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Abstract

Monod and Logistic growth models have been widely used as basic equations to

describe cell growth in bioprocess engineering. In the case of the Monod equation,

the specific growth rate is governed by a limiting nutrient, with the mathematical

form similar to the Michaelis–Menten equation. In the case of the Logistic equation,

the specific growth rate is determined by the carrying capacity of the system, which

could be growth‐inhibiting factors (i.e., toxic chemical accumulation) other than the

nutrient level. Both equations have been found valuable to guide us build

unstructured kinetic models to analyze the fermentation process and understand

cell physiology. In this work, we present a hybrid Logistic‐Monod growth model,

which accounts for multiple growth‐dependent factors including both the limiting

nutrient and the carrying capacity of the system. Coupled with substrate

consumption and yield coefficient, we present the analytical solutions for this

hybrid Logistic‐Monod model in both batch and continuous stirred tank reactor

(CSTR) culture. Under high biomass yield (Yx/s) conditions, the analytical solution for

this hybrid model is approaching to the Logistic equation; under low biomass yield

condition, the analytical solution for this hybrid model converges to the Monod

equation. This hybrid Logistic‐Monod equation represents the cell growth transition

from substrate‐limiting condition to growth‐inhibiting condition, which could be

adopted to accurately describe the multi‐phases of cell growth and may facilitate

kinetic model construction, bioprocess optimization, and scale‐up in industrial

biotechnology.
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1 | INTRODUCTION

In 1949, French microbiologist Dr. Jacques Monod (who was also a

Nobel Laureate in 1965, best known for his discovery of Lac operon),

provided a quantitative description between bacterial growth rate

and the concentration of a limiting substrate (glucose; Monod, 1949).

This equation (Equation (1)) takes the mathematical form of

Michaelis–Menten equation, where the substrate saturation constant

(Ks) and the maximal specific cell growth rate (μmax) could be

graphically determined by the Lineweaver–Burk double‐reciprocal
plot (Lineweaver & Burk, 1934). Under limiting nutrient conditions,

(S « Ks), cell growth follows first order kinetics and the specific growth
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rate is proportional to the nutrient level. Under unlimited nutrient

conditions (S→ +∞), cells could reach their maximal growth potential

(the cell is therefore saturated by the substrate) and follow zeroth‐
order kinetics. The specific growth rate follows a monotonically

increasing pattern as we increase the concentration of the limiting

nutrient (S).

The Logistic equation (Equation (2)), was first introduced by

the UK sociologist Thomas Malthus to describe the “the law of

population growth” at the end of 18th century. This model later

was formulated and derived by the Belgian mathematician Pierre

François Verhulst to describe the self‐limiting growth of a

biological population in 1838. With little self‐limiting factor

(X→ 0), the population attains the maximal grow rate (μmax). As

the cell growth, the population starts inhibiting themselves (could

be considered as a negative auto‐regulation loop). With sufficient

self‐limiting factors (X→ Xm), the population reaches the carrying

capacity of the system and the growth rate approaches to zero.

The specific growth rate follows a linearly decreasing pattern as

the cell population (X) increases.

Both Monod and Logistic model have been used extensively to

analyze the fermentation process and study microbial consortia

interactions. For example, an expanded form of the Monod

equation was proposed to account for product, cell, and substrate

inhibitions (Han & Levenspiel, 1988; Levenspiel, 1980; Luong,

1987). When the Monod equation was coupled with the

Luedeking–Piret equation (Robert Luedeking, 1959), analytical

solutions for cell growth, substrate consumption, and product

formation could be derived (Garnier & Gaillet, 2015). A square‐
root boundary between cell growth rate and biomass yield has

been proposed (Wong, Tran, & Liao, 2009). Coupled Monod

equations were applied to describe the complicated predator‐
prey (oscillatory) relationship between Dictyostelium discoideum

and Escherichia coli in Chemostat (Tsuchiya, Drake, Jost, &

Fredrickson, 1972). Much earlier than the Monod equation, the

Logistic growth was used by the American biophysicist Alfred J.

Lotka and the Italian mathematician Vito Volterra to describe the

famous Lotka–Volterra predator‐prey ecological model (Lotka,

1926; Volterra, 1926). More interestingly, the solutions of the

discrete Logistic growth model were elegantly analyzed by the

Australian ecologist Robert May (Baron May of Oxford) in the

early 1970s. It was discovered that complex dynamic behaviors

could arise from this simple Logistic equation, ranging from stable

points to bifurcating stable cycles, to chaotic fluctuations, all

depending on the initial parameter conditions (May, 1976). Both

models benefit us to analyze the microbial process and explore

unknown biological phenomena.

To account for both substrate‐limiting and self‐inhibiting factors,

herein we propose a hybrid Logistic‐Monod model (Equation (3)) by

simply multiplying the Monod equation with the self‐inhibiting factor

( − /X Xm1 ). We believe this model could better describe the

transition of cell growth from substrate‐limiting phases to self‐
inhibiting phases. Analytical solutions for this hybrid model will be

derived for both batch and continuous stirred tank reactor (CSTR)

cultivation mode in the following section.

We will first look at the analytical solution for the Monod

equation. By coupling Monod equation (Equation (1)) with

substrate consumption rate (Equation (4)) and yield coefficient

(Yx/s), the implicit form of the analytical solution for cell growth

(X, Equation (5)) and substrate (S, Equation (6)) could be easily

solved by separation of variables or Laplace transformation.

A typical Monod‐type kinetics was plotted for batch culture

(Figure 1a). It should be noted that the initial conditions

are prescribed as S = S0 and X = X0 at the beginning of cultivation

(t = 0).

In the case for Logistic model, we could also arrive the

analytical solutions for cell growth (X, Equation (7)) and substrate

(S, Equation (8)) by separation of variables or Laplace transforma-

tion, when the Logistic equation (Equation (2)) is coupled with

(a) (b) (c)

F IGURE 1 Analytical solutions for three growth models in batch culture. (a) Monod growth model; (b) Logistic growth model; and (c) the
hybrid Logistic‐Monod growth model. All the three models have the same parameter settings (Xm = 12.5 g/L; Yx/s = 0.5 g/g; KS = 4 g/L; S0 = 25 g/L;
and X0 = 0.25 g/L) except for μm. The dotted line represents high growth potential (μm); and the solid line represents low growth potential (μm)
[Color figure can be viewed at wileyonlinelibrary.com]
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substrate consumption kinetics (Equation (4)). It should be noted

that cell growth is independent of substrate consumption in the

Logistic model, but the substrate will deplete proportionally with

cell growth (Figure 1b). Due to the simplicity of the Logistic

equation, we could arrive at the explicit solution for cell growth (X)

and substrate (S).

Similarly, by coupling Equations (3) with (4), the implicit solutions

for the hybrid Logistic‐Monod equations (Equation (3)) could be

derived analytically with the aid of the symbolic computation package

of MATLAB. This hybrid Logistic‐Monod model (Equation (3)) retains

the elementary differential equation norm and should be solved

analytically by either separation of variables or Laplace transforma-

tion, despite the derivation process will be trivial. The exact solution

for cell growth (X, Equation (9)) and substrate (S, Equation (10)) takes

a much‐complicated form, due to the fact that this hybrid model

accounts for both nutrient‐limiting factors (Ks) and self‐inhibiting
factors (Xm). Cell growth and substrate consumption take the

sigmoidal pattern (Figure 1c), and the biomass formation and

substrate depletion are approaching to the Monod model in the

short‐time regime (which is a nutrient‐limiting phase), but shift

toward the Logistic model in the long‐time regime (which is a self‐
inhibiting phase).

We next will explore the steady‐state solutions of three growth

models in CSTR culture. Based on mass balance and the substrate

concentration in the feeding stream (SF), we could list the mass

balance for cell growth (Equation (11)) and substrate consumption

(Equation (12)). When the CSTR mass balance equations (Equa-

tions (11) and (12)) are coupled with the Monod growth kinetics

(Equation (1)), it is easy to arrive the steady‐state substrate and

cell concentration in the CSTR (Equations (13) and (14)), which has

been widely taught in Biochemical engineering or Bioprocess

engineering textbooks. As the dilution rate increases, the

substrate concentration increases with decreasing cell

concentration at the outlet flow of the CSTR (Figure 2a). Similarly,

when the mass balance equations (Equations (11) and (12)) are

coupled with the Logistic growth kinetics (Equation (2)), the

steady‐state solutions for substrate and biomass could be derived

analytically (Equations (15) and (16)). As the dilution rate

increases, the substrate concentration linearly increases accom-

panying with proportionally decreased cell concentration at the

outlet flow of the CSTR (Figure 2b). Finally, for the hybrid Logistic‐
Monod model, we could also derive the steady‐state solutions for

the substrate and biomass concentration (Equations (17) and (18),

Figure 2c), when the CSTR mass balance equations (Equations (11)

and (12)) are coupled with the hybrid Logistic‐Monod model

(Equation (3)). Plotting all three models together (Figure 2), it is

clear that the solution for the hybrid Logistic‐Monod model

(Figure 2c) is approaching to the Monod model (Figure 2a) under

low‐biomass‐yield (Yx/s = 0.3 g/g) regime, indicating a nutrient‐
limiting condition; and the steady‐state solution (Figure 2c) will

shift toward the Logistic model (Figure 2b) under high‐biomass‐
yield (Yx/s = 0.8 g/g) regime, indicating a self‐inhibiting condition. In

practical, the maximal cell density Xm should take a value below

S0Yx/s (Xm ≤ S0Yx/s or Xm ≤ SFYx/s) for both the batch and CSTR

culture, assuming that all the substrate could be converted to

biomass. When biomass is the only product, the optimal dilution

rate (Dopt) and the washout dilution rate (Dw) could also be

analytically derived. Operation under Dopt will maximize biomass

produtivity (P = DX), and Dw is the maximal dilution rate that

engineer could possibly run the CSTR system (biomass will be

washed out under Dw).

Taken together, this hybrid Logistic‐Monod model represents

cellular physiology transition from nutrient‐limiting conditions to

self‐inhibiting conditions. It expands the classical Monod and Logistic

growth model, and should find broad applications to analyze the

fermentation process (Xu, Qiao, & Stephanopoulos, 2017) and study

(a) (b) (c)

F IGURE 2 Analytical solutions for three growth models in CSTR culture. (a) Monod growth model; (b) Logistic growth model; and (c) the

hybrid Logistic‐Monod growth model. All the three models have the same parameter settings (μm = 1.6 hr−1; Xm = 10 g/L; KS = 1 g/L; and
SF = 20 g/L) except for Yx/s. The dotted line represents the low‐biomass‐yield (Yx/s) regime, and the solid line represents a high‐biomass‐yield
regime. In Figure 2c, the hybrid Logistic‐Monod model captures the feature for both nutrient‐limited conditions (qualitatively similar to the

dotted lines that represent a typical Monod growth as shown in Figure 2a) and growth‐inhibited conditions (qualitatively similar to the solid
lines that represent a typical Logistic growth as shown in Figure 2b) [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 List of equations and solutions for Logistic‐Monod growth in batch culture

Equations and solutions for Logistic‐Monod growth in batch culture
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microbial consortia interactions. With the proposed Logistic‐Monod

equation, the product formation kinetics could also be solved, when

the above models are coupled with the Gaden equation (Gaden,

1959). By introducing the carrying capacity concept into the classical

Monod equation, this hybrid Logistic‐Monod Model should also find

applications in gene circuits engineering to study growth‐dependent
gene expression pattern (Aris et al., 2019) or burden effects that are

related with gene overexpression (Ceroni, Algar, Stan, & Ellis, 2015;

Ceroni et al., 2018). More important, we present the analytical

solutions for this hybrid Logistic‐Monod growth model in both batch

and CSTR culture. These analytical solutions may be integrated with

process control software (Shirsat et al., 2015; Zhang, Del Rio‐
Chanona, Petsagkourakis, & Wagner, 2019) to improve our predic-

tion accuracy for both the bench‐top or pilot‐scale bioreactors and

facilitate us to design more efficient microbial process for various

industrial applications.

2 | COMPUTATIONAL METHODS

Matlab R2017b was used as the computational platform on a

Windows 7 professional operation system. The CPU processor is

Intel Core i3–6100 with 3.70 GHz. The installed memory (RAM) is

4.0 GHz. Matlab symbolic language package coupled with LaTex

makeup language were used to derive and output the solution.

Matlab implicit function fplot was used to draw most of the

solutions for Figure 1 and Figure 2. Matlab code has been

compiled into a supplementary file, has been uploaded to the

journal website (Table 1 and 2).

ACKNOWLEDGMENTS

Peng Xu would like to acknowledge the Bill and Melinda Gates

Foundation (OPP1188443) and National Science Foundation

under grant number 1805139 for financially supporting this

project. Peng Xu would also like to thank the previous mentors

that may allow himself to dive into the classical biochemical

engineering arena.

CONFLICT OF INTEREST

The author declare that there are no conflict of interest.

ORCID

Peng Xu http://orcid.org/0000-0002-0999-8546

REFERENCES

Aris, H., Borhani, S., Cahn, D., O'Donnell, C., Tan, E., & Xu, P. (2019).

Modeling transcriptional factor cross‐talk to understand parabolic

kinetics, bimodal gene expression and retroactivity in biosensor

design. Biochemical Engineering Journal, 144, 209–216. https://doi.org/

10.1016/j.bej.2019.02.005

Ceroni, F., Algar, R., Stan, G. ‐B., & Ellis, T. (2015). Quantifying cellular

capacity identifies gene expression designs with reduced burden.

Nature Methods, 12(5), 415–418. https://doi.org/10.1038/nmeth.

3339

Ceroni, F., Boo, A., Furini, S., Gorochowski, T. E., Borkowski, O.,

Ladak, Y. N., … Ellis, T. (2018). Burden‐driven feedback control of

gene expression. Nature Methods, 15(5), 387–393. https://doi.org/10.

1038/nmeth.4635

Gaden, E. L., Jr (1959). Fermentation process kinetics. Journal of

Biochemical and Microbiological Technology and Engineering, 1(4),

413–429. https://doi.org/10.1002/jbmte.390010407

Garnier, A., & Gaillet, B. (2015). Analytical solution of Luedeking–Piret

equation for a batch fermentation obeying Monod growth kinetics.

Biotechnology and Bioengineering, 112(12), 2468–2474. https://doi.org/

10.1002/bit.25669

Han, K., & Levenspiel, O. (1988). Extended monod kinetics for substrate,

product, and cell inhibition. Biotechnology and Bioengineering, 32(4),

430–447. https://doi.org/10.1002/bit.260320404

Levenspiel, O. (1980). The monod equation: A revisit and a generalization

to product inhibition situations. Biotechnology and Bioengineering,

22(8), 1671–1687. https://doi.org/10.1002/bit.260220810

TABLE 2 List of equations and solutions for Logistic‐Monod
growth in CSTR culture

Equations and steady state solutions for Logistic‐Monod growth in
CSTR culture

μ= − =
dX
dt

X D X 0 (11)

μ
= ( − ) − =

/

dS
dt

D S S
X

Y
0F

x s

(12)

μ
=

−
S

K D
D

S

m

(13)

μ( )= −
−

/X Y S
K D

D
F

S

m
x s

(14)

μ μ

μ
=

− + /

/

S
D X X S Y

Y
m m m F m

m

x s

x s

(15)

μ

μ
=

−
X

X D Xm m m

m

(16)

μ μ μ

μ μ

μ

( )

=

( − ) + +

− + +

/ /

/

/

S

D X S Y K D X Y

X D X S Y

Y

4

2

m m F m S m m

m m m F m

m

x s
2

x s

x s

x s

(17)

μ μ μ

μ μ

μ

( )

= −

( − ) + +

− + −

/ /

/X

D X S Y K D X Y

X D X S Y

4

2

m m F m S m m

m m m F m

m

x s
2

x s

x s (18)

Abbreviation: CSTR, continuous stirred tank reactor.

XU | 877

http://orcid.org/0000-0002-0999-8546
https://doi.org/10.1016/j.bej.2019.02.005
https://doi.org/10.1016/j.bej.2019.02.005
https://doi.org/10.1038/nmeth.3339
https://doi.org/10.1038/nmeth.3339
https://doi.org/10.1038/nmeth.4635
https://doi.org/10.1038/nmeth.4635
https://doi.org/10.1002/jbmte.390010407
https://doi.org/10.1002/bit.25669
https://doi.org/10.1002/bit.25669
https://doi.org/10.1002/bit.260320404
https://doi.org/10.1002/bit.260220810


Lineweaver, H., & Burk, D. (1934). The determination of enzyme

dissociation constants. Journal of the American Chemical Society,

56(3), 658–666. https://doi.org/10.1021/ja01318a036

Lotka, A. J. (1926). Elements of physical biology. Science Progress in the

Twentieth Century (1919‐1933), 21(82), 341–343.
Luong, J. H. (1987). Generalization of monod kinetics for analysis

of growth data with substrate inhibition. Biotechnology and

Bioengineering, 29(2), 242–248. https://doi.org/10.1002/bit.

260290215

May, R. M. (1976). Simple mathematical models with very complicated

dynamics. Nature, 261(5560), 459–467. https://doi.org/10.1038/

261459a0

Monod, J. (1949). The growth of bacterial cultures. Annual Review of

Microbiology, 3(1), 371–394. https://doi.org/10.1146/annurev.mi.03.

100149.002103

Robert Luedeking, E. L. P. (1959). A kinetic study of the lactic acid

fermentation. Journal of Biochemical and Microbiological Technology

and Engineering, 1(4), 393–412. https://doi.org/10.1002/jbmte.

390010406

Shirsat, N., Mohd, A., Whelan, J., English, N. J., Glennon, B., & Al‐Rubeai, M.

(2015). Revisiting Verhulst and Monod models: Analysis of batch and

fed‐batch cultures. Cytotechnology, 67(3), 515–530. https://doi.org/10.

1007/s10616‐014‐9712‐5
Tsuchiya, H. M., Drake, J. F., Jost, J. L., & Fredrickson, A. G. (1972).

Predator‐prey interactions of Dictyostelium discoideum and

Escherichia coli in continuous culture. Journal of Bacteriology, 110(3),

1147–1153.

Volterra, V. (1926). Fluctuations in the abundance of a species considered

mathematically1. Nature, 118, 558–560. https://doi.org/10.1038/118558a

Wong, W. W., Tran, L. M., & Liao, J. C. (2009). A hidden square‐root
boundary between growth rate and biomass yield. Biotechnology and

Bioengineering, 102(1), 73–80. https://doi.org/10.1002/bit.22046

Xu, P., Qiao, K., & Stephanopoulos, G. (2017). Engineering oxidative stress

defense pathways to build a robust lipid production platform in Yarrowia

lipolytica. Biotechnology and Bioengineering, 114(7), 1521–1530.

https://doi.org/10.1002/bit.26285

Zhang, D., Del Rio‐Chanona, E. A., Petsagkourakis, P., & Wagner, J. (2019).

Hybrid physics‐based and data‐driven modeling for bioprocess online

simulation and optimization. Biotechnology and Bioengineering, 0(0),

2919–2930. https://doi.org/10.1002/bit.27120

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section.

How to cite this article: Xu P. Analytical solution for a hybrid

Logistic‐Monod cell growth model in batch and continuous

stirred tank reactor culture. Biotechnology and Bioengineering.

2020;117:873–878. https://doi.org/10.1002/bit.27230

878 | XU

https://doi.org/10.1021/ja01318a036
https://doi.org/10.1002/bit.260290215
https://doi.org/10.1002/bit.260290215
https://doi.org/10.1038/261459a0
https://doi.org/10.1038/261459a0
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1146/annurev.mi.03.100149.002103
https://doi.org/10.1002/jbmte.390010406
https://doi.org/10.1002/jbmte.390010406
https://doi.org/10.1007/s10616-014-9712-5
https://doi.org/10.1007/s10616-014-9712-5
https://doi.org/10.1038/118558a
https://doi.org/10.1002/bit.22046
https://doi.org/10.1002/bit.26285
https://doi.org/10.1002/bit.27120
https://doi.org/10.1002/bit.27230



