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A B S T R A C T   

In this paper, a direct numerical simulation (DNS) of dielectric fluid flow subjected to unipolar 
injection under an alternating current (AC) electric field is carried out. The effect of frequency f of 
pulsed direct current (PDC) and AC on the transient evolution of electroconvection and their 
subcritical bifurcations are investigated in details. Electroconvection under PDC or AC tends to 
exhibit oscillating flow due to the periodic boundary condition of charge density and potential 
compared to the direct current (DC) case. The results demonstrate that under the PDC field, the 
linear criterion Tc decreases with increasing frequency, while the nonlinear stability criterion Tf is 
hardly affected. Under the AC field, a critical frequency fc = 0.0316 is found, which separates 
electroconvection into two typical flow regimes—periodic flow regime (f < fc) and inhibited flow 
regime (f ≥ fc)—depending on whether free charges can reach the collector electrode before 
electric field inversion. AC-electrohydrodynamics (EHD) systems promote various flow patterns 
with relatively lower voltage regimes than DC-EHD systems. These mechanisms of electro-
convection under the PDC/AC field offer unique possibilities for fluid flow control in biological 
EHD-driven flow and portable EHD applications.   

1. Introduction 

EHD involves interdisciplinary research on hydrodynamic and electric fields. Electroconvection flow (ECF) induced by charge 
injection is an important subject in EHD. Under an external electric field, the electrodes inject charges. The Coulomb force acts on 
charges and causes the fluid to flow. Owing to its low noise and energy consumption and lack of mechanical movement, EHD tech-
nology has unique advantages in active flow control [1], microchannel transport [2], heat transfer enhancement [3], EHD drag pumps 
[4,5], alternating current (AC)–EHD fluid micromixing and microfluidic systems [6,7,8], EHD printing driven by pulsed and AC 
voltages [9,10,11], atomization technology [12], and so on. 

Coulomb force-driven hydrodynamic instabilities, also called electroconvection flow (ECF) instabilities, are an important issue in 
EHDs and have drawn much attention in the past few decades [13]. Under an external applied direct current (DC) electric field, ECF is a 
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subcritical bifurcation pattern. The feature of subcritical bifurcation refers to when the driving parameter T (representing the ratio of 
the destabilizing Coulomb force to the stabilizing viscous force) reaches the linear critical value Tc [14,15], the flow jumps from 
stationary to a regular convection state. When T is lower than another criterion Tf (the nonlinear criterion), the flow recovers back to a 
zero state [16]. Because the nonlinear criterion Tf is smaller than the linear criterion Tc, these two criteria form a hysteresis loop [16]. 
This subcritical ECF bifurcation with a hysteresis loop was proven in several later works [15,17,18,19] inside a model of an infinite 
layer of liquid between two parallel metal electrodes under a DC field. Félici et al. [18] used a hydraulic model to simplify ECF into a 
pair of two-dimensional (2D) vortices and first conducted a detailed theoretical analysis of the physical mechanism under a weak 
charge injection pattern. Atten and Lacroix [20,21] then optimized the model of Félici et al. to consider 2D vortex pairs as hexagonal 
cells and studied nonlinear instability problems. The presence of a nonlinear criterion and hysteresis loop related to discontinuities of 
current and fluid velocity was successfully predicted. Castellanos and Atten [22], Chicón et al. [23], Vázquez et al. [24,25,26], and 
Traoré et al. [16,26,27] confirmed the hysteresis loop via numerical and experimental methods [21]. Later, the effects of other factors, 
including the thermal effects [27], rigid wall effects [28], solid‒liquid interface [29,30], injection configurations [three-dimensional 
(3D) and two coaxial cylinders] [31,32], and viscoelastic fluid [31,33] on flow structures and linear stability criteria were investigated 
numerically. Recently, Roy et al. [34] studied the effects of adding nanoparticles in EHD flows. 

However, most existing works on electroconvective instabilities are based on DC assumptions. The unsteady AC field will introduce 
additional instabilities, increasing the complexity of the dynamic problem. The consideration of EHD under the AC/PDC field is 
necessary from the aspects of both fundamental physical study and application. At present, several important fundamental studies have 
numerically shown EHD-rich instabilities under an AC field; Smorodin et al. [35,36] pointed out that parameter modulation can induce 
parametric resonance that emerges in hydrodynamic systems. There are three possible patterns of responses. The subharmonic 
response is that the frequency (oscillation of the system characteristics) may be twice that of the external forcing. The second type is the 
synchronous response, which refers to when the frequency of oscillation flow coincides with the excitation period. A third type is that a 
flow oscillation has two no rationally related characteristic frequencies. It is a quasiperiodic response. Nevertheless, three still have 
some fundamental studies related to bifurcation that need to be explored in depth. Concurrently, EHD equipment under an AC field has 
a great advantage over a DC field, especially in EHD printing and biological EHD-driven fluid flow systems. Nguyen et al. [37] 
demonstrated that AC-EHD printing had advantages over DC in nozzle manufacturing, drop-on-demand capabilities and droplet 
repulsion according to the frequency f of the applied sinusoidal electric voltage. Kim et al. [38] performed EHD printing under a PDC 
field (square wave) and controlled the droplet size by changing the amplitude of the voltage. In biological EHD-driven fluid flow 
systems, AC-EHD systems are usually used in fluid handling compared to DC EHD systems due to (a) avoiding electrode damage or 
electrolysis and (b) the ability to operate at relatively low voltages, making AC-EHD systems appropriate for biological applications 
and portable systems [39]. Therefore, it is necessary to pay great attention to EHD problems under the AC field. 

Previous studies on EHD under an AC field have mainly focused on nematic liquid crystals [40,41,42,43]. The anisotropic nature of 
these materials seemed to explain the mechanism of instability and various experimental observations. Electrokinetic flow under an AC 
field also exhibits many unique mechanisms that have been widely investigated [44,45,46,47,48]. Experimental, numerical, and 
theoretical studies on the electroconvection of dielectric liquids under AC and pulsed DC (PDC) electric fields are relatively limited. In 
a previous research, Atten extended earlier research on the DC ECF of two parallel electrodes into an AC field [49]. The effects of 
frequency f on the linear criterion are mainly studied. Smorodin et al. [50] focused on the thermoelectric instability under a peri-
odically varying heat flux in a liquid semiconductor or an ionic melt layer. They found characteristics of critical disturbances and the 
boundaries of instability under the influence of thermoelectric, surface tension gradients and buoyancy. Additionally, Smorodin et al. 
[51] continued to focus on the electro-thermo convective instability of a poorly conducting horizontal liquid layer under a varying 
electric field. They studied the fluid instabilities influenced by a modulated electric field with and without the effect of buoyancy. In 
two recent studies, Nekrasov et al. [52] studied 2D nonlinear electroconvective patterns in the case of heating from above under DC 
and AC fields. They presented the bifurcation behavior of different solutions according to the electric Rayleigh number. Sun et al. [53] 
performed an experimental research on ECF under needle plate construction and compared the results of the DC and AC fields. 

Therefore, we perform numerical simulations on the instability of EHD flows in a dielectric fluid subjected to unipolar injection 
under AC fields. In addition to the typical sinusoidal alternating current, PDC is also considered an intermediate step from the DC field 
to the AC field. The main objectives include two aspects: (1) to explore the relationship between the finite amplitude criterion (linear 
and nonlinear criterion) and frequency f and (2) to find the electroconvection structures under PDC and AC fields. In Section II, the 
description of the mathematical and physical model and the numerical methods are described, with a brief introduction to the finite 
volume method (FVM). In Section III, model validations are performed with two benchmarks. In Section IV, our numerical results are 
presented and discussed. Finally, conclusions are presented in Section V. 

2. Problem formulation 

A fluid layer (width H) enclosed by two parallel metal electrodes (length L) subject to a PDC or AC voltage difference is considered 
in this paper, as shown in Fig. 1. A (L/H) is the aspect ratio of our configuration. The potential of the bottom electrode is maintained at 
φ0 = |φmax sin(2πft)| for the PDC case or at φ0 = φmax sin(2πft) for the AC case. In contrast, the potential of the top electrode holds at φ1. 
The fluid in our system is considered incompressible and completely insulating with constant physical properties. The three types of 
charge transportation are ionic drift, convection, and diffusion. 
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2.1. Base governing equations 

The incompressible hydrodynamic equations [54] are the momentum Eq. (1) and the continuity Eq. (2), 

ρ0

(
∂u
∂t

+ u · ∇u
)

= − ∇p+ ηΔu + fe (1)  

∇· u = 0 (2)  

where u is the fluid velocity field, p is the pressure, t is the time, η is the fluid dynamic viscosity, ρ0 is the fluid density, and fe is the 
density of the electric force. The electric force (3) that acts on a unit volume of the dielectric liquid can be written as [55]: 

fe = qE −
E2

2
∇ε +∇

[
E2

2
ρ ∂ε

∂ρ

]

(3)  

where q represents the charge density, ε = εrε0 represents the fluid permittivity, E represents the electric field, and ε0 represents the 
vacuum permittivity. We have ∇ε = 0 in isothermal and homogeneous fluids, and the right second term of fe, that is, the dielectric 

force, vanishes. By including the right third term, the electrostriction force in the pressure gradient term p+
[

E2

2 ρ ∂ε
∂ρ

]
= p̃, Eq. (1) can be 

simplified to Eq. (4) 

ρ0

(
∂u
∂t

+ u · ∇u
)

= − ∇p̃+ ηΔu + qE (4) 

The electric field Eq. (5) and the Poisson Eq. (6) are given by 

E= − ∇φ (5)  

∇·(ε∇φ) = − q (6)  

where φ is the electric potential. 
The conservation of charge density (7) is represented as follows: 

∂q
∂t

+∇ · j = 0 (7) 

Assuming a linear isotropic medium and the four classical distinct charge transport mechanisms—electroconvection, electro-
migration, diffusion, and conduction—we can show the expression of the current density j (8): 

j= qu + qKE − D∇q (8)  

where K and D are the ionic mobility and charge-diffusion coefficient, respectively. Since the fluid is considered isothermal, Joule 
heating and viscous dissipation are inappreciable. In fact, the current through the dielectric liquid is quite small. Therefore, magnetic 
field effects are usually ignored during numerical simulations. The diffusion current is considered here. Therefore, j consists of three 

Fig. 1. Sketch of electrohydrodynamic system. The distance between two electrodes is characterized as H.  
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parts: conduction component qKE (ion electromigration), convection component qu (fluid flow) and diffusion component − D∇q (ion 
diffusion). 

2.2. Dimensionless parameters and equations 

To make the described problem universal, we use nondimensional equations by introducing the dimensionless quantities (9) and 
(10), denoted with an asterisk: 

x∗i =
xi

H
, ρ∗ =

ρ
ρ0
, q∗ =

q
q0
, u∗

i =
ui

u0
, t∗ =

t
H/u0

, f ∗ =
f
f0

(9)  

p∗ =
p

ρ0u2
0
,φ∗ =

φ
(φ0)rms − φ1

,E∗
i =

Ei

E0
=

EiH
φ0rms − φ1

(10) 

In these equations, x∗
i (i= x, y) represents the spatial coordinate in the x/y direction, and t represents time. K((φ0)rms − φ1)/ H is the 

reference velocity u0, ε((φ0)rms − φ1)/H2 is the charge density, (φ0)rms − φ1 is the electric potential, and (φ0)rms represents the root- 
mean-square (RMS) electric potential of φ0. The time scale is the transit ionic time H/u0 [56], and the frequency scale is the in-
verse of the transit ionic time. 

For clarity, we remove the asterisk indicator, and the basic dimensionless EHD equations for Newtonian fluids are expressed as 
follows: 

∇· u = 0 (11)  

∂u
∂t

+ u · ∇u = − ∇p̃ +
M2

T
∇2u + M2qE (12)  

∂q
∂t

+∇ · (qE − α∇q+ qu)= 0 (13)  

E= − ∇φ (14)  

∇2φ= − q (15) 

The dimensionless parameters in the above equations are as follows: T = ε((φ0)rms − φ1) /(μK) is the ratio of the Coulomb force and 
viscous force. C = q0H2 /ε((φ0)rms − φ1) is the injection level. M = (ε/ρ0)

1/2
/K is the dimensionless mobility number that is calculated 

by the so-called hydrodynamic mobility of ions and the ions’ true mobility. α = D /K((φ0)rms − φ1) is the dimensionless diffusion 
number that represents the scale of charge diffusion and charge drift. We can find comprehensive descriptions of related physical 
equations and parameters in Refs. 55 and 57. 

Our system has a particular time - ionic transit time tT . tT = H/u0= H/KE represents the time of ions from one metal electrode to 
another under the action of a constant and uniform electric field. Thus, the characteristic frequency fc = 1/tT = 0.0316. We have an 
assumption that each electrode injects unipolar ions (cations) into the insulating liquid in one half of the cycle and collects those 
cations in the other half of the cycle for our AC electrodynamics system. For a system frequency greater than fc, the ions cannot reach 
the other electrode during the half-cycle, which separates into two regimes: the periodic electroconvective flow regime (f < fc) and the 
inhibited electroconvective flow regime (f ≥ fc). 

2.3. Numerical implementation and boundary conditions 

We need to give initial conditions because our system is time dependent. In general, we either start with a fluid at rest or with a 
steady state from previous simulations. Under an electric field, a thin electric double layer (EDL) [58] will form at the charged surfaces. 
The size of the EDL [58] is λD (16): 

λD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
εkbθ

2(ze)2c0

√

(16)  

where e represents elementary charge, z represents ionic valence, kb represents Boltzmann constant, c0 represents charge concentration 
of the injection electrode and θ represents temperature. 

A common concentration c0 = ο(10− 5) results in λD = ο(10− 3) in this paper, and the size of system H is ο(1). Therefore, the in-
fluence of the EDL on flow can be neglected in our work, and the boundary conditions on each boundary for the governing Eqs. (11), 
(12),(13),(14),(15) are described as follows: 

In both PDC and AC cases, the symmetrical boundary conditions (17) for velocity, cations, pressure, and potential have been 
considered on the lateral borders: 
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u= 0，
∂v
∂x

= 0，
∂φ
∂x

= 0，
∂q
∂x

= 0，
∂p̃
∂x

= 0 (17) 

The boundary for velocity, the bottom and top solid electrodes are solved by the no-slip and no-penetration conditions (18), 

y= 0,H u = 0 (18) 

For the potential of PDC or AC cases, because a PDC or AC potential difference is used, conditions (19) for both electrodes are given 
as 

y = 0,φ0 = |φmax sin(2πft)| for the PDC case; φ0 = φmax sin(2πft) for the AC case
y = H,φ1 = 0 for both the PDC and AC

cases

(19) 

The boundary for charge density follows the injection law, a simplified formula [13] (20) that can be used for a wide range of 
dielectric liquids for the injection charge density q: 

q=
qi0

bK1(b)
(20)  

where qi0 represents the charge density injected by electrodes at zero field, K1 represents the second kind and first order of the modified 
Bessel function, and q represents the charge injection intensity of one single type ion. bK1(b) (21) can be expanded as follows [59]: 

bK1(b)= 1+
1
2
b2 ln(b / 2)+

(
γE

2
−

1
4

)

b2 + ... (21)  

where γE represents the Euler constant: γE = 0.5772, b = lb/lo, with the Bjerrum distance and Onsager distance (22) given as follows 
[57,60]: 

lB = e2
/

4πεkBθ, lo =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
e/4πε|E|

√
(22)  

where b2 = 4γE and γ = e3/16πεk2
bθ2 are the Onsager constants and |E| represents the electric intensity. 

This means that q follows the injection law at the injector. From (20), we find that the injection density is affected by |E| and the 
liquid motion with time so that these models are more accurate than the autonomous injection condition that is widely used in most DC 
studies [31,32,33]. 

For the charge density (23) of PDC cases: 

y= 0, q =
qi0

bK1(b)
; y = H,

dq
dy

= 0 (23) 

For the charge density (24a, 24b) of AC cases: 

y= 0, q =
qi0

bK1(b)
; y = H,

dq
dy

= 0 (positive cycle of AC) (24a)  

y= 0,
dq
dy

= 0; y = H, q =
qi0

bK1(b)
(negative cycle of AC) (24b) 

For the pressure (25) of PDC and AC cases: 

y= 0,H n · ∇p̃ = 0 (25) 

Because the partial differential Eqs. (9),(10),(11),(12),(13) are very complex and highly nonlinear, most problems cannot be solved 
analytically. Therefore, we conduct numerical research through the FVM in OpenFOAM®, which has high stability and calculation 
efficiency. Furthermore, the semi-implicit method for pressure-linked equations–consistent (SIMPLEC) algorithm [61] is applied for 
coupling pressure and velocity. Euler discrete is applied for discretizing time variables. At the same time, the gradient term applied a 
Gaussian linear formula. To discretize the diffusion term, we use a second-order central difference (CD) scheme. The convection term 
of the charge transport equation is discretized by the convergent and universally bounded interpolation scheme for the treatment of 
advection (CUBISTA) scheme [62]. 

2.4. Model verification 

Although complete mathematical frameworks have been established, we still need to verify the correctness of our models and codes 
through two sections. 

First, we run direct numerical simulation (DNS) in the hydrostatic regime to research charge density features. The relevant results 
are also validated with the analytical data of Ref. 63 and Refs. [64], [65] in which the lattice Boltzmann method (LBM) is used. The 
performance of our adopted methodology is satisfactory, with the numerical solution agreeing well with the analytical solution (Fig. 2 
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(a) (b)). Fig. 2(c) presents the charge density in the y direction for different grid sizes: 50× 50, 50× 100, and 50× 200. The calculation 
results show that our numerical and analytical results match very well, even under the coarsest mesh (50× 50). The grid size 50× 200 
is selected in this paper. 

Since there are few results for PDC and AC–ECF, we repeated the well-established 2D DC flows [16,26] to verify our numerical 
model. 

In Fig. 3, we show the bifurcation diagram obtained from our code. The bifurcation pattern of ECF is subcritical, with the hysteresis 
loop of linear criterion Tc and nonlinear criterion Tf . The results of Tc and Tf we calculate are 162.2 and 110.5, respectively. The linear 
criterion should be compared with 162.6 obtained from linear stability analysis [63]. The nonlinear criterion should be compared with 
111.7 determined by the FVM method [18]. 

3. Results and discussion 

Next, different flow patterns and their subcritical bifurcations for different T and frequencies of PDC and AC fields are investigated, 
and the numerical results are analyzed. We fix some dimensionless parameters in our work: C = 10, M = 10, and α = 1× 10− 4. 

Theoretical work determined that the critical wavelength λc, corresponding to the most unstable mode at the linear criterion Tc, can 
be minimized [21,63]. We conduct a series of numerical tests to determine λc for the PDC and AC electric fields by changing the 
wavelength λ and calculating the corresponding Tc. Fig. 4(a and b) shows the variation of Tc with wavelength λ under PDC (f = 0.02) 
and AC (f = 0.01) fields. In these computations, periodic boundary conditions have been used for the lateral walls. Tc reaches its 
minimum at λ = 1.228 for PDC and AC fields in the range of the numerical tests. Concurrently, the calculated results at λc = 1.228 have 
symmetry. Therefore, we can select half of the critical wavelength as the computational domain L = 0.614 (A = 0.614) for three typical 
waveforms (DC, PDC, and AC voltages) to reduce the computational load. 

Fig. 2. Numerical results and analytical results along the y direction (C = 10) for the (a) charge density profile, (b) electric field profile and (c) grid 
independence tests. 

Fig. 3. Bifurcation diagram for C = 10, M = 10, and α = 1 × 10− 4 in the DC cases.  
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3.1. Stability for pure unipolar injection under DC and PDC fields 

3.1.1. Electrodynamic structures 
We first compare the temporal evolution of Vmax and EHD structures between DC and PDC fields. Fig. 5(a) presents the temporal 

evolution of the corresponding Vmax (Vmax = max(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
)) under the DC and PDC fields for T = 170, which is higher than the critical 

value Tc. A similar evolution of fluid motion under a DC field can be observed. In the initial stage, the periodic disturbance accumulates 
slowly. When the disturbance accumulates to a certain extent, the fluid motion goes through stages of rapid development, and the 
velocity amplitude increases exponentially. Eventually, the flow evolves into a periodic steady flow. In contrast to the DC case [66], 
oscillations occur throughout PDC evolution. The peak value and RMS for the nondimensional maximum velocity of PDC electro-
convection are 4.462 and 2.45, respectively. The nondimensional maximum velocity of DC electroconvection is 3.17 between the peak 
and RMS values of PDC. From Fig. 5(b), we can see that the peak of PDC is 

̅̅̅
2

√
, which is higher than the 1 of DC. One possible reason 

why the RMS value of PDC is lower than the maximum value of DC is that the external electric field varies periodically from zero to 
peak over time [Fig. 5(b)] and cannot provide a steady driving force (qE), unlike the DC field. The other possible reason is that periodic 
variation of the flow field produces energy dissipation because the DC voltage is the same as the RMS of the PDC voltage. 

ECF by an external DC field presents classical qualitative characteristics that are one convective cell structure and void charge 
region when T = 170. A similar result can be found for the present configuration when a PDC voltage is used. Fig. 6(a) presents the 
instantaneous distribution of the charge density and streamlines corresponding to five distinct times in an oscillation period. The top 
electrode is grounded, while the bottom electrode is positively charged. From Fig. 6(c), we can see that the external voltage at the 

Fig. 4. Tc vs wavelength λ for C = 10 and M = 10. Periodic boundary conditions were applied to the lateral walls. (a) PDC field (f = 0.02) and (b) AC 
field (f = 0.01). 

Fig. 5. (a) Temporal evolution of Vmax for T = 170 in the direct current (DC) and pulsed direct current (PDC) (f = 0.02) cases and (b) external 
voltage variations of PDC (f = 0.02) and DC with time. 
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bottom electrode reaches its maximum Vmax between t3 and t4. The PDC frequency is f = 0.02, which is below the characteristic 
frequency of this system. 

When the instantaneous voltage on the channel increases [Fig. 6(b) between t1 and t2], a charge layer comparable to 1/3 of the 
channel height is formed. When the voltage continues to increase [Fig. 6(b) between t2 and t3], the typical void charge region is initially 
formed. At the maximum voltage difference [Fig. 6(b) between t3 and t4], the complete void charge region is observed. Similarities to 
the findings of Wu [66] are observed under the DC field. When the voltage difference drop returns back to zero in Fig. 6(b) between t4 
and t5, the void charge region is relaxed primarily because of a significant decrease in velocity and charge diffusion. 

Figs. 5 and 6 mainly consider the effect of PDC on ECF for low values of T. We also consider the corresponding results for T = 400 
under PDC, which has different flow structures than those at T = 170 because the second bifurcation occurs [16]. 

Fig. 7 presents the Vmax temporal evolution for the DC and PDC cases for T = 400. For the PDC case, the flows first show a one-cell 
structure that is similar to Fig. 6(a), and then after experiencing a transition stage, a two-cell structure with lower values of Vmax occurs. 
Additionally, the velocity oscillates periodically throughout the whole process. The steady-state nondimensional maximum velocity of 
DC electroconvection is 4.21. The peak value and RMS of the steady-state nondimensional maximum velocity of PDC electroconvection 
are 7.12 and 3.75, respectively. The possible reasons are similar to those outlined for the T = 170 case. 

Similar processes as the case for T = 170 are observed at T = 400 under the PDC field. When the instantaneous voltage on the 
channel increases [Fig. 8(a) between t1 and t2], the maximum velocity Vmax increases slowly [Fig. 8(b) between t1 and t2]and a charge 
layer comparable to 1/10 of the channel height is formed [Fig. 8(c) between t1 and t2]. When the voltage continues to increase [Fig. 8 
(a) between t2 and t3], Vmax increases rapidly [Fig. 8(b) between t2 and t3], the typical void charge region is formed initially, and 

Fig. 6. Temporal evolution of charge density q distribution, voltage and maximum velocity (Vmax) for T = 170 and f = 0.02, as a representative of 
the regular oscillation: (a) charge density distribution and streamlines at five distinct times, (b) external periodic voltages of pulsed direct current (f 
= 0.02) and (c) the periodic Vmax signal. 
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Fig. 7. Temporal evolution of Vmax for T = 400 in the direct current and pulsed direct current (f = 0.02) cases.  

Fig. 8. Temporal evolution of voltage, Vmax, charge density, q, distribution (T = 400 and f = 0.02), as a representation of the regular oscillation: (a) 
external periodic voltages of pulsed direct current (f = 0.02), (b) the periodic Vmax signal and (c) charge density distribution and streamlines at five 
distinct times. 
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charges are injected into the bulk region from both sides of the edge [Fig. 8(c) between t2 and t3]. At the maximum voltage difference 
[Fig. 8(a) between t3 and t4], Vmax reaches its peak [Fig. 8(b) between t3 and t4], and a complete void charge region is observed in the 
middle of the domain [Fig. 8(c) between t3 and t4], similar to the findings of Wu [66]. When the voltage drop returns back to zero in 
Fig. 8(a) between t4 and t5, Vmax declines [Fig. 8(b) between t4 and t5], and the void charge region is also relaxed [Fig. 8(c) between t4 
and t5], primarily because of the decrease in velocity and charge diffusion. 

3.1.2. Electrodynamic bifurcation effect 
Bifurcation is a characteristic feature in electroconvection that most experimental and numerical studies have focused on [16,63, 

66]. Therefore, this section discusses the subcritical bifurcation in ECFs under DC and PDC fields. We first briefly introduce a common 
way to obtain the linear criterion Tc from numerical calculations of DNS [67]. Theoretically, when T reaches approximately the linear 
instability threshold, the perturbations of each physical quantity f follow: f = f0eσt, where σ is the growth rate. We can calculate the 
growth rates from Vmax evolution curves over time under several T. Then, we can calculate the linear criterion Tc, which corresponds to 
σ = 0 by extrapolation. We present the peak velocity Vmax evolution curves over time for T = 170, T = 180, and T = 190 under the PDC 
(f = 0.02) field in Fig. 9(a and b). The exponential behavior is visually seen from the semilog plot [Fig. 9(b)]. The growth rates were 
determined by linear fitting during the exponential growth stage. For each of the three cases, our numerical prediction of Tc is 
approximately 152. 

Fig. 10(a and b) describe the complete bifurcation diagram of the DC case and PDC case with f = 0.02. When the flow field starts 
from a hydrostatic solution, the flow remains static as we increase the driving parameter T. When T approaches 152, there is a sudden 
change in velocity, which exhibits the subcritical bifurcation characteristic that is typical for electroconvection. We found that the 
linear criterion Tc of the PDC case (f = 0.02) is lower than that of the DC case and that the nonlinear criterion Tf of the PDC case is very 
close to that of the DC case. A possible reason is that a varying electric field promotes fluid motion. However, the PDC field has a 
minimal effect on the nonlinear criterion Tf. 

Then, we examine the bifurcation process under the different frequencies of the PDC field to find the relationship between the 
bifurcation process and the frequency of PDC. Fig. 10(b) and (c) show the electroconvection bifurcation diagram when f = 0.02 and f =
0.1. We find that the linear criterion Tc increases with the frequency, which verifies the existence of a critical frequency. For the same T, 
the lower frequency voltage can promote fluid motion more than the higher frequency voltage. According to the results, we can 
calculate the average kinetic energy (26) as follows: 

Ek =
1

2Vt

∫

|u|2dV =
1

2Vt

∑N

k=1
|uk|

2Vk =
1

2N
∑N

k=1
|uk|

2 (26)  

where N represents the number of cells in our mesh and Vt = NVk for a uniform mesh. 
The RMS of the average fluid kinetic energy for the PDC with f = 0.02 case is 1.153 and that of the PDC with f = 0.1 is 1.1014 when 

T (T = 180) is close to the linear criterion Tc. We also calculate the DC case for T = 180; its average kinetic energy is 1.066, which is 
lower than the values of the PDC cases for f = 0.02 and f = 0.1. When T increases, the fluid has more kinetic energy under low- 
frequency rather than high-frequency cases to support the fluid motion under the same external driving force. Therefore, we find 
that low-frequency cases have lower Tc values than high-frequency cases. The RMS of the average kinetic energy of the fluid for the 
PDC with f = 0.02 case is 0.4058 and that of the case for f = 0.1 is 0.4064 when T = 120, which is close to the nonlinear criterion Tf. 
From these results, we can infer that the average kinetic energy varies little as the PDC frequency increases when T is relatively low. 

Fig. 9. Evolution of Vmax for C = 10 and M = 10 in the pulsed direct current (f = 0.02) field; cases for T = 170, T = 180, and T = 190.  
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However, the average kinetic energy decreases as the PDC frequency increases when T is relatively high. A possible reason is that 
higher frequency cases produce more viscous dissipation with the increase in driving parameter T. 

We analyse the relationship between the frequency f of the PDC voltage and the oscillation frequency of the maximum velocity from 
Fig. 11. Based on the fast Fourier transform (FFT), the oscillation frequencies of the maximum velocity under PDC fields of f = 0.02 and 
f = 0.1 for T = 190 are 0.02 and 0.1, respectively. The results show that the frequency f of oscillation flow corresponds to the excitation 
period. The motion of the fluid is in a state of synchronous response [35]. 

3.2. Stability for pure unipolar injection under an AC field 

We quantitatively measure the influence of the AC field on electroconvection and numerically validate two regimes: periodic ECF 
and inhibited ECF, which were explained theoretically in Section II B. We still select C = 10, which has been widely studied for the DC 
and PDC cases. A is still 0.614. In addition, 0.614 is half of the critical wavelength that has been verified in Fig. 4(b). 

We provide numerical estimates to confirm the critical frequency of our system under AC fields. Fig. 12 shows the rms of maximum 
velocity Vmax versus frequency for T = 160 and T = 190 under AC fields. We estimate the critical frequency fc = 0.0316 for both the T =
160 and T = 190 cases, which is consistent with 1/tT = 0.0316. 

3.2.1. Periodic eletroconvective flow regime (f < fc) 
First, we analyse a case with a moderately small AC frequency f = 0.01 (f < fc). Fig. 13(a) shows the time series of charge density 

and streamline under half an oscillation. Fig. 13(b)–(c) shows the temporal evolution of the periodic voltages of AC and Vmax. A similar 
observation as the PDC case can be made for this configuration when an AC is applied [Fig. 13(a)–(c)]. The difference is that the charge 
density distribution is reserved during the negative half-cycle because the opposite electrode becomes the injector. For f < fc, the whole 
gap can be occupied with space charge, and we see that the void-charge region is formed periodically. A similar observation can be 

Fig. 10. Bifurcation diagram for C = 10, M = 10, and α = 1 × 10− 4; (a) direct current, (b) pulsed direct current (PDC; f = 0.02), and (c) PDC (f 
= 0.1). 
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found during the negative half-cycle. The RMS of the maximum velocity under an AC electric field for T = 160 is 1.967, which is lower 
than 2.212, the corresponding RMS value under PDC voltage with the same frequency. The flow occurs through secondary bifurcation; 
two vortex structures and a central void-charge region appear in the fluid when T = 190 in Fig. 14(a–c). 

Fig. 15 shows the subcritical bifurcation of AC electroconvection, where Tc = 127.86 and Tf = 107.5. We found that Tc in AC cases, 
127.86, is lower than the 162.3 found in DC cases and Tf , 107.5, is slightly lower than the 110.5 found in DC cases. In AC cases, the 
periodic electric field promotes fluid motion. Thus, lower driving parameters are needed to maintain the charge-free region in the flow 
field. We also find that secondary bifurcation occurs in the fluid when T = 190 and that the critical value Tc2 of the secondary 
bifurcation under DC ranges between 290 and 300 [68]. The AC field promotes subcritical bifurcation and secondary bifurcation. 

3.2.2. Inhibited eletroconvective flow regime (f > fc) 
In this section, cases with AC frequencies greater than fc are analyzed. The ECF instability induced by external DC fields demon-

strates two vortex structures and void charge regions. Fig. 16(b) shows the evolution of the charge density for f = 0.05 (f > fc) and T =
170 under the AC field. We find that the space charge is divided into two layers without overlap, and the fluid fluctuates periodically 
with low velocity [Fig. 16(a)]. Concurrently, there are obvious fluctuations in the charge layer [Fig. 16(b)]. Fig. 17(b) presents the 
evolution of the charge density and streamline diagram for f = 0.05 (f > fc) and T = 420 under the AC field. The space charge remains in 
two layers with obvious fluctuations near the electrode, but the interface of the charge layer becomes more uneven than that seen for T 
= 170. Several irregular vortex flows appear in the fluid. At the same time, the irregular evolution of Vmax fluctuates with time [Fig. 17 
(a)]. The cases for T = 170 and T = 420 fit well with the theoretical prediction in Section II. We also investigated electric Rayleigh cases 

Fig. 11. Evolution of Vmax (C = 10, M = 10, and T = 190) under the pulsed direct current field for f = 0.02 and f = 0.1.  

Fig. 12. RMS of maximum velocity Vmax versus frequency for T = 160 and T = 190 under AC fields.  
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Fig. 13. Temporal evolution of charge density, q, distribution, voltage and Vmax for T = 160 and f = 0.01, as a representation of the regular 
oscillation: (a) distribution of charge density and streamlines at four distinct times, (b) external periodic voltages of AC (f = 0.01) and (c) the 
periodic Vmax signal. 
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Fig. 14. Temporal evolution of voltage, Vmax, charge density, q, distribution for T = 190 and f = 0.01, as a representation of the regular oscillation: 
(a) external periodic voltages of alternating current (f = 0.01), (b) the periodic Vmax signal, and (c) distribution of charge density and streamlines at 
four distinct times. 
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Fig. 15. Bifurcation diagram for C = 10, M = 10, and α = 1 × 10− 4 under an alternating current field when f = 0.01.  

Fig. 16. (a) Evolution of maximum velocity for T = 170. (b) Evolution of the charge density when f = 0.05 under an alternating current field.  
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with larger T values, and Fig. 18(a and b) shows the corresponding results. The flow remains irregular for T = 800, and the velocity 
fluctuates more acutely than for T = 420 [Fig. 18(a)], leading to unsteady plume structures. 

3.2.3. Spectral analysis 
One way to look at the state of the flow is to compute the power spectral density (PSD) of the time series. Fig. 19 presents PSDs of 

Vmax for T = 160 and T = 420 with different frequencies f of the AC field ranging from 0.01 to 0.05. When T = 160 for frequencies f from 
0.01 to 0.03, the flow motion is typically periodic, and the amplitude of the fundamental frequency f1 is consistent with the corre-
sponding AC frequency f [Fig. 19(a)]. Moreover, for cases with frequencies f greater than the critical frequency, only periodic small 
disturbances occur in the fluid due to the significant decay of the PSD compared with the cases for f = 0.01 − 0.03 and T = 160 [Fig. 19 
(b)]. When T = 420 for frequencies f from 0.01 to 0.03, we can obtain similar results to T = 160 [Fig. 19(c)]. However, for f = 0.04 and 
0.05, which are larger than the critical frequency, the flow becomes complicated and irregular, and the power spectrum shows obvious 
broadband characteristics [Fig. 19(d)]. From these results, we can see that the motion of the fluid is obviously in a state of synchronous 
response [35]. 

Fig. 17. (a) Evolution of maximum velocity for T = 420. (b) Evolution of the charge density and streamline when f = 0.05 under an alternating 
current field. 
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4. Conclusions 

In this work, ECFs in a fluid layer enclosed by two parallel metal electrodes subjected to unipolar injection under PDC and AC fields 
are numerically investigated in detail by FVM. The PDC and AC waveforms are sinusoidal. The flow structures and bifurcation patterns 
have been studied in detail under various frequencies. 

The results show that the varying electric fields play an essential role in instability patterns. The flow structures and linear and 
nonlinear criteria may change drastically with the field mode. In PDC cases, the flow loses its instability at the linear criterion Tc, and 
the bifurcation pattern is characteristic of subcritical bifurcation with hysteresis at different frequencies. The linear criterion Tc in-
creases with increasing frequency f of the PDC field, while the nonlinear stability criterion Tf is hardly affected by the PDC field 
frequency. In AC cases, the periodic electroconvection flow regime and the inhibited electroconvection flow regime are noticed with an 
increase in the frequency of AC when the electric Rayleigh T remains constant. When the frequencies of AC are lower than the critical 
frequency fc = 0.0316, the flow is in the periodic regime, and the bifurcation is characterized by subcritical bifurcation. When the 
frequency of AC is larger than the critical frequency fc, the flow is in the inhibited regime. 

At small electric Rayleigh, T, the flow is periodic with little disturbance, and the space charge remains in two layers near the 
electrode. The flow becomes irregular and enters a chaotic state when the electric Rayleigh T increases. The space charge layers near 
the electrode exhibit plume structures when T increases. In addition, the varying electric fields promote a transition from steady state 

Fig. 18. (a) Evolution of maximum velocity for T = 800. (b) Evolution of the charge density and streamline when f = 0.05 under an alternating 
current field. 
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to unsteady convection under PDC and AC fields. Therefore, AC-EHD systems operate at relatively lower voltage regimes than DC-EHD 
systems, making them suitable and safe for biological applications and portable systems. In the meantime, AC EHD can control fluid 
flow by selecting AC parameters (voltage and frequency f). Through a comprehensive comparison, the varying electric fields exhibit 
rich bifurcation and flow phenomena in ECFs. 

In summary, the varying electric fields lead to unknown instability patterns and various dynamic structures in electroconvection 
that are not found when the DC field is considered. The interaction of alternating electric fields and fluid dynamics may have a po-
tential impact on enhanced heat transfer because of enhanced or weakened oscillatory convection behavior. In future work, we plan to 
conduct experimental validation in a laboratory and its industrial applications. We will also extend our research to viscoelastic fluids or 
add thermal effects. 
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Fig. 19. Plot of power spectral density decay under alternating current fields: (a) T = 160 for f = 0.01, f = 0.02, and f = 0.03; (b) T = 160 for f =
0.01, f = 0.04, and f = 0.05; (c) T = 420 for f = 0.01, f = 0.02, and f = 0.03; (d) T = 420 for f = 0.01, f = 0.04, and f = 0.05. 
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