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Reliance on digital navigation aids has already shown negative impacts on navigators’ innate spatial abilities.

How this happens is still an open research question. We report on an empirical study with twenty-four

experienced (male) taxi drivers to evaluate the long-term impacts of in-car navigation system use on the

spatial learning ability of these navigation experts. Specifically, we measured cognitive load by means of

electroencephalography (EEG) coupled with eye tracking to assess their visuospatial attention allocation

during a video-based route-following task while driving through an unknown urban environment. We found

that long-term reliance on in-car navigation aids did not affect participants’ visual attention allocation

during spatial learning but rather limited their ability to encode viewed geographic information into

memory, which, in turn, led to greater cognitive load, especially along route segments between intersections.

Participants with greater dependence on in-car navigation aids performed worse on the spatial knowledge

tests. Our combined behavioral and neuropsychological findings provide evidence for the impairment of

expert navigators’ spatial learning ability when exposed to long-term use of digital in-car navigation aids.
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D
igital in-car navigation aids and handheld

mobile map applications have become ubiqui-

tous in various mobility contexts. Especially

in unfamiliar environments, digital navigation aids

have become the preferred mode of navigation sup-

port for our mobility needs. With their various way-

finding and route-planning functions, in-car

navigation aids assist drivers in reaching destinations

efficiently and safely. Especially when leveraging

auditory assistance, navigation aids also offer the

potential to offload drivers’ already taxed visual-

cognitive demands while driving (Girardin and Blat

2010). Before digital navigation aids were available,

abilities to acquire spatial information from the

traversed environment and to encode this new infor-

mation into spatial memory were indispensable for

self-localization, staying oriented during movement,

and making appropriate navigation decisions

(Aporta and Higgs 2005). Passively following turn-

by-turn instructions provided by a digital navigation

system enables navigators to travel successfully with

very little knowledge of their surroundings (Ben-Elia

2021). Spatial learning, as a fundamental human

ability, is therefore increasingly circumvented due to

the use of digital navigation devices with detrimen-

tal consequences (Ruginski et al. 2019). The nega-

tive impact of geographical information technology

on individuals’ spatial skills has become an interdis-

ciplinary research concern (McKinlay 2016;

Ruginski et al. 2022).
To investigate how long-term dependence on in-

car navigation aids impairs expert navigators’ spatial

learning ability, we conducted an empirical study

with male taxi drivers in Beijing. We recruited

mostly male taxi drivers simply because they are

largely overrepresented in this profession. According

to a recent report on taxis and private hire vehicles

(PHVs) in the United Kingdom, most drivers were

male (97 percent) in 2022.1 This proportion has

been higher than 90 percent for all of the last ten

years. Expert urban navigators, specifically (male)

taxi drivers, have already been of great interest to

spatial cognition researchers (Maguire et al. 2000)

who study how humans acquire and use spatial
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knowledge during navigation and wayfinding and

how navigation experience affects these processes

(Griesbauer et al. 2022). Compared to the general

population, licensed male London taxi drivers have

been found to have a larger hippocampus, a brain

area strongly associated with spatial memory and

navigation (Maguire et al. 2000). The volume

increase is suspected to be a consequence of exten-

sive training for an exam called “The Knowledge,”

learning how to navigate in the City of London

without any navigation assistance (Maguire et al.

2000). This made (male) taxi drivers in Beijing

attractive participants for our study, as they have

already been using in-car navigation systems exten-

sively (8.17 years on average) and have consistent

usage habits (following auditory instructions).

Notably, navigation aids in taxi applications have

constantly evolved in recent years, making it diffi-

cult to systematically track and quantify taxi drivers’

past experiences with in-car navigation aids.

Nonetheless, our participants already exhibited sig-

nificant and distinguishable differences in their

dependence on digital in-car navigation assistance

within a decade of use. Hence, we aimed to examine

how the spatial learning ability of professional taxi

drivers is modulated by the degree to which they

rely on digital in-car navigation aids.
Inspired by previous research (e.g., Ishikawa 2019;

Ruginski et al. 2019), we first hypothesized that

long-term exposure to in-car navigation aids would

impair expert navigators’ ability to acquire spatial

knowledge (i.e., landmark knowledge, route knowl-

edge, and survey knowledge), which we aimed to

assess in a video-based route-following task while

driving through an unknown urban environment

(Hypothesis 1). We further wished to study naviga-

tors’ cognitive processes during spatial learning and

how these might be associated with in-car naviga-

tion aid dependence. To this end, we focused on

two critical indicators of these cognitive processes:

visual attention allocation and cognitive load. Visual

attention allocation involves searching for and

acquiring visual-spatial information from the tra-

versed environment (Kiefer et al. 2017; Br€ugger,
Richter, and Fabrikant 2019). More visual interac-

tion with the environment during navigation has

been shown to facilitate navigators’ spatial learning

(Kapaj et al. 2023). We thus hypothesized that after

long-term exposure to digital navigation aids, expert

navigators would show less visual interaction with

the environment in our video-based route-following

task (Hypothesis 2). Cognitive load is generated dur-

ing visuo-spatial information processing and encod-

ing (Klimesch 1999; Osipova et al. 2006) and it is

employed to indicate visuo-spatial working memory

capacity in spatial navigation (Cheng et al. 2022;

Cheng et al. 2023). We thus hypothesized that indi-

viduals with longer past exposure to in-car naviga-

tion aids would show greater cognitive load in a

video-based route-following task because of the dete-

rioration of visuo-spatial information encoding

capacity (Hypothesis 3).
To test these hypotheses, we designed and imple-

mented an in-lab, video-based navigation experi-

ment. To study the cognitive and perceptual

processes involved in navigation behavior and spatial

learning performance, we employed a mixed-methods

approach combining electroencephalogram (EEG)

and eye tracking (ET) data collection methodologies

with traditional behavioral measurement approaches

(e.g., response accuracy). With the acquired EEG

data, we could measure human brain electrocortical

activity; specifically, we calculated the theta power

in the frontal cortex, which has been suggested to

be indicative of cognitive load during navigation

(Cheng et al. 2022; Cheng et al. 2023). We also col-

lected ET data to capture participants’ gaze behavior

and computed relevant fixation-based and saccade-

based metrics to study navigators’ visuo-spatial atten-

tion allocation and interaction processes with the

traversed environment (Dong et al. 2022; Kapaj

et al. 2023).

Background and Related Work

Spatial Learning Ability and Evaluation Methods

Navigators continuously acquire spatial knowledge

when they interact with the surrounding environ-

ments (Block 1998). They encode spatial knowledge

into memory and eventually form cognitive maps

(Downs and Stea 2011). This process is defined as

spatial learning. Spatial learning can occur directly

by exploring environments from a first-person per-

spective or indirectly by learning external represen-

tations of the environment (e.g., maps, globes,

bird’s-eye views; Zhang, Zherdeva, and Ekstrom

2014). In this spatial learning study, we focused on

immediate intentional spatial learning during naviga-

tion, which is consistent with how people most
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commonly acquire spatial knowledge in daily situa-

tions. With this approach, we could better control

for potential confounding effects related to other

individual- and group-based abilities (e.g., map read-

ing, etc.). Siegel and White’s (1975) seminal contri-

bution postulates the acquisition of spatial

knowledge in three stages: landmark knowledge,

route knowledge, and survey knowledge. Landmark
knowledge refers to the identification and recall of

spatial anchors in the environment (i.e., salient

buildings, linear features such as a river, regions

including neighborhoods, etc.). Route knowledge
refers to the recall of landmark sequences constitut-

ing a route, which can facilitate one’s judgment of

the connection between landmarks or turning

behavior at route intersections. Survey knowledge
refers to the configurational understanding of the

environment, enabling navigators to self-localize and

locate landmarks and routes using a Euclidean frame

of reference from an allocentric perspective.

Individuals could vary drastically in their ability to

acquire these three types of spatial knowledge and to

form map-like representations of complex environ-

ments in their memory; that is, they differ in their

spatial learning ability (Ishikawa and Montello 2006;

Weisberg and Newcombe 2018).

Behavioral methods based on researchers’ observa-

tions of participants and data extracted from explicit

participant self-reports are the most commonly used

approaches for evaluating spatial learning ability

(Montello 2016). In addition to traditional behav-

ioral methods, physiological measures (i.e., ET, EEG,

etc.) have been used to reveal the cognitive mecha-

nisms underlying spatial behavior. During spatial

navigation, individuals differ in their ability to

search for and selectively acquire geographic infor-

mation from the environment (e.g., landmarks),

which can be measured by tracking people’s eye

movements (Kiefer et al. 2017). Navigation task-

related brain activity data are increasingly leveraged

to more deeply investigate spatial abilities and spa-

tial behavior. The well-known London taxi driver

studies mentioned earlier, for example, leveraged

functional magnetic resonance imaging (fMRI) to

evaluate the engagement of navigation-related brain

regions when participants performed navigation tasks

(e.g., route planning and route recall; Griesbauer

et al. 2022). More recently, many researchers have

preferred to employ the more flexible and mobile

EEG data collection method, a noninvasive tech-

nique used to measure electrical activity in the

human brain. For this approach, electrodes are

placed on the surface of the participants’ scalps to

measure the activity of cortical areas of interest rele-

vant to the research question at hand. EEG has

coarser spatial signal resolution than other neuroim-

aging approaches, such as fMRI, but it has excellent

temporal signal resolution. Scalp-recorded oscilla-

tions captured in the frontal cortex in the theta-fre-

quency range (i.e., 4–8Hz) have long been

associated with visual attention and memory-related

processes, such as encoding new visual information

into working memory and episodic memory, and dur-

ing memory retrieval processes (Hsieh and

Ranganath 2014). Increased theta power during

information encoding and retrieval has been sug-

gested to reflect greater cognitive demands. It is also

associated with elevated task difficulty, which, con-

sequently, could result in degraded task performance

(Klimesch 1999). Previous studies in the context of

cognitive load theory in instructional design and

learning (Paas et al. 2003) suggest an increase in

frontal theta power to serve as an indicator of higher

levels of cognitive load of learners (Antonenko

et al. 2010). Task-related cognitive load might also

be affected by an individual’s cognitive capacity in a

given task (Xie and Salvendy 2000). In their predic-

tion model of mental workload, Xie and Salvendy

(2000) suggested that individuals with lower cogni-

tive capacity might experience greater cognitive load

in a given task than that imposed by the task itself.

Scalp-recorded frontal theta activity has also been

found to be sensitive to changes in cognitive

demands for various navigation-related tasks (Lin

et al. 2022; Liu et al. 2022). Cheng et al. (2022;

Cheng et al. 2023) reported an increase in frontal

theta power and P300 amplitudes, as a measure of

cognitive load during map-assisted navigation in vir-

tual reality (VR), in parallel to an increasing fre-

quency of landmark presentations on a mobile map.

Sharma et al. (2017) identified individual differences

in navigation skills and spatial learning capacities

using EEG activity. Drawing inspiration from these

prior related navigation studies, we thus computed

cognitive load indicators from frontal theta spectra

to capture and study potential differences in
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participants’ cognitive capacity for encoding geo-

graphic information acquired from the environment

during a route-following task.

The Influence of Mobile Navigation Aids on
Individuals’ Spatial Cognition

Previous empirical map-assisted navigation studies

have suggested that navigation aids negatively affect

wayfinding performance and spatial knowledge

acquisition (i.e., short-term effects). For example,

pedestrian navigation studies have shown that

mobile map-assisted navigators make more naviga-

tion errors and show lower navigation efficiency dur-

ing wayfinding than when assisted with paper maps

or when exploring the environment without any

navigation aids (Ishikawa et al. 2008; Kuo, Chang,

and Chu 2022). Other studies have shown that assis-

ted navigators form less accurate cognitive maps

(M€unzer et al. 2006; Parush, Ahuvia, and Erev 2007;

Willis et al. 2009) because they have worse spatial

memory of the traversed environment (Brishtel et al.

2021; Sugimoto et al. 2022). Map-assisted driving

studies have obtained consistent results. For exam-

ple, in driving studies conducted in VR, drivers

learned a route with or without an in-car navigation

system and were subsequently asked to navigate to a

given location by memory. Navigation-assisted driv-

ing was associated with worse navigation perfor-

mance (Seminati et al. 2022) and greater cognitive

load (Brishtel et al. 2021). Ben-Elia (2021) extended

driving experiments to a real-world environment and

revealed similar degradation in drivers’ spatial learn-

ing when they used turn-by-turn route guidance.

Several studies suggest that the distracted attention

caused by navigation devices and the consequent

disengagement from relevant environmental proper-

ties are the key reasons for poorer spatial learning in

navigators (Leshed et al. 2008; Gardony, Bruny�e,
and Taylor 2015). Using ET technology, Hejtm�anek
et al. (2018) reported a negative correlation between

the time participants spent on mobile maps and

their spatial learning performance. Another potential

reason is that navigation aids make most spatial

decisions for navigators, making it less necessary for

them to encode, transform, and memorize elaborate

spatial information (von St€ulpnagel and Steffens

2013; Grinschgl, Papenmeier, and Meyerhoff 2021).

To date, only a handful of behavioral studies have

investigated the long-term cognitive decline caused

by prolonged reliance on navigation devices in daily

routines (i.e., long-term effects). For example,

Ishikawa (2019) and Ruginski et al. (2019) used

self-report questionnaires to assess participants’ expe-

rience using navigation aids. Structural equation

modeling analysis revealed the negative effects of

accumulated Global Positioning System (GPS) expe-

rience on individuals’ wayfinding performance, spa-

tial orientation, and spatial learning performance in

a novel environment. Topete et al. (2024) replicated

this result in their investigation using a more com-

prehensive self-reported GPS dependency scale that

differentiated across various navigation scenarios.

Furthermore, a longitudinal study by Dahmani and

Bohbot (2020) reported that individuals who used

navigation aids showed a steeper decline in spatial

memory over time. In these studies, the cognitive

and perceptual processes that could explain these

behavioral outcomes have not been studied in detail.

Studying these processes, however, could elucidate

how the decline in spatial abilities with increased

use of navigation technology could be mitigated.

Methods

Participants

A total of twenty-four male taxi drivers in Beijing

participated in the experiment (see Table 1 for back-

ground characteristics). We collected information on

participants’ use of in-car navigation aids and other

background information through interviews con-

ducted before the video route-following portion of

the study. Of the twenty-four participants, two (8

percent) reported that they had never used in-car

navigation aids in their daily taxi driving. The other

twenty drivers (92 percent) used auditory navigation

instructions in different ways. We accordingly

grouped participants into two navigation aids groups:

low-dependence (LD) and high-dependence (HD).

Specifically, the LD group used navigation assistance

only when they felt it was necessary; that is, when

they were unfamiliar with the environment, and

thus felt unable to perform route planning them-

selves. The two participants who reported that they

had never used navigation assistance were included

in the LD group. In contrast, the HD group pre-

ferred to constantly use navigation devices while
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driving. Ultimately, eleven and thirteen participants

were assigned to the LD and HD groups, respec-

tively. Independent t tests of the two groups regard-

ing the reported hours per day spent using in-car

navigation aids also revealed significant differences

in their dependence on in-car navigation aids

(p< 0.001, Cohen’s d¼ 2.05). Furthermore, the two

groups were balanced concerning a range of individ-

ual differences previously shown to influence naviga-

tion ability, including spatial ability and spatial

anxiety assessed with the Santa Barbara Sense of

Direction (SBSOD) Scale and the Spatial Anxiety

Scale (Lawton 1994; Hegarty et al. 2002; Wolbers

and Hegarty 2010), as well as demographic factors,

such as age (Klencklen, Despr�es, and Dufour 2012),

educational background (Ritchie and Tucker-Drob

2018), nationality, culture, language (Coutrot et al.

2018), driving experience (Woollett and Maguire

2010), and living environment (Farzanfar et al.

2023). Following prior related research (i.e., Maguire

et al. 2000), the two experimental groups were

homogenous in terms of gender, a group difference

factor that has been shown to influence navigation

ability (Nazareth et al. 2019).
Participants were recruited using online and

printed posters. They were required to complete an

online questionnaire about their background infor-

mation and in-car navigation aid usage habits, allow-

ing us to prescreen for suitable participants. All

participants had normal or corrected-to-normal

vision, and none reported a history of neurological

or psychiatric disease. Given the specialized partici-

pant group, namely, professional taxi drivers, we

implemented an incentive for participation and a

reward depending on their experimental performance

to boost these expert navigators’ motivation and

engagement in the experiment. Specifically, the

remuneration they received depended on their accu-

racy in completing the first two tasks and the num-

ber of landmarks they marked on the correct route

segment on the sketched map; these values were cal-

culated immediately by the experimenter once par-

ticipants finished the experiment. Participants were

informed of these incentives before the experiment.

Materials and Experimental Design

This study followed a between-participants design.

As shown in Figure 1A, participants were asked to

watch real-world driving videos of given routes in an

urban environment (learning phase) and to subse-

quently complete tasks, according to which we

investigated their spatial knowledge acquisition abil-

ity. We designed the tasks by referring to and adapt-

ing previously used paradigms, as detailed further in

what follows. Participants performed a scene recogni-

tion task in which their landmark knowledge was

assessed (Wen, Ishikawa, and Sato 2014), a route

Table 1. Background characteristics of the two groups of participants

Descriptive Inferential

LD HD t test

M SD M SD t p value Cohen’s d

Age (years) 49.182 5.930 53.077 3.616 −1.978 0.061 (ns) 0.81

Years of taxi-driving experience 20.818 3.710 20.692 4.939 0.069 0.945 (ns) 0.03

Hours per day spent using in-car navigation aids 1.700 1.735 5.545 1.827 −4.693 0.000��� 2.05

SBSOD 37.909 13.881 42.846 11.014 −0.972 0.342 (ns) 0.40

Mann–Whitney U test

W p value g2

Working hours per day 10.091 2.256 10.538 1.330 70.5 0.976 (ns) 0.02

Spatial anxiety scale 22.455 9.720 28.000 7.461 44.5 0.124 (ns) 0.10

Chi-square test

Yes No Yes No v2 p value Cohen’s w

Educational background (completed high school) 5 6 3 10 0.524 0.469 (ns) 0.24

Note: LD¼ low-dependence group; HD¼high-dependence group; SBSOD¼Santa Barbara Sense of Direction Scale.

ns ¼ p> 0.05.
���p< 0.001.
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Figure 1. Experimental design, procedure, and data analysis. (A) Materials and apparatus used in the experiment. (B) The experimental

procedure. (C) The data analysis procedure of this study. Note: SBSOD¼ Santa Barbara Sense of Direction Scale;

EEG¼ electroencephalography; ICA¼ independent component analysis; PSD¼ power spectral density.
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recognition task in which their route knowledge was

evaluated (Burte and Montello 2017), and a sketch
mapping task in which their survey knowledge was
examined (Ishikawa and Montello 2006).
Participants completed all tasks without any time

pressure.
Learning Phase. The videos presented to the

participants were obtained from the University of

Modena’s public data set of driving scenarios
DR(eye)VE (Palazzi et al. 2019), which shows driv-
ing scenes in Modena, Italy (Figure 1A). The videos

were filmed with a wide-angle Garmin camera
placed on the car’s roof at 1080 p/25 frames per sec-
ond (fps). We selected videos filmed during the day-

time under good weather conditions and removed
scenes with temporary stops. We also slowed the
chosen segments down to 75 percent of the original
filming speed. After this process, we obtained two

two-minute videos following two routes. Route 1 was
approximately 1,000 m long and included four inter-
sections; Route 2 was approximately 600 m long and

included five intersections. We prepared one addi-
tional video with a one-minute and thirty-second
duration, which was used as a training video for the

practice trial before the actual experiment.
Scene Recognition Task. A set of photographs

depicting random scenes from driving videos were

presented to the participants. Half of the images
came from the video presented in the learning phase
and the other half came from other videos in the
data set, which were also recorded in Modena but at

other locations. The selected photographs contained
significant landmarks or were taken at intersections
(Figure 1A). Participants were asked to indicate with

a yes or no answer whether the photographs came
from the environment they had just learned from the
driving video. In this task, there were fourteen and

sixteen trials for Routes 1 and 2, respectively.
Route Recognition Task. Participants viewed

photographs of intersections with superimposed
arrows (pointing straight, to the right, or to the left;

see Figure 1A for an example). The participants
were asked to indicate which driving action matched
the driving direction in the viewed video at that

intersection.
Sketch Mapping Task. The photographs of

scenes from the learned driving route were again

presented to the participants in random order. The

participants were asked to sketch a map of the driv-

ing route and then to mark the viewing positions of

the photographs on this map.

Procedure

The Beijing Normal University Ethics Committee

reviewed this study before it was conducted, and all

participants provided informed consent. An over-

view of the experimental procedure used in the

experiment is illustrated in Figure 1B. We first inter-

viewed the participants for approximately twenty

minutes to collect their demographic information

(i.e., age, gender, educational background, year in

which they started driving taxis, year in which they

started using in-car navigation aids while driving,

and working hours per day). We also asked them

about their in-car navigation assistance systems use

(i.e., hours per day using in-car navigation aids,

when and how they would use navigation aids,

including whether auditory instructions were used).

Subsequently, the spatial learning experiment was

explained to the participants. The experiment com-

prised a video-presenting phase, and the three tasks

presented earlier were performed sequentially. The

video was presented to the participants three times,

with each presentation followed by the scene recog-

nition task; that is, participants performed this task

three times. After the last video presentation and

subsequent scene recognition task, participants were

asked to complete the route recognition task and the

sketch mapping task. The participants first per-

formed a practice trial, as explained earlier, to get

familiar with the experimental procedure. After the

practice trial, we connected participants to the eye

tracker and the EEG device. Next, the participants

completed the actual experiment with the two

routes. Finally, they completed the SBSOD Scale

and the Spatial Anxiety Scale. The participants

took approximately 90 to 120minutes to complete

the entire experiment.

Apparatus

In this study, eye movement data were collected

using an SMI RED250 eye tracker with a sampling

rate of 120Hz, sampling accuracy of 0.4�, and a spa-

tial resolution of 0.03�. Participants’ brain activity
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was simultaneously recorded using a thirty-two-chan-

nel EEG device (Enobio 32) with a sampling rate of

500Hz and a sampling bandwidth between 0 and

125Hz. The distribution of electrodes is shown in

Figure 1A. We ran our study using two laptops that

we could easily carry. The reason for this was that

data collection happened during the COVID-19

pandemic and our taxi drivers were not allowed to

enter any campus facilities. To solve this problem,

we ran the study on highly mobile laptops in an off-

campus meeting room that we set up every day dur-

ing data collection, together with recording devices

that we transported from the campus research labo-

ratory. One laptop was dedicated to practice trials

without any data collection before the actual learn-

ing phase and to display stimuli for the sketch map-

ping task after the learning phase. This laptop

featured a 13.3-inch screen with a resolution of

2560� 1600 pixels. During the actual experiment,

we used another laptop that featured a 15.6-inch

screen with a screen resolution set to 1920� 1080

pixels. It was used to simultaneously display the driv-

ing video and the photograph stimuli and to record

all participant responses. This included gaze behav-

ior, EEG, and behavioral responses for the scene rec-

ognition task and the route recognition task.

Data Processing and Analysis

Figure 1C illustrates the analysis framework used

in this study, which involved eye movement and

EEG response during the spatial learning phase, as

well as behavioral performance in the subsequent

tasks. In the following sections, we describe the data

processing methods and analysis steps in detail.
Behavioral Data Analysis. For the scene recog-

nition task and route recognition task, we used accu-

racy (calculated as the percentage of correctly

answered trials relative to the total number of trials)

to indicate participants’ performance. Notably, only

the accuracy of participants completing the third

scene recognition task was considered when calculat-

ing their final performance metrics. In the analysis of

the collected sketch maps, we compared participants’

sketch maps with Google Maps of the driven area.

The marked viewing positions of the scene photo-

graphs were imported as anchor points (instead of the

landmarks themselves) into the Gardony Map

Drawing Analyzer (GMDA: Gardony, Taylor, and

Bruny�e 2016). As indicators of participants’ sketch

mapping accuracy, we applied the GMDA to compute

the bidimensional regression index (r2), absolute scal-

ing bias, and absolute rotational bias. To calculate the

scaling bias, the interlandmark distances were first

scale-equalized by dividing the distance between every

two landmarks by the maximum interlandmark dis-

tance on the map. The differences between the inter-

landmark distance ratios of the sketch map and the

Google Map were subsequently summed. The rota-

tional bias was calculated in the same way but using

the interlandmark direction instead of the interland-

mark distance. Therefore, a larger scaling bias and a

larger rotational bias, respectively, represented a sig-

nificant deviation in the distance and direction

between anchor points. Hence, all three metrics cap-

ture distortions of the sketch map compared to

Google Map.
Eye Movement Analysis. Basic fixation-related

and saccade-related eye movement metrics can rep-

resent participants’ visual attention allocation and

visual information acquisition during navigation

(Kiefer et al. 2017). We calculated participants’ fixa-

tion count, saccade count, and average fixation dura-

tion during the learning phase. These three eye

movement metrics have been meaningfully used in

previous research to assess navigators’ visual atten-

tion allocation (Br€ugger, Richter, and Fabrikant

2019; Dong et al. 2022). Although pupil dilation is

also a commonly used indicator—for example, when

comparing within-subject differences in cognitive

load during static map reading (Kiefer et al. 2017)—

our study followed a between-subjects design using

dynamic videos with changing image characteristics.

Therefore, we leveraged EEG methodology to study

cognitive load instead. The definitions and meanings

of these metrics are interpreted as follows:

� Fixation count: A greater fixation count suggests that

participants attended to more visual information.

� Saccade count: A greater saccade count suggests that

participants moved their eyes more, for example,

when searching for visual information.

� Average fixation duration (in milliseconds): A longer

average fixation duration indicates that participants

are either more interested in the attended visual

information or have greater difficulty understanding

this information and thus show less efficiency in

interpreting visually attended information.

We excluded participants with sample rates lower

than 80 percent, which were calculated by dividing

the number of correctly identified ET samples by the
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number of attempts. This meant that after prepro-

cessing, seventeen participants were included in the

data analysis for Route 1 (NLD ¼ 9, NHD ¼ 8), and

fifteen participants were included for Route 2 (NLD

¼ 9, NHD ¼ 6).

EEG Analysis. All the raw data were input

into EEGLAB v2021.0 (Delorme and Makeig

2004) run in MATLAB (version 2018a) for prepro-

cessing. We first applied a high-pass filter with a

0.01-Hz cutoff frequency and a low-pass filter with

a 40-Hz cutoff to remove high-frequency artifact

and low-frequency drift. Then, all electrodes were

referenced to Cz. The Clean_rawdata toolbox in

EEGLAB was subsequently used to automatically

identify channels containing significant noise.

These bad channels were then removed and

replaced with interpolated data using spline inter-

polation. Next, we performed independent compo-

nent analysis and used the ICLabel toolbox

(Pion-Tonachini, Kreutz-Delgado, and Makeig

2019) in EEGLAB to identify and label indepen-

dent components (ICs). ICs with a greater than 80

percent probability of being classified as eye or

muscle activity were removed.
We used the mouse click recorded in the ET data

to identify the exact start time for presenting each

video during the learning phase. Based on this infor-

mation, we extracted the learning phase as EEG

events with a duration of 120 seconds, the same as

the video duration. At this stage of data processing,

we excluded data from one participant for Route 1

and four participants for Route 2, as we failed to

synchronize the mouse click event with the EEG

data. Finally, the EEG data of twenty-three partici-

pants for Route 1 (NLD ¼ 11, NHD ¼ 12) and

twenty participants for Route 2 (NLD ¼ 8, NHD ¼
12) were left for subsequent analysis.

We then performed a power spectrum analysis on

each epoch of the cleaned EEG data using

EEGLAB. Given that we were particularly interested

in theta power in the frontal cortex, we selected five

electrodes—Fz, F3, F4, AF3, and AF4—located in

this brain region for analysis (see Figure 1A for the

location of the electrodes). We applied the periodo-

gram to compute the power spectral density (PSD)

of the specific frequency range. To reduce the

impact of individual differences in the absolute PSD

on the results of the current between-participants

design study, we referred to previous studies using

relative power (Bian et al. 2014; Cheng et al. 2022)

and calculated the relative PSD in the theta band

using the following equation.

Relative theta PSD ¼ PSD of theta ð4 − 8HzÞ
PSD of 1 − 30Hz

We further analyzed the Fz electrode data to

determine changes in the relative PSD over time.

We first split the learning phase EEG epoch into

five-second time windows with one-second intervals.

Subsequently, each EEG video event yielded 115

continuous EEG epochs. We then performed the

power spectrum analysis as described earlier on these

epochs.

Statistical Analysis. We conducted statistical

tests between the LD and HD experimental groups.

We applied the Scheirer–Ray–Hare test to analyze

the behavioral data. For the continuous psychophysi-

ological variables derived from the background char-

acteristics, eye movement, and EEG data, we

conducted independent t tests or Mann–Whitney U

tests, depending on whether the data were normally

distributed. For the categorical variables, we

employed the chi-square test.

Results

In the following sections, we first report on the

behavioral performance of the participants in the two

experimental groups as a direct indicator of their spa-

tial learning ability modulated by navigation aid use.

Then, we present the results of the eye movement

and EEG analyses during the spatial learning phase.

Behavioral Performance

Figure 2 shows the summary statistics for partici-

pants’ performance in the scene recognition, route

recognition, and sketch mapping tasks. The

Scheirer–Ray–Hare test revealed that the scene rec-

ognition accuracy of the LD group (Mroute1 ¼ 0.77,

SDroute1 ¼ 0.13; Mroute2 ¼ 0.90, SDroute2 ¼ 0.07)

was significantly better than that of the HD group

(Mroute1 ¼ 0.66, SDroute1 ¼ 0.16; Mroute2 ¼ 0.79,

SDroute2 ¼ 0.14, H¼ 5.57, p¼ 0.02, g2 ¼ 0.13). We

also found a main effect of the route in this task

(H¼ 9.79, p¼ 0.002; g2 ¼ 0.17). Participants per-

formed better on Route 2 than on Route 1.
There was no significant difference in accuracy in

the route recognition task between the LD (Mroute1

¼ 0.84, SDroute1 ¼ 0.20; Mroute2 ¼ 0.89, SDroute2 ¼
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0.13) and the HD groups (Mroute1 ¼ 0.75, SDroute1

¼ 0.25; Mroute2 ¼ 0.78, SDroute2 ¼ 0.21; H¼ 2.49,

p¼ 0.12, g2 ¼ 0.06). Additionally, for the sketch

mapping task, no significant differences in r2

(H¼ 2.74, p¼ 0.10, g2 ¼ 0.06) or rotational bias

(H¼ 1.11, p¼ 0.29, g2 ¼ 0.02) were found across

the experimental groups. A significant difference in

scaling bias was found, however, between the LD

(Mroute1 ¼ 0.04, SDroute1 ¼ 0.03; Mroute2 ¼ 0.03,

SDroute2 ¼ 0.02) and the HD groups (Mroute1 ¼
0.06, SDroute1 ¼ 0.05; Mroute2 ¼ 0.05, SDroute2 ¼
0.03; H¼ 4.03, p¼ 0.045, g2 ¼ 0.10), indicating

that participants in the LD group could better esti-

mate the interlandmark distance. For all five indica-

tors, no interaction effects were detected between

the experimental group and the experimental route

(p> 0.05).

Eye Movement

Regarding fixation behavior and saccade behavior,

as shown in Figure 3, we found no statistically signifi-

cant differences in fixation count, saccade count, or

average fixation duration between the LD and the

HD groups (p> 0.05) for either route. The eye move-

ment results indicated that participants in the two

groups did not differ in the amount of visual informa-

tion searched or processed during spatial learning or

the efficiency of processing visual information.

Cognitive Load

We analyzed the relative theta PSD in the

selected frontal electrodes (i.e., Fz, F3, F4, AF3, and

AF4) while participants watched the driving videos

Figure 2. Comparison of the behavioral performance of the low-dependence (LD) and high-dependence (HD) groups. (A) Accuracy in

the scene recognition task. (B) Accuracy in the route recognition task. (C) r2 of the sketch map. (D) Scaling bias of the sketch map.

(E) Rotational bias of the sketch map. Note: ns ¼ p> 0.05. �p< 0.05. ��p< 0.01.
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to indicate their cognitive load during the learning

phase. The Route 1 results are shown in Figure 4A.
Taking Fz as an example, the average relative theta
PSD of the LD group was lower than that of the HD

group in all three trials, and the difference was sig-
nificant in the second trial (MLD ¼ 0.07, SDLD ¼
0.04; MHD ¼ 0.13, SDHD ¼ 0.04, p¼ 0.03, g2 ¼
0.41). The statistical analysis results for all trials are
shown in Tables A.1 and A.2 in the Appendix.

We further visualized the relative PSD of the Fz
electrode on the map to indicate the cognitive load

of participants according to location; that is, when
the car used to record the video traveled to a certain
point. To achieve this, we used the driving speed

data from the DR(eye)VE data set (twenty-five
records per second) to calculate and normalize the
driving distance per second. We then averaged the

Fz relative PSD over time (as described in the

Methods section) in the three trials and matched

the outcomes with the preceding distance series.
The results were visualized and overlapped with
Google Maps as a base map (Figure 4B). We found

differences in the spatial distribution of the calcu-
lated Fz relative PSD in terms of intersections and
route segments separated by intersections across

experimental groups. The reason for this difference
could be explained by the cognitive load of partici-
pants in the LD group, which only sharply increased
at intersections. Conversely, participants in the HD

group demonstrated high cognitive load throughout
the entire route and did not show any significant
cognitive load differences between intersections and

route segments. Further statistical analysis revealed
the cognitive load of the LD group to be signifi-
cantly lower than that of the HD group for the first

four route segments (p< 0.05), with no significant

Figure 3. Results of eye movement metrics. (A) Fixation count. (B) Average fixation duration (ms). (C) Saccade count.
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difference between the two groups at intersections

(Figure 4C). We observed similar results for Route 2,

as shown in Figure A.1 in the Appendix.

Discussion

In this research, we compared two groups of

Beijing taxi drivers with different levels of depen-

dence on in-car navigation aids in their visual atten-

tion and cognitive load during a video-based route-

following task and their spatial knowledge acquisi-

tion performance. With this experiment, we aimed

to address the proposed research question of whether

and how in-car navigation aids impair the spatial

learning ability of expert navigators. We found that

participants with greater dependence on in-car navi-

gation aids had worse performance in the scene rec-

ognition task, and there was greater distortion in the

interlandmark distance but not in the interlandmark

direction in the sketch maps they drew. There were

no significant group differences, however, in the

route recognition task. Cognitive indicators from the

EEG data demonstrated that greater dependence on

in-car navigation aids might be linked to greater

cognitive load. Eye movement metric results

revealed no group differences in either fixation

behavior or saccade behavior. Overall, these results

support Hypothesis 3 and partly support Hypothesis

1. They also suggest that Hypothesis 2 should be

rejected. In the following sections, we discuss the

empirical behavioral, visual attention, and brain

activity results in detail within the context of the

findings of the state-of-the-art literature.

In-Car Navigation Aids Impair Participants’
Ability to Acquire Landmark Knowledge and
Survey Knowledge but Not Route Knowledge

According to the behavioral results, the LD group

outperformed the HD group in acquiring low-level

landmark knowledge and in using high-level survey

knowledge to estimate interlandmark distance.

These findings support our hypothesis and partly rep-

licate the results of previous research using structural

equation modeling (Ruginski et al. 2019). Contrary

to their findings, though, participants in our experi-

ment showed no significant group difference in esti-

mating the distance between landmarks. This

discrepancy could be attributed to the difference in

experimental design because participants in their

experiment performed distance estimation from an

egocentric perspective, whereas in our experiment,

they drew sketch maps from an allocentric perspec-

tive. Another possibility is that in their investigation

of participants’ experiences using navigation aids,

they did not distinguish pedestrian navigation aids

from in-car navigation aids, whereas we focused on

only in-car aids.
Contrary to our expectations, route knowledge

acquisition did not differ by group. One possible

explanation might be that the route recognition task

requires participants to remember a series of consec-

utive actions, which is exactly what turn-by-turn

navigation instructions emphasize (e.g., “Turn left at

the next intersection”). To our knowledge, only two

previous studies related to turn-by-turn in-car navi-

gation aids have used the same task to assess partici-

pants’ performance in acquiring route knowledge.

Kelly, Lim, and Carpenter (2022) reported that

using turn-by-turn navigation aids did not impair

route recognition performance. Ben-Elia (2021)

demonstrated that using in-car navigation aids

affected route knowledge acquisition less than land-

mark knowledge acquisition. Furthermore, our find-

ings corroborate the previously proposed idea that

the three types of spatial knowledge are acquired

independently and simultaneously, without the need

to acquire high-level knowledge on the basis of low-

level knowledge (Montello 1998; Meilinger,

Frankenstein, and B€ulthoff 2013; Kim and Bock

2021). Otherwise, we should have observed accor-

dant results in all three tasks.
Additionally, we found a significant main effect of

route on landmark knowledge acquisition.

Participants showed better spatial knowledge acquisi-

tion performance for Route 2 than for Route 1. This

difference might be because Route 2 has a more

complex structure and scenery, providing

3

Figure 4. Electroencephalography (EEG) results for Route 1. (A) Relative theta power spectral density (PSD) of EEG data from five

frontal electrodes (Fz, F3, F4, AF3, and AF4) were significantly different between the low-dependence (LD) group and high-dependence

(HD) group in several trials. (B) The relative theta PSD of the Fz electrode is mapped along the navigated route, indicating the spatial

context of the recorded cognitive load. The locations of intersections and route segments are also labeled on the map. (C) Statistical

analysis of the relative theta PSD for each intersection and route segment. Note: �p< 0.05. ��p< 0.01.
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participants with more recognizable landmarks. This

finding adds to the existing evidence suggesting that

the appearance and structure of an environment

have an impact on navigators’ perception and cogni-

tion of space (Manley, Filomena, and Mavros 2021)

and their navigational behavior (Yesiltepe et al.

2023). In future research, the complexity of the

experimental environment and the salience of land-

marks presented to participants could be controlled

to further investigate this issue. In addition to envi-

ronmental complexity, individuals’ prior knowledge

of a structured environment (e.g., a particular type

of city), conceptualized as spatial schemas, might

influence their spatial learning in environments

resembling familiar environments. Specifically, a spa-

tial schema has been demonstrated to interfere with

the acquisition of spatial knowledge from novel

environments with schema-incongruent elements but

rather facilitates the acquisition of spatial knowledge

from similar environments with schema-congruent

elements (Farzanfar et al. 2023). In this study, we

used the city of Modena, which is significantly dif-

ferent from Beijing in terms of structure and city-

scape, as our study area. Future investigations should

consider spatial schemas and use similar structured

environments more familiar to participants.

This Impairment Stems from Cognitive Processes
During Spatial Learning: Evidence from Eye
Movement and EEG Response Data

As mentioned earlier, we did not observe signifi-

cant differences between the LD and HD groups in

terms of their eye movement behavior according to

fixation-related and saccade-related metrics. The

recorded EEG data, however, show that the HD

group exhibited greater frontal relative theta PSD,

which might suggest a greater cognitive load of the

HD group during spatial learning compared to the

LD group. Taking these findings together, it appears

that long-term use of in-car navigation aids does not

affect the allocation of visual attention to environ-

mental information but does affect subsequent cogni-

tive mechanisms—in other words, the process of

encoding this visuo-spatial information into memory.

Theta spectral power in the frontal cortex, as

observed in the HD group, could also be explained

by a potential increase in cognitive difficulty

(Antonenko et al. 2010; Maurer et al. 2015), thus

further implying that task demands exceeded

participants’ already limited cognitive resources in

the HD group. This has already been shown in

related tasks such as spatial learning, driving, and

navigation (Young et al. 2015; Cheng et al. 2022;

Cheng et al. 2023). A possible explanation for the

greater cognitive load of the HD group, therefore,

might be that participants in this group encountered

more difficulty in both processing the visual informa-

tion perceived from the environment and encoding

it into spatial knowledge. This inference from both

the visual attention and EEG data aligns with previ-

ous research demonstrating that the accuracy of cog-

nitive maps formed by individuals during

environmental exploration is not associated with

visual information input but with individuals’ ability

to encode such information (Keller and Sutton

2022).
There are, however, other possible explanations

for the eye movement results considering the partici-

pant characteristics, the experimental design, and

the experimental environment. As participants’ in-

car navigation aid use habits mainly involve follow-

ing auditory instructions, they do not have to pay

attention to the mobile maps visually presented on

their devices during daily driving. The division of

nonvisual attention by auditory aids (Gardony et al.

2013), therefore, could lead to long-term cognitive

decline in individuals without affecting gaze behav-

ior. Moreover, the driving videos used as stimuli in

our experiment were recorded with a forward-facing

fixed-view camera. Therefore, participants mainly

observed the presented environmental information

ahead of the road. According to previous findings,

however, digital navigation aids could also influence

the distribution of eye fixations to both sides of

(Haupt, van Nes, and Risser 2015) and behind

(Br€ugger, Richter, and Fabrikant 2018) the body on

the ground during navigation, which is not discussed

in this article. The videos were presented to partici-

pants on a flat, two-dimensional, and nonimmersive

laptop screen of arguably small size. In more immer-

sive virtual environment test settings (i.e., stereo-

scopic VR, etc.), additional sensory inputs such as

auditory cues and body-based cues could be included

and possibly contribute further to spatial learning

(Steel, Robertson, and Taube 2021). Although pre-

vious studies suggest that the intensity of immersion

has little impact overall on spatial learning perfor-

mance (Zhao et al. 2020; Dong et al. 2022), greater

immersion could lead to distinct changes in visual
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attention distribution during navigation (Dong et al.

2022). Additionally, larger screen sizes and higher

display resolutions in virtual environments have

been reported to benefit navigators in searching for

and navigating to a destination (Ni, Bowman, and

Chen 2006). In a future study, our findings, espe-

cially concerning eye movement behaviors, could be

compared to immersive, large-screen, head-mounted

VR, or real-world study settings.

A Comparison of Intersections and Route
Segments

Previous studies have described the beneficial

effect of acquiring spatial information at intersec-

tions on understanding the configuration of space,

developing an internal representation of the envi-

ronment, and navigating in that environment

(Klippel and Winter 2005). In this study, we found

that the two experimental groups differed in their

spatial distribution pattern of the calculated Fz rela-

tive PSD, which might be explained by the distinct

increase in cognitive load at intersections for the LD

group, compared to the overall high cognitive load

throughout the entire route for the HD group.

Previous research has shown that theta power

increases with increasing use of cognitive resources

(Sauseng et al. 2010; Puma et al. 2018), especially

when tasks require sustained concentration (Gevins

and Smith 2003). Therefore, a possible explanation

for our findings might be that the LD group tended

to allocate more cognitive resources to processing

information at intersections, whereas the HD group

used approximately the same cognitive resources

along route segments and at intersections. In other

words, long-term dependence on in-car navigation

aids might affect spatial learning strategies and

increase the difficulty of efficiently allocating cogni-

tive resources.

Limitations and Future Work

Based on our experimental design, participants

were informed before the experiment that there

would be a spatial knowledge test, and that they

would receive rewards for better performance. This

leads to intentional learning, which, although still

controversial, is considered to potentially affect spa-

tial learning performance (Van Asselen, Fritschy,

and Postma 2006). Future studies could target

specifically incidental learning to further assess our

findings. Moreover, we focused on turn-by-turn audi-

tory assistance due to the in-car navigation aid use

habits of our particular pool of participants. Further

empirical studies are needed to examine our findings

on navigation aids with various design elements,

which have been shown in prior studies to affect spa-

tial learning performance; these include different

automatization levels (Br€ugger, Richter, and

Fabrikant 2019), different interactions between users

and devices (Richter, Dara-Abrams, and Raubal

2010), and different methods for presenting spatial

information (Ishikawa and Takahashi 2014). Follow-

up research could also target other cognitive pro-

cesses of navigation (e.g., route planning). Another

limitation of this study is the small participant group

due to the difficulty of conducting on-site experi-

ments during the COVID-19 pandemic and recruit-

ing participants from such a specialized professional

group of expert navigators. Moreover, because data

collection happened in a mobile research lab and we

could only use laptops with arguably small display

sizes for this reason, future studies could further

investigate how display size (beyond traditional lap-

top screens) and immersiveness (i.e., in VR) might

influence the results. It would also be interesting to

increase participants’ activity in the experiment, for

example, by allowing them to actively explore the

environment themselves, which has been shown to

lead to different outcomes than those obtained via

passive learning settings, as applied in this study

(Chrastil and Warren 2012). Furthermore, in a

between-subjects study, we cannot eliminate the

influence of differences in individual characteristics

on the experimental results. In future investigations,

longitudinal within-subjects experiments could be

conducted, and participants’ spatial learning abilities

and navigation system use habits could be recorded

over time.

Additionally, recent studies have indicated that

several specific brain areas, including the hippocam-

pal, parahippocampal, entorhinal, and retrosplenial

cortices, play crucial roles in human navigation and

cognitive map formation (Epstein et al. 2017). The

activity of these deep brain structures, however, can-

not be detected well by the thirty-two-channel scalp

EEG system used in this study, considering the diffi-

culty and inaccuracy of inferring the brain region

location according to the neuronal activity measured

on the scalp. Therefore, another future research
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direction is to use neuroimaging techniques with higher

spatial resolution, such as fMRI and magnetoencepha-

lography (MEG), to explore the influence of mobile

navigation aids on the structure and function of specific

brain regions related to spatial information encoding,

spatial memory, and spatial decision-making.

Conclusions

Our empirical results for participants’ behavioral

performance, eye movement, and EEG activity indi-

cated that long-term dependence on in-car naviga-

tion aids can deteriorate expert navigators’ spatial

learning ability. Specifically, greater dependence on

in-car navigation systems might increase participants’

difficulty in encoding visual-spatial information,

leading to a significantly greater cognitive load with

the same amount of visual input. We suggest that

this is the reason for the behavioral difference we

observed in their performance in acquiring landmark

knowledge and survey knowledge from the explored

environment and might explain how in-car naviga-

tion aids lead to cognitive decline in frequent users.

This study contributes to the ongoing debate on

the long-term impacts of digital technology on

human cognitive ability (Cecutti, Chemero, and Lee

2021) by elaborating on the detrimental effects of

the enhancement of geographical information tech-

nology on individuals’ spatial learning ability.

Moreover, by empirically exploring how this naviga-

tion-related cognitive decline occurs, our study has

implications for the design and development of

future navigation systems, which could encourage

users to use more of their inherent capacity and

acquired spatial knowledge instead of overlying on

navigation instructions in the digital era.
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Appendix

Figure A.1. Electroencephalography (EEG) results for Route 2. (A) Relative theta power spectral density (PSD) of EEG data from five

frontal electrodes (Fz, F3, F4, AF3, and AF4) were significantly different between the low-dependence (LD) group and high-dependence

(HD) group in several trials. (B) The relative theta PSD of the Fz electrode is mapped along the navigated route, indicating the spatial

context of the recorded cognitive load. The locations of intersections and route segments are also labeled on the map. (C) Statistical

analysis of the relative theta PSD for each intersection and route segment. �p< 0.05. ��p< 0.01. ���p< 0.001.
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Table A.1. Statistical analysis of the relative theta power spectral density of electroencephalography activity at five
frontal electrodes (Fz, F3, F4, AF3, and AF4) for Route 1

Descriptive Inferential

LD HD t test
Effect size

M SD M SD t p value Cohen’s d

Route 1 Trial 1_Fz 0.104 0.046 0.140 0.046 −1.893 0.072 0.790

Route 1 Trial 3_Fz 0.089 0.061 0.126 0.037 −1.787 0.088 0.746

Route 1 Trial 1_F3 0.122 0.064 0.127 0.037 −0.227 0.823 0.095

Route 1 Trial 2_F3 0.105 0.082 0.130 0.037 −0.939 0.364 0.404

Route 1 Trial 3_F3 0.098 0.057 0.114 0.050 −0.688 0.499 0.287

Route 1 Trial 1_F4 0.107 0.052 0.130 0.041 −1.164 0.258 0.486

Route 1 Trial 2_F4 0.070 0.042 0.126 0.036 −3.441 0.002�� 1.436

Route 1 Trial 3_F4 0.088 0.049 0.114 0.044 −1.334 0.197 0.557

Route 1 Trial 1_AF3 0.105 0.053 0.125 0.037 −1.040 0.310 0.434

Route 1 Trial 2_AF3 0.071 0.041 0.127 0.034 −3.539 0.002�� 1.477

Route 1 Trial 3_AF3 0.084 0.039 0.122 0.036 −2.392 0.026� 0.998

Route 1 Trial 1_AF4 0.107 0.050 0.130 0.035 −1.253 0.224 0.523

Route 1 Trial 2_AF4 0.075 0.042 0.127 0.030 −3.503 0.002�� 1.462

Route 1 Trial 3_AF4 0.086 0.037 0.114 0.048 −1.569 0.131 0.655

Mann–Whitney U test Effect size

W p value g2

Route 1 Trial 2_Fz 0.066 0.041 0.134 0.043 30 0.029� 0.41

Note: LD¼ low-dependence group; HD¼high-dependence group.
�p< 0.05.
��p< 0.01.

Table A.2. Statistical analysis of the relative theta power spectral density of electroencephalography activity at five
frontal electrodes (Fz, F3, F4, AF3, and AF4) for Route 2

Descriptive Inferential

LD HD t test
Effect size

M SD M SD t p value Cohen’s d

Route 2 Trial 1_Fz 0.079 0.029 0.136 0.044 −3.197 0.005�� 1.459

Route 2 Trial 2_Fz 0.086 0.054 0.141 0.061 −2.044 0.056 0.933

Route 2 Trial 3_Fz 0.104 0.046 0.119 0.052 −0.706 0.489 0.322

Route 2 Trial 1_F3 0.093 0.043 0.129 0.037 −2.015 0.059 0.920

Route 2 Trial 2_F3 0.096 0.040 0.133 0.036 −2.189 0.042� 0.999

Route 2 Trial 3_F3 0.102 0.047 0.126 0.034 −1.305 0.208 0.595

Route 2 Trial 2_F4 0.079 0.035 0.147 0.048 −3.421 0.003�� 1.561

Route 2 Trial 3_F4 0.097 0.043 0.129 0.045 −1.590 0.129 0.726

Route 2 Trial 1_AF3 0.080 0.032 0.124 0.037 −2.729 0.014� 1.246

Route 2 Trial 2_AF3 0.081 0.039 0.130 0.038 −2.799 0.012� 1.278

Route 2 Trial 3_AF3 0.097 0.041 0.128 0.036 −1.782 0.092 0.813

Route 2 Trial 1_AF4 0.078 0.033 0.125 0.035 −2.977 0.008�� 1.359

Route 2 Trial 2_AF4 0.080 0.029 0.138 0.033 −3.981 0.001��� 1.817

Route 2 Trial 3_AF4 0.099 0.045 0.134 0.046 −1.683 0.110 0.768

Mann–Whitney U test Effect size

W p value g2

Route 2 Trial 1_F4 0.079 0.036 0.127 0.039 16 0.015� 0.3

Note: LD¼ low-dependence group; HD¼high-dependence group.
�p< 0.05.
��p< 0.01.
���p< 0.001.
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