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INTRODUCTION
Analyses of response time series have
provided insight into mental organiza-
tion and cognitive processes used in a
wide variety of tasks such as simple reac-
tion time, word naming, choice decision,
visual search, memory search, and lexi-
cal decision (Gilden, 2001). One of the
new and frequently used sets of analy-
ses is the numerical definition of scale
invariant structure of response time series,
also called 1/f fluctuations. Component-
oriented theories suggest that this scale
invariant structure originated from an
idiosyncratic mechanism in the cognitive
system, whereas interaction-oriented the-
ories argue that scale invariant structure
in response time series arises from self-
organizing interaction between different
sources and mechanisms (cf. Diniz et al.,
2011). In this short commentary, new
analyses of human response time called
multifractal analyses will be introduced,
and potential pitfalls of interpreting the
results of these analyses will be discussed.

Multifractal analyses quantify the inter-
mittent structure of response time series
that are created by interactions between
temporal scales of response series (Ihlen
and Vereijken, 2010, 2013). Even though
these analyses have been recently intro-
duced in analysis of human behavior,
their mathematical fundament of these
analyses was introduced four decades
ago (Yaglom, 1966; Mandelbrot, 1974).
Typically, response time series with a large
number of trials will contain intermit-
tent periods with a higher number of
slow response latencies than the rest of
the response series (e.g., Holden et al.,

2009). These intermittent periods of slow
response latencies might indicate shifts
in the participant attention to the stim-
uli source or active periods of response
error corrections (Ihlen and Vereijken,
2010, 2013). In order to quantify the
intermittent structure of response time
series, multifractal analyses combine two
fundamental classes of analyses: (1) model
based analyses of the response time distri-
bution and (2) analyses of the dependency
of the time ordering of the responses.
Class 1 analyses have shown that the
response time distributions across cogni-
tive tasks is unimodal, positively skewed,
and with a heavy right tail containing
the slow response latencies (e.g., Luce,
1986; Holden et al., 2009). Class 2 anal-
yses have shown that the response times
have long-range dependency across hun-
dreds and even thousands of trials and,
consequently, that the response time series
cannot be considered to be independent
random variables assumed by class 1
analyses (Gilden, 2001). The long-range
dependency (i.e., monofractal structure)
of the response time series are numeri-
cal, defined as a single scaling exponent
by spectral analyses, autocorrelation anal-
yses, detrended fluctuation analysis, and
dispersion analysis, to mention but a few
(cf. Diniz et al., 2011). However, Class 2
analyses assume that the response time
is Gaussian distributed, whereas Class 1
analyses indicate that they have a non-
Gaussian heavy tail toward slow response
latencies. Multifractal analyses are able to
parameterize the non-Gaussian heavy tails
that are created using intermittent varia-
tion by assessing the complete spectrum

of scaling exponents. Thus, multifrac-
tal analyses are important extensions of
monofractal analyses of response time
series.

All multifractal analyses are based on a
decomposition of the response time series
into a scale-dependent measure that iden-
tifies the periods of intermittent varia-
tion (see upper panel of Figure 1). The
scale dependent measure is the basis for
computation of the multifractal spectra
along two formalisms (see arrows A and
B in Figure 1). In the Legendre formal-
ism, the scale-dependent measure μs,t is
used in the computation of the q-order
moment. μs,t is amplified by the positive
q-orders in the periods with large vari-
ation, whereas μs,t is amplified by the
negative q-orders in periods with small
variation. An exponent ζq is then esti-
mated from the scaling of each of the
q-order moments before the multifractal
spectra are computed from ζq (see Ihlen
and Vereijken, 2013 for further details).
In the large deviation formalism, local
exponents are computed from the scale-
dependent measure μs,t , and the mul-
tifractal spectrum is estimated from the
distribution of the local exponents. The
increased width of multifractal spectra will
reflect more distinct periods of intermit-
tent variation in response time series (see
example in Figure 2 in Ihlen and Vereijken,
2013). Additional surrogate tests also
detect the periods influenced by mul-
tiplicative interactions between temporal
scales (Ihlen and Vereijken, 2010). The
different multifractal analyses like struc-
ture function approach, entropy analyses,
wavelet transformation modulus maxima,
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FIGURE 1 | A flow chart of the estimation of the multifractal spectrum

Dh by analyses within the Legendre formalism (arrows A) and large

deviation formalism (arrows B). The basis for all multifractal analyses
within both formalisms is the scale-dependent measure (upper contour
plot) that decomposes the intermittent variation of response time series
into both the time and scale domain. The red contours indicate large
scale-dependent measures of the response time series that coincide with
the time periods of intermittent large variations. In contrast, the blue
contours indicate small scale-dependent measures that coincide with the
time periods of intermittent small variations. The panel below the top
arrow A indicates that the scale-dependent measure is summarized by its

q-order statistical moment. The statistical moments with positive q’s
amplify the large μs,t (i.e., red contours) whereas the statistical moments
with negative q’s amplify the small μs,t (i.e., blue contours). The scaling
exponent ζq numerically defines the power law relation of the intermittent
periods with large (i.e., positive q’s) and small variation (i.e., negative q’s).
The panel below the bottom arrow A illustrates a multifractal spectrum Dh

estimated from ζq . The panel below the top arrow B illustrates the direct
estimation of the local singularity exponent ht as the local slope of log(μs,t )
vs. log(s) for each time instant t. The panel below the bottom arrow B
illustrates the multifractal spectrum Dh estimated from the distribution of
local singularity exponent ht . Adapted from Ihlen and Vereijken (2013).

gradient modulus wavelet projection, and
multifractal detrended fluctuation analysis
are defined by the particular way the scale-
dependent measures are computed (Ihlen,
2013a; Ihlen and Vereijken, 2013). The
Legendre and large deviation formalisms
contain statistical assessments of multi-
fractality. Various geometrical assessments
have been suggested in the literature that

estimates the box counting dimension of
the time series (e.g., Russel et al., 1980;
Chaudhuri and Sarkar, 1995). However,
these methods are only numerically sta-
ble for positive q orders and, consequently,
only estimate the left tail of the mul-
tifractal spectrum. Technical details for
the computation of different multifrac-
tal analyses within the Legendre and large

deviation formalisms, their parameter set-
tings, Matlab codes, and comparison of
their performance can be found elsewhere
(Kantelhardt et al., 2002; Turiel et al.,
2006; Kantelhardt, 2011; Ihlen, 2013a).
Multifractal analyses have been applied to
several cognitive tasks like simple reac-
tion time, word naming, choice decision,
and feedback manipulation (Ihlen and
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Vereijken, 2010; Kuznetsov and Wallot,
2011). All results from these studies indi-
cate that response time series have mul-
tifractal properties that are not described
by conventional monofractal analyses and
that some of these properties might be task
dependent.

POTENTIAL PITFALLS IN THE
INTERPRETATION OF MULTIFRACTAL
ANALYSES
The interpretation of multifractal spectra
of response time series has potential pit-
falls. First, the multifractal spectra alone
do not indicate that intermittent response
time variation is generated by interac-
tion between temporal scales. Wide mul-
tifractal spectra of response time series
can reflect a power-law response time dis-
tribution and not intermittency gener-
ated by multiplicative interactions (Ihlen,
2013b). Surrogate tests have to be used
to properly identify multiplicative inter-
actions between temporal scales. In these
tests, surrogate versions of the response
time series are created that eliminate the
interaction between temporal scales but
preserve all other statistical properties.
Multiplicative interaction is present when
there is a significant difference between
response time series and its surrogate
series (e.g., Ihlen and Vereijken, 2010).

Second, response time series of 1000
trials might be too small to establish
the presence of multifractality. An ideal
monofractal signal will have an infinite
number of scales whereas the 1000 trials of
response series will only give three scales
of order (i.e., 10, 100, and 1000 trials).
However, in contrast to ideal monofrac-
tal signal, a multifractal signal has scale
invariant properties only up to a max-
imum scale (Bacry et al., 2001). The
q-order moments and scale-dependent
measure converge into a single point on
this maximum scale. Thus, in contrast to
monofractal analyses, it is sufficient for
multifractal analyses to include scales up
to the maximum order. Assuming that
the signal originates from a prototypical
multifractal process, called a multiplica-
tive cascade, the maximum scale could
be assessed by analysis of the autocor-
relation function (Bacry et al., 2001).
Nevertheless, the estimation error of the
multifractal spectra related to the num-
ber of trials in the response will also be

dependent on the chosen q-range for the
methods within the Legendre formalism
and the unknown degree of multifractality.
Large degree of multifractality will need
large number of trials for a robust assess-
ment of the tails of the multifractal spec-
tra. Consequently, multifractal analysis is
quite sensitive to differentiate between
monofractal and multifractal response
time series, but not between response
time series with large degree of multifrac-
tality. Furthermore, multifractal analysis
of moderately sized response time series
will both be more susceptible to noise
and non-stationarities compared to longer
time series (Ihlen, 2013a). A possible solu-
tion is to compare the results of two or
more multifractal analysis before inter-
preting the results. Large deviations in the
results of two multifractal analyses indi-
cate that response time series deviate from
multifractality and that the results from
these analyses must be interpreted with
caution.

Third, no single multifractal analy-
sis seems to have superior performance
assessing the multifractal spectra of
response time series. Previous studies
statistical methods based on wavelet
transformation, like wavelet transform
modulus maxima, has been shown to
superior to conventional methods based
on the structure function (Muzy et al.,
1993). Furthermore, both multifractal
detrended fluctuation analysis and gra-
dient modulus wavelet projection has
shown superior performance to wavelet
transform modulus maxima on moder-
ate sized time series (Kantelhardt et al.,
2002; Oświęcimka et al., 2006; Turiel et al.,
2006). Kelty-Stephen et al. (2013) have
suggested that an entropy based analysis
is the best method to assess the mul-
tifractal spectrum from response time
series and that other multifractal analy-
ses have inferior performance compared
to this method using their choice of a
scale-dependent measure. However, recent
systematic comparison of multifractal
analyses shows that all multifractal analy-
ses have different pros and cons and that
no single analyses seem to be superior to
others (Ihlen, 2013a).

Fourth, the origin of multifractal and
intermittent variation in response time
series is still debated. Intermittent varia-
tion in response time has been suggested to

be caused by changes in the participants’
attention to stimuli or intermittent error
corrections (Ihlen and Vereijken, 2010)
and linked to cognitive phenomena like
strong anticipation (Stephen and Dixon,
2011). Furthermore, multifractal spectra
have been suggested to reflect to a greater
extent the presence of self-organization
and interaction-dominant dynamics com-
pared to the outcomes of conventional
monofractal analyses (Ihlen and Vereijken,
2010; Kelty-Stephen et al., 2013). The
interaction-dominant view has been sug-
gested to contrast explicit models of an
idiosyncratic mechanism in the cogni-
tive system specific to cognitive tasks or
the dynamics of particular localized com-
ponents (e.g., Van Orden et al., 2003).
However, idiosyncratic mechanisms for
multifractal variations have been sug-
gested for human locomotion and cardiac
function, which indicates that intermit-
tent variations can be generated by task
specific components (Ivanov et al., 1998;
West and Scafetta, 2003). It is unlikely that
any analysis or model will provide conclu-
sive evidence on the generating processes
of multifractal variation in response time
series (Hasselman, 2013; cf. Kantz and
Schreiber, 2004). The generating processes
of multifractal and intermittent varia-
tion should be decided by experimenta-
tion under conditions of strong inference
(Hasselman, 2013). Consequently, exper-
imental design should be use to confirm
predicted changes in the multifractal spec-
tra. Predicted covariation between local
scaling exponents of the response time
series and other psychological measures
will indicate a common generating process
of the multifractality of these signals. As an
example, intermittent changes in attention
and error correction could be verified by
multifractal analyses of gaze fixation and
eye movements during the same cogni-
tive task (e.g., Kelty-Stephen and Mirman,
2013).

In summary, caution should be made
when inferring response time series as
multifractal in a strict mathematical sense.
Nevertheless, the width of the multi-
fractal spectra could still be a sensitive
index of the intermittency of the response
time series even though the intermit-
tency is not prototypical multifractal. The
main advantage of multifractal analyses
of response time series is their ability to
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assess the temporal changes in their scale
invariant structure. Further studies should
focus on the assessment of generating pro-
cesses of multifractal by experimentation
under strong inference. This might include
the assessment of temporal changes in
the local scaling exponent (i.e., the local
structure of response time variation) in
more heterogeneous and real-life experi-
ments where the task conditions and char-
acteristics of the stimuli involve change
across trials. Furthermore, the correla-
tion between the temporal changes in the
structure of the response time variation
and other neurophysiological and psy-
chological measurements can be assessed
through multifractal analyses by correlat-
ing the temporal change of the scaling
exponents (see example in Figure 7 in
Ihlen and Vereijken, 2013). Time series
from different levels of the cognitive and
neurophysiological system are more likely
to correlate in their scale independent
structure rather than their unit dependent
magnitude. Thus, multifractal analyses
might provide new insight into the inter-
action and coordination of multiple lev-
els of cognitive performance and human
behavior.
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