are localized; and iv) NADPH 
oxidase (NOX), a membrane bound enzyme complex that has 
a role in killing intracellular pathogens (26). Function of these 
organelles and enzymes will be affected following exposure 
to environmental cues, including chemotherapeutic drugs, 
ionizing radiation and environmental damage  (27). O2

‑ is 
a single electron reduction product of oxygen that exists in 
large quantities in the human body that can mediate cellular 
damage. O2

‑ is produced by complexes I and III of the mito‑
chondrial electron transfer chain, where oxygen is reduced by 
electron leakage. Additionally, the plasma membrane NOX 
(NADPH oxidases), a family of flavoenzymes, which cata‑
lyzes the oxidation of NADPH, can generate O2

‑ (28,29). O2
‑ is 

eliminated by superoxide dismutases (SODs) 1 and 2, and is 
then rapidly converted into H2O2 with low toxicity (30). A 
disruption of the homeostasis between ROS and endogenous 
antioxidant production results in oxidative stress (31), which 
leads to cellular dysfunction, DNA damage, lipid peroxida‑
tion and apoptosis induction  (32). In addition, oxidative 
stress affects the normal function of a wide range intracel‑
lular signaling pathways and promotes the pathological 
development of cardiovascular diseases (33).

During cardiac ischemia, myocardial cells are in a state 
of hypoxia, where mitochondrial electron transfer chain 
complexes are significantly reduced and SOD anions are 
produced (34). During reperfusion, ROS levels are increased 
significantly due to the reduction in electron leakage and 
mitochondrial detoxification (34), causing oxidative stress. 
Free radical explosion and oxidative stress are important 
mechanisms of myocardial I/R injury. Mitochondrial electron 
transfer chain complex  I is inactivated during myocardial 
ischemia because of the highly reductive environment with 
low PO2 and low ADP (35). After reperfusion, the impaired 
activity of complex I can also lead to ROS‑induced damage 
to the mitochondrial phospholipids and respiratory chain 
super complex, potentiating the electron leakage of complex I 
further. This process promotes a vicious cycle of oxidative 
stress that ultimately leads to mitochondrial dysfunction (36). 
Under these conditions, excessive mitochondrial ROS cause 
oxidative damage to proteins, lipids and DNA, as well as 
excitation‑contraction uncoupling, arrhythmia, cardiac 
hypertrophy, apoptosis, necrosis and fibrosis (37). However, 
low levels of ROS attenuate myocardial I/R injury through 
ischemic preconditioning. Recent evidence has suggested 
that short‑term intermittent hypoxia (IH), similar to ischemic 
preconditioning, can serve a cardioprotective role  (38). A 
previous study demonstrated that IH increased mitochon‑
drial tolerance to Ca2+ overload and delayed MPTP opening 
induced by oxidative stress (39). In addition, a previous study 
has shown that IH may increase the expression of SOD and 
glutathione peroxidase (40).
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Inflammatory cytokines and apoptotic factors. Long‑term 
ischemia can lead to irreversible cellular necrosis, which 
triggers the release of a variety of pro‑inflammatory media‑
tors, including cytokines and growth factors, leading to 
inflammatory cell infiltration  (41). During late stage  I/R, 
genes associated with inflammation are activated to produce 
mediators, including IL‑1, IL‑6, TNF‑α IFN‑regulating 
factor and NF‑κB, all of which promote neutrophil adhesion 
and transmembrane migration, leukocyte infiltration, and 
cytokine and chemokine release, eventually leading to cell 
death. I/R can activate the inflammation cascade to cause 
further tissue damage (42). TNF‑α participates in the devel‑
opment of myocardial injury during I/R injury, during which 
its expression level is increased, promoting adhesion and 
interaction between leukocytes and endothelial cells (43). This 
increases the infiltration of granulocytes into the I/R region 
to mediate myocardial cell damage (43). IL‑1 is secreted by 
activated monocytes and macrophages, and its expression is 
also significantly increased during I/R. Intercellular adhesion 
molecule 1 (ICAM‑1) participates in the adhesion of leuko‑
cytes to vascular endothelial cells and induces cytotoxicity by 
adhering to cardiomyocytes (44). Enhanced ICAM‑1 binding 
can feed back to endothelial cells and macrophages to promote 
the expression of inflammatory mediators or cytokines (44). 
During I/R, the release of inflammatory cytokines and chemo‑
kines leads to the activation of neutrophils and macrophages, 
which promotes tissue damage (45). Neutrophil infiltration 
serves an important role in myocardial I/R injury. This step 
is initiated by the binding of vascular endothelial adhesion 
molecules with corresponding ligands on neutrophils to 
mediate the adhesion of neutrophils to endothelial cells. Mast 
cells serve an important role in stimulating the inflammatory 
response by releasing regulators that can trigger the cascade of 
cytokine release (46). Cyclic inflammatory markers, including 
C‑reactive protein, IL‑6 and IL‑1, are associated with increased 
infarct size and poor prognosis. In recent years, pro‑inflam‑
matory cells such as monocytes and macrophages have been 
documented to be a potential cause of MI using a number of 
cell tracking and molecular imaging techniques (47). 

During I/R, different gene families can also serve distinct 
roles in apoptosis. Apoptosis is a tightly controlled process that 
is conserved among species and involves the Bcl‑2 and caspase 
families of proteins in addition to oncogenes, such as c‑Myc 
and p53 (48). The activation, upregulation, translocation and 
integration of precursor Bcl‑2 proteins, including Bax, BH3 
interacting‑domain death agonist, p53 upregulated modulator of 
apoptosis (PUMA) and Bcl‑2 interacting protein 3 (BNIP3), into 
the mitochondrial membrane within ischemic injury tissues has 
been previously reported (49,50). In addition, pro‑apoptotic and 
anti‑apoptotic Bcl‑2 proteins have been found to regulate Ca2+ 
homeostasis, which is an important mechanism of I/R injury (51). 
The caspase family also serves a key role in I/R‑induced cell 
death. Pan‑cysteine aspartase inhibitors, including zVAD‑FMK 
and MX1013, can attenuate apoptosis and cell death induced 
by I/R (52,53). However, it has been previously reported that 
caspase inhibition may instead drive the cell towards necrotic 
death (54). A number of studies have demonstrated that the over‑
expression of BNIP3 in HL‑1 myocardial cells can activate Bax 
to promote the opening of the MPTP and increase cell death in 
response to I/R injury (55,56). 

Changes in microRNAs (miRNAs/miRs). miRNAs are short, 
single‑stranded non‑coding RNAs that are 21‑23 nucleotides 
in length and regulate gene expression by inhibiting translation 
or promoting the degradation of RNA (57). Mature miRNAs 
are processed from primary miRNA, which is cleaved by a 
microprocessor complex that consists of the RNase‑III endo‑
nuclease Drosha, RNA‑binding protein DiGeorge syndrome 
critical region gene 8 and other cofactors, to produce 70‑100 
nucleotide hairpin precursor small RNAs. Following export to 
the cytoplasm by the nuclear export protein exportin‑5, they 
are trimmed by the RNase III ribonuclease dicer to produce a 
mature miRNA duplex that is ~21 nucleotides in length (58).

Several studies have demonstrated that miRNA function is 
closely associated with cardiovascular disease, and a number 
of non‑cardiac miRNAs are reported to be biomarkers of 
myocardial injury and predictors of clinical outcomes after 
acute MI. miR‑633b and miR‑1291 have been documented to 
indicate MI with high specificity and sensitivity (59), whereas 
miR‑150 and miR‑486 expression levels could be used to 
distinguish between patients with and without ST‑elevation 
MI (60). A previous study revealed that heart biopsies from 
patients with heart failure demonstrated a significant increase 
in miR‑377 expression compared with that in normal control 
hearts  (61). In a mouse cardiac I/R model, human CD34+ 
cells in immune‑deficient mice were silenced following the 
intra‑myocardial transplantation of miR‑377, which promoted 
neovascularization and reduced interstitial fibrosis 28 days 
after I/R induction to improve left ventricular function (61). 

MiRNAs serve significant roles in cardiac I/R injury and 
function by a wide range of different mechanisms. A previous 
study demonstrated that miR‑1 and miR‑133 mediated opposite 
effects when regulating myocyte survival in I/R models, where 
miR‑1 was pro‑apoptotic and miR‑133 was anti‑apoptotic (62). 
This difference may be due to their respective downstream 
targets. Increased miR‑1 expression resulted in the down‑
regulation of several anti‑apoptotic genes, including heat 
shock protein (hsp)60, hsp70, insulin‑like growth factor‑1 and 
Bcl‑2, whereas miR‑133 negatively regulated the expression of 
pro‑apoptotic genes, such as caspase‑9 and caspase‑3 (62‑64). 
Another study revealed that miR‑133 overexpression reduced 
cardiac fibrosis after transverse aortic banding compared 
with that in normal controls, implicating the cardioprotective 
effects of miR‑133a on I/R‑triggered cardiac remodeling (65). 
miR‑21 has been demonstrated to protect cardiomyocytes 
from I/R injury by targeting several apoptotic genes, 
including phosphatase and tensin homolog, cell death 4 and 
Fas ligand (66‑68). Furthermore, miR‑21 has been reported 
to inhibit the proliferation, migration and tubulogenesis of 
endothelial cells, and promote the survival of cardiomyocytes 
and cardiac fibroblasts after myocardial I/R  (69). miR‑25 
and miR‑145 can reduce mitochondrial ROS stress and Ca2+ 
overload by inhibiting the expression of mitochondrial Ca2+ 
uniporter and Ca2+/calmodulin‑dependent protein kinase II 
(CaMKII) (70). miR‑214 may protect cardiomyocytes from 
oxidative damage induced by ROS formation initiated by Ca2+ 
overload by inhibiting sodium/Ca2+ exchanger 1 (71‑73). 

From the aforementioned studies, it can be concluded 
that miRNAs regulate the expression of pro‑apoptotic/anti‑
apoptotic genes to regulate cardiac fibrosis, inflammation, ROS 
generation and Ca2+ homeostasis. A number of studies have 
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demonstrated that various miRNAs, including miR‑21 (67), 
miR‑144/451  (74), miR‑192  (75) and miR‑199a  (76), are 
associated with ischemic preconditioning. Additionally, some 
experimental studies have revealed that inhibition of miR‑15 
and miR‑92a in pig models of acute myocardial I/R, espe‑
cially at the beginning of reperfusion, can reduce the size of 
the MI (77,78). This suggests that miRNA treatment may be a 
feasible therapeutic approach (75).

3. Pathways of ERS

ERS is an evolutionarily conserved cell stress response 
that is associated with numerous diseases, including 
cardiovascular, Alzheimer's and Parkinson's diseases, and 
diabetes, renal failure, osteosarcoma and pancreatic ductal 
adenocarcinoma (79‑85). Under physiological conditions, the 
ER is an important organelle that serves a key role in cellular 
processes, including protein folding, assembly, modification 
and secretion, lipid synthesis and Ca2+ storage. However, when 
the ER is exposed to stress stimuli, such as ROS exposure 
and Ca2+ overload, homeostasis is impaired, which results in 
the accumulation of unfolded/misfolded proteins (86). These 
changes may eventually lead to ER dysfunction, collectively 
known as ERS (86).

Several ER transmembrane sensors are expressed to detect 
the accumulation of unfolded proteins, including PERK, ATF6 
and IRE1, which activate the signal pathways of (eIF2α‑ATF4
‑DNA‑damage‑inducible transcript/CHOP, pro‑ATF6‑cleaved 
ATF6‑CHOP, and IRE1‑spliced (Xbp1), respectively (79). This 
upregulates the expression of ER chaperones and ER‑related 
degradation components (6). The UPR can activate the ER 
chaperone glucose‑regulated protein 78 (GRP78) following 
isolation by any of the three ER sensors (PERK, ATF6 and 
IRE1). In the absence of ERS, binding to GRP78 results in 
the inactivation of these sensors. GRP78 is released from the 
sensors, where they can interact with misfolded and unfolded 
proteins when ERS occurs. Ultimately, the UPR is triggered 
by the transcription of genes encoding proteins involved in this 
process, leading to a reduction in global protein synthesis (87). 
The ultimate purpose of the UPR is to restore normal ER 
function, the failure of which results in apoptosis  (88,89). 
The three main ERS pathways are described in the following 
sections.

PERK‑eIF2a‑ATF4‑CHOP pathway. A previous study indi‑
cated that the PERK signaling pathway serves an essential role 
in preventing the abnormal accumulation of unfolded proteins 
in the ER to promote cell survival  (90). PERK is a type I 
transmembrane ER protein that has a ligand‑independent 
dimerization domain at the N‑terminus, which is concealed 
by binding immunoglobulin protein (BIP)/GRP78 in the 
absence of ERS, and a serine/threonine protein kinase domain 
at the C‑terminus without endonuclease activity (91). PERK 
can block the translation of most proteins, leaving only a 
specific few, such as ATF4 and CHOP, to be translated (92,93). 
Translation of ATF4 activates the expression of CHOP by 
directly interacting with its 5'‑untranslated region (92). 

Activation of PERK leads to eIF2α phosphorylation. In 
addition, it promotes caspase‑12 and CHOP overexpression, 
which can direct ERS towards cell apoptosis (94). CHOP can 

in turn activate downstream targets during ERS, resulting in 
apoptotic cell death (95).

Pro‑ATF6‑ATF6‑CHOP pathway. One arm of the UPR is 
the activation of the ER membrane protein ATF6, a frag‑
ment of which is translocated into the nucleus to activate the 
transcription of genes that mediate protein folding (96). ATF6 
has two subtypes: ATF6α and ATF6β (96). The accumulation 
of misfolded proteins causes ATF6α to be transported to the 
Golgi apparatus (97,98). There, it is sheared and the N‑terminal 
fragment, p50‑ATF6a, is transferred to the nucleus, where it 
regulates the transcription of genes associated with protein 
quality control, translocation, folding and degradation (99). 
ERS leads to the vesicular exit of ER ATF6, which is subse‑
quently degraded by site‑1 and site‑2 proteases (S1P and S2P) 
in the Golgi complex. This cleavage cuts off the cytoplasmic 
domain of ATF6 from its transmembrane anchorage and 
intraluminal domain, following which the cytoplasmic ATF6 
domain enters the nucleus to transcriptionally upregulate UPR 
target genes (100).

IRE1‑XBRLP1 pathway. IRE1 is a type  I transmembrane 
glycoprotein that can be divided into two categories: IRE1α 
and IRE1β. IRE1α is widely expressed in different tissues, 
whereas IRE1β is only expressed in intestinal epithelial 
cells  (101). IRE1α senses the accumulation of unfolded 
proteins and is activated by dissociation with the ER chap‑
erone GRP78/BIP  (102‑104). IRE1 then dimerizes and 
trans‑autophosphorylates itself to activate its endonuclease 
domain under ERS. This endonuclease domain then acts on 
the Xbp1 gene and performs an unconventional splicing. After 
26 nucleotides are removed, a spliced mRNA is produced, 
which increases the transcription of UPR target genes (105). 
Activation of the ER splicing factor IRE1α and the splicing 
transcription factor Xbp1 can induce the transcription of 
chaperones, which are necessary for facilitating protein 
folding (105). A previous study reported that the activation of 
the PERK‑eIF2α and IRE1α‑Xbp1 signaling pathways inhib‑
ited apoptosis and promoted proliferation without affecting 
ERK and AKT signaling activation (93). The UPR has been 
associated with a number of diseases, including cardiovascular, 
Alzheimer's and Parkinson's diseases, and IRE1 has been the 
focus of several drug discovery projects such as ligands that 
interact with IREα's kinase and pre‑emptive activation of 
IRE1α's homeostatic mode (79,80,106).

4. I/R as an activator of the UPR 

The UPR is associated with numerous pathological processes, 
including cardiovascular disease, I/R injury, neurodegenerative 
diseases, diabetes mellitus, viral infection and cancer (107). 
Some of the earliest studies on the effects of I/R on the UPR 
were conducted in the brain (81,108). A previous study has 
demonstrated that several pathways of the UPR are activated 
in the ischemic rabbit brain such as that of PERK‑Xbp1‑eIF2α, 
leading to translation arrest  (108). Several studies have 
demonstrated that Xpb1, genetic markers of GRP78 and the 
UPR are activated in hypoxic cultured ventricular myocytes or 
HL‑1 atrial myocytes from neonatal rats or adult mice (109‑111). 
Therefore, ischemia and I/R can activate numerous components 
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of the UPR in cardiomyocytes both in vivo and in vitro (112). 
In a neuronal studie ERS has been reported to be associated 
with neuronal cell death following ischemia  (113). A study 
demonstrated that global cerebral I/R induced time‑dependent 
differences in ER gene expression at both mRNA and protein 
levels, which was affected by pre‑ischemic therapy (114). 

Cardiomyocyte injury is induced by four pathophysi‑
ological events during I/R: Ca2+ overload, ROS accumulation, 
inflammatory cytokine release and apoptotic factor release. In 
addition, changes in the miRNA expression profile is another 
method by which I/R can regulate the UPR, as described in an 
earlier part of this review. As described in the present review, 
oxidative stress serves an important role in the I/R process, 
as ROS can activate apoptosis and ERS at various stages. 
The FOXO family of transcription factors is involved in a 
number of biological processes, including the oxidative stress 
response, cell proliferation, apoptosis and metabolism (115). 
The most well‑studied members of the FOXO family include 
FOXO1, FOXO3, FOXO4 and FOXO6 (115). A Previous study 
has demonstrated that FOXO4 serves an important role in 
ROS‑induced apoptosis  (116). Increased ROS production 
leads to acute renal ischemia by negatively interfering with the 
normal function of signaling pathways, inducing inflamma‑
tory infiltration and renal cell death (117). A study previously 
revealed that treatment with the bromodomain‑containing 
protein 4 inhibitor, which exerts protective effects against renal 
I/R injury, suppressed I/R‑induced apoptosis and ERS by acti‑
vating PI3K/AKT signaling and blocking FOXO4‑dependent 
ROS production (118). Blocking ROS using N‑acetylcysteine 
has also been demonstrated to inhibit hypoxia/reoxygenation‑
induced apoptosis and ERS protein expression. The relationship 
between ROS and ERS‑induced apoptosis has been confirmed, 
where ROS production can induce apoptotic cell death and 
ERS (118).

One previous study demonstrated that H2S pretreatment 
and overexpression of miR‑133a in the myocardium inhibited 
cardiomyocyte apoptosis and enhanced cell viability (119). 
In addition, concomitant miR‑133a overexpression has been 
revealed to significantly increase cardiomyocyte proliferation, 
migration and invasion, in turn reversing I/R‑induced ERS and 
cardiomyocyte apoptosis in vitro and in vivo. This suggests 
that miR‑133a protects cardiomyocytes against I/R‑induced 
ERS and subsequent apoptosis (119). A long non‑coding RNA 
named urothelial carcinoma‑associated 1 (UCA1), is only 
expressed in the heart (120). It has previously been reported 
that cardiac I/R triggers the expression of UCA1, and the 
production of ROS in cells and mitochondria to mediate apop‑
tosis by oxidative stress and ERS. Overexpression of UCA1 
can also protect H9C2 cells from ERS and cell apoptosis 
induced by I/R (121). After co‑treatment with TUDCA, a drug 
for clinical use that can protect cardiomyocytes from oxidative 
stress‑induced injury (122), H9C2 cell injury induced by the 
effect of UCA1 siRNA was reversed (121). To summarize the 
activation function of I/R to UPR, as described hereafter, a 
general scheme is presented in Fig. 1A.

5. UPR in turn mediates I/R damage

The ER serves a pivotal role in cardiomyocytes, as the correct 
synthesis and folding of proteins in the ER is indispensable for 

the normal functioning of the heart (123). However, although 
ERS and the UPR have been extensively studied in non‑muscle 
ER, there remains an insufficient number of studies on ERS 
and the UPR in the cardiovascular field (124).

If the UPR signal activation during the early stages of ERS 
is not sufficient in resolving stress, the persistent activation 
of proximal effectors (PRRK, ATF6 and IRE1) will result 
in the appearance of a distinct UPR‑induced protein setup, 
where other signaling pathways are activated, all of which 
combine to promote cell death (125,126). Notably, a previous 
study indicated that pre‑activation of ATF6 in the hearts of 
transgenic mice conferred protective effects against I/R 
injury (127). In addition, a study indicated that the upregulation 
of GRP78 during ischemic preconditioning protected cultured 
cardiomyocytes from further ischemic damage (128). These 
studies suggested that when the UPR is activated in the heart 
during ischemia or I/R, it may exert protective effects against 
the stress response in myocardial cells. By contrast, several 
studies have demonstrated that UPR may lead to I/R injury of 
the heart. A previous study demonstrated that overexpression 
of the ERS response protein PUMA potentiated apoptosis 
in cultured cardiomyocytes via the UPR  (129). Another 
study revealed that UPR activation promoted the activation 
of caspase‑3, JNK and p53, which contributed to cardio‑
myocyte apoptosis  (130). Additionally, in cultured cardiac 
myocytes, UPR mediated protective effects against ischemia 
activation in the early stages of ischemia, whereas the same 
response resulted in predominantly apoptotic characteristics 
in the latter stages (131). The distinct functions of the UPR 
may be dependent on the degree of ATF6, PERK and IRE‑1 
activation, and the nature of the ERS. ATF6 may mediate the 
activation of mostly protective proteins, whilst PERK may 
induce the activation of apoptotic genes (127). Therefore, brief 
ischemic stress may lead to changes in the proteome under the 
regulation of the UPR to promote protective effects, whereas 
prolonged ischemia may lead to changes in the proteome 
leading to cellular damage.

It has previously been reported that pathological ERS is 
relevant in a variety of physiological outcomes, including 
impaired Ca2+ homeostasis, increased apoptotic signaling, 
disrupted protein secretion and increased apoptotic 
signaling (132‑134). 

During ERS, CHOP has been demonstrated to induce 
the expression of ER oxidase 1, which activates inositol 
triphosphate receptor‑mediated Ca2+ release into the cytosol 
and activates CaMKII to induce apoptosis  (135‑137). It 
has been revealed that Xbp1 and ATF6 may mediate the 
overexpression of GRP94, which could attenuate myocardial 
cell necrosis induced by Ca2+ overload or ischemia (138).

Ca2+ overload serves an important role in ERS‑induced I/R 
injury. The Ca2+ dependence of cell death can be enhanced 
by a reduction in ATP. ATP concentration is decreased 
during ERS, which reduces the levels of intracellular Ca2+ 
stored in the ER (129). It has previously been reported that 
inhibiting calpain can improve ischemic myocardial injury 
and myocardial function in an experimental model of myocar‑
dial I/R (139‑141).

The UPR can regulate a number of mitochondrial func‑
tions, including bioenergetics, membrane potential and the 
degree of cytochrome  c release  (142). The UPR can also 
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serve a role in immune function. A previous study revealed 
that cathepsin‑induced ERS enhanced the recruitment of 
IFN regulatory factor‑3 and cAMP response element binding 
protein (CREB/CBP)/p300 to the murine IFNB1 promoter 
during lipopolysaccharide stimulation. ERS‑related inflam‑
mation occurred through Xbp1 binding to a potential enhancer 
element 6 kb distal to the IFNB1 gene, which may enhance 
the recruitment of CBP/p300 and IFN regulatory transcription 
factor to the IFNB1 enhanceosome (143). This observation 
indicated a novel role of UPR‑dependent transcription in 
the regulation of inflammatory cytokines, which may be of 
significance to the pathogenesis of diseases involving ERS 
and type I IFN. One potential avenue of study may be the rela‑
tionship among viral infection, I/R injury and inflammatory 
diseases (143). ERS can activate nucleotide binding oligomer‑
ization domain‑like receptor protein 1 (NLRP1) inflammatory 
bodies by activating the NF‑κB signaling pathway, which 
may then promote myocardial I/R injury (144). NLRPs are 
classified as typical inflammasomes that include NLRP1 and 
NLRP3 inflammatory bodies. They can activate caspase‑1, 
resulting in the maturation and secretion of pro‑inflammatory 
cytokines IL‑1β and IL‑18 (145). How the UPR in turn medi‑
ates I/R damage is summarized in Fig. 1B.

There are several important proteins that are activated 
by ERS, including ATF6, Xbp1, ATF4, CHOP and IRE1. 

ATF6 normally functions in the adaptive UPR to accelerate 
the remodeling of cellular physiology and recovery following 
acute physiological and pathological injury (146). ATF6 can 
dimerize with UPR‑regulated basic leucine zipper transcription 
factors, such as Xbp1, by S1P/S2P‑dependent proteolysis, or 
associate with other stress‑responsive signaling pathways such 
as mTOR signaling  (147,148). In addition, ATF6 has been 
reported to induce the expression of the Ca2 + pump SERCA2a 
and the expression of several antioxidant genes (149,150).

Xbp1 has been revealed to exert protective effects against 
I/R injury in the heart and the brain (133,151‑153), as overexpres‑
sion of Xbp1 can inhibit cell death induced by oxygen glucose 
deprivation/reoxygenation (OGD/R These findings suggested 
that inhibiting Xbp1 activation may accelerate neuronal 
cell death after I/R, which can be exploited as a therapeutic 
strategy for brain I/R injury (154). Accumulating evidence 
has demonstrated that ERS serves a key role in I/R‑induced 
cell dysfunction (155), where destruction of the ER pathway 
can result in neuronal cell death. ERS is associated with the 
pathology of brain I/R injury. OGD/R stress temporarily 
inactivates Xbp1 splicing, resulting in accelerated neuronal 
death due to ER dysfunction. Subsequent Xbp1 reactivation 
may be neuroprotective against OGD/R stress (154).

ATF4 induces the expression of CHOP under mild ERS. 
However, under chronic ERS, PERK then significantly increases 

Figure 1. (A) I/R as an activator of the UPR. (B) UPR, in turn, affects I/R damage. I/R, ischemia/reperfusion; UPR, unfolded protein response; GRP78, glucose 
regulated protein 78; lncRNA, long non‑coding RNA; PERK, protein kinase R‑like endoplasmic reticulum kinase; eIF2a, eukaryotic translation initiation 
factor 2a; IRE, inositol responsive element; CHOP, C/EBP homologous protein; XBP1, X‑box binding protein 1.
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CHOP expression, in turn suppressing the expression of Bcl‑2 
to increase cell death (156). In addition, PERK phosphory‑
lates Kelch‑like Ech‑related protein 1, which releases Nrf2 
from inhibition and translocates into the nucleus to activate 
the expression of antioxidant and detoxifying enzymes (157). 
CHOP has also been reported to upregulate the expression of 
PUMA and the pro‑apoptotic protein Bim, thereby inducing 
mitochondrial‑dependent apoptosis  (158,159). IRE1 is 
associated with autophagy activation, which is an important 
pro‑survival defense mechanism against cardiac pathology, 
including hypertrophy and I/R (160). 

6. Conclusion and future perspectives

In the present article, numerous possible causes of myocar‑
dial I/R injury, including Ca2+ overload, ROS accumulation, 
increase in expression of inflammatory cytokines and apop‑
totic factors, miRNA change and ERS were described. These 
factors not only lead to secondary cardiac injury but can also 
hinder the reconstruction of blood vessels after clinical treat‑
ment (161). Cardiac I/R injury induces changes of ERS in a 
process that is mainly mediated by three pathways involved 
in the accumulation of unfolded proteins, which causes cell 
damage. At the beginning of the response, a cellular protective 
response ensues, which then becomes apoptotic in the latter 
stages. However, to understand the specific mechanism under‑
lying these processes, further study is required. Appropriate 
intervention in the ERS process may serve as a potential 
therapeutic strategy for heart I/R injury, including intervention 
in the expression of ligands and their receptors in the ERS 
pathways. With further study of cardiac ERS and I/R injury, 
strengthening the understanding of the mechanism under‑
lying I/R injury will facilitate the optimization of treatment 
regimens. If the occurrence and development of myocardial 
cell apoptosis can be prevented, it may become possible to 
alleviate I/R injury, which will facilitate the development of 
treatment strategies and drug discovery for myocardial I/R.
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