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Abstract

Deforestation is a critical threat to bats. The woolly false vampire bat Chrotopterus auritus is

a carnivorous bat that is both an indicator species for well-conserved forests and a threat-

ened species in Mexico and other countries due to deforestation. We currently lack the

information needed to assess the effects of forest fragmentation and destruction on their

populations and to develop plans for their conservation. We used GPS loggers to study the

movement patterns of C. auritus in southern Mexico. We observed 72 foraging nights by

GPS-tagging 10 individuals from two colonies on 32 occasions in a highly disturbed hetero-

geneous landscape with extensive deforestation (Hormiguero), and in a more homoge-

neous, well-preserved forested landscape (Monterrey). Tracked false vampire bats

averaged a home range of 108.24 ha, a core foraging area of 3.78 ha and average maxi-

mum flight distances of 2.06 km. The bats ranged farther and flew significantly longer dis-

tances in Hormiguero than in Monterrey, with males flying longer and more variable

distances. They used the well-preserved semi-deciduous forest more often than secondary

forest and agricultural fields for traveling and foraging, but the bats occasionally moved and

hunted along the borders of secondary forest and agricultural fields adjacent to semi-decid-

uous conserved forest areas. Although this carnivorous bat might cope with some fragmen-

tation, we suggest that large well-preserved forested areas are highly important for its

conservation.

Introduction

The extraordinarily rapid rate of biodiversity loss marks the start of a sixth extinction event

[1,2]. Despite some limited success of efforts to prevent extinctions [3,4], species extinction

rates continue to increase [5] largely due to deforestation and habitat fragmentation [6,7].

While some species use fragmented or deforested habitats, others rely on large, well-preserved

forested areas and are heavily affected by changes in environmental conditions and commu-

nity composition caused by deforestation and fragmentation [8–10]. The conservation of these
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forest-dependent species requires understanding how different species use forested habitats.

Detailed information on the movements, home ranges, foraging areas, and habitat preferences

of different species are necessary to identify conservation needs, and to predict the effect of

deforestation and habitat loss on populations.

The carnivorous woolly false vampire bat Chrotopterus auritus has been considered an indi-

cator species for well-preserved forests [9,11,12] although our knowledge of its behavior and

ecology is limited. According to the UICN red list, C. auritus is globally considered to be of

least concern [13], and has a wide distribution that extends from southern Mexico to northern

Argentina and Paraguay [14]. However, it is listed as threatened and considered rare in Mexico

[15] and Argentina [16], and it is considered ‘potentially vulnerable’ in Paraguay [17].

Although not yet globally endangered, deforestation is likely to threaten their populations in

the future.

Chrotopterus auritus is an opportunistic hunter that feeds mostly on small mammals, large

insects, and birds, but it can also feed on fruits, pollen and reptiles and amphibians [18–26].

The restrictions on the diet of C. auritus are probably influenced by morphological specifica-

tions of the species. The relatively large body mass and short broad wings may cause this car-

nivorous bat species to hunt in cluttered areas, to have relatively small home ranges, and to

move short distances from roost to hunting locations where they probably spend a consider-

able amount of time perched and listening for prey sounds [20]. Most of the reported captures

of this species occur in extensive, well-preserved late-successional forests [9,11,27–33], but the

bats do not completely avoid more fragmented, degraded forests and even secondary growth

forest [34–37]. Gathering information on the movement ecology of C. auritus, can improve

our understanding of its reliance on well-preserved forested habitat and the effect of future for-

est fragmentation and destruction on their populations.

Miniaturized GPS makes it possible to track the movement of bats with much greater preci-

sion and efficiency than radio-tracking [38–39]. We used GPS to track movements and habitat

preference of C. auritus in both a heterogeneous landscape with increased anthropogenic dis-

turbance and a homogeneous well-preserved, forested landscape. We expected bats (i) to move

and hunt mostly inside late-successional forests in an unfragmented, well-preserved landscape,

but in a more fragmented landscape, we expected them (ii) to move and hunt in secondary for-

est, (iii) to avoid agricultural fields, (iv) to avoid low dry forest (due to the low forest height

and high tree density), and (v) to have larger home ranges and fly farther to hunting grounds

in fragmented landscapes in comparison with the well-preserved late-successional forest site.

Methods

Study area and land use mapping

The climate in the study area is humid and warm with a mean annual temperature of 26.0˚C

and a mean annual precipitation of 1350 mm [40]. The rainy season runs from June to October

and the dry season from November to May. The predominant vegetation surrounding the two

roosts was tropical semi-deciduous forest dominated by Brosimum alicastrum, Manilkara
zapota, Metopium brownei, and Alseis yucatanensis trees. These trees can reach up to 30

meters, but in our study areas they reached a maximum height of only 15 to 20 meters due to

shallow soils causing low water availability [41–43] and hurricane disturbances [44].

Each of the two colonies of C. auritus we observed occupied one roost, both of them located

in the state of Campeche in southeastern Mexico. The first roost (Hormiguero roost) was

located inside structure II (18˚24’30.73"N, 89˚29’26.01"W) of the archeological site of Hormi-

guero near the community of Eugenio Echeverrı́a Castellot II, just outside of the Calakmul

Biosphere Reserve. When we first equipped bats with GPS trackers, there were 8 individuals in
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the roost (2 adult females, 4 adult males, 1 juvenile female, and 1 juvenile male). The second

roost (Monterrey roost) was inside a cave (18˚20’4.53"N, 90˚ 6’5.76"W) located in the state-

managed reserve of Balam-Ku and contained 7 individuals (2 adult females, 3 adult males, and

2 juvenile males) at the time when we deployed GPS trackers.

Land-use maps of the study areas were generated using a supervised classification technique

on a SPOT-6 satellite 2014 image with four multispectral bands and a spatial resolution of 10

m. We rectified the land-use map using random ground control points and with field surveys

where we traced the movement of the tagged C. auritus individuals. For habitat selection anal-

yses, we classified areas into medium semi-deciduous forest, dry low semi-deciduous forest,

secondary forest, agricultural fields, savannah (mixed woodland grassland), aguadas (ponds),

and areas of no vegetation cover. The areas of no vegetation cover included areas where the

topsoil layer was removed and the rock substrate was exposed (limestone extraction), paved

roads, and urban areas. The areas classified as secondary forest were areas of secondary woody

growth after human or natural disturbances and were similar in structure and age (10–15

years old). As part of the forest management plan of the area of Hormiguero, land owners

decided to abandon large areas of agricultural fields 10 years ago to reforest and conserve

them. They entered into a program called “Servicios Ambientales del Bosque (SAB)” from the

National Forestry Commission of Mexico (CONAFOR) from which the land owners receive

subsidies from the government to conserve forested areas.

Bat capturing and tracker attachment

We captured and tagged 10 bats with GPS trackers on 5 occasions in July, September, and

December of 2016 and February and May of 2017. We were unable to tag bats from the Mon-

terrey roost during July 2016 and May 2017. Bats were captured inside their roosts using a but-

terfly net or 3 m x 2.4 m mist nets outside the cave. For each bat, we determined sex, age,

reproductive condition (non-reproductive, enlarged testicles, pregnant, lactating, post-lactat-

ing), body mass (using Pesola spring scales), and forearm length, and then clipped hair to

uniquely mark individuals and to place GPS. The GPS trackers were protected with a 1–2 mm

thick layer of moldable plastic (ThermoMorph). We equipped adult non-pregnant bats with

GiPSy-5 (Technosmart, Rome, Italy) GPS receivers (23mm x 12.5mm x 5mm) with a Perma-

Type surgical cement (Perma-Type Company Inc., Plainville, CT, USA). All of the GPS were

programmed to get a spatial fix every 30 seconds. A fix is a GPS-based datum with information

on the date, time, and quality (signal strength and number of satellites used). To study whether

individuals hunt in groups, we attempted to tag as many of the bats from the same roost as pos-

sible after capturing. In Hormiguero, we obtained data from two individuals during the same

nights in July, four individuals in September, three in December, four in February and four in

May. In Monterrey, we obtained data during the same nights from three individuals in Sep-

tember, three in December and two in February.

The GPS trackers were removed 3 to 4 nights after placement with an adhesive remover

(Uni-Solve, Smith & Nephew, Inc.) and a liquid spray-on bandage (AluSpray, Neogen Corp.,

Lexington, KY) was used on wounds, in case there were any. The GPS data were downloaded

from the trackers once they were removed from the bats. The individuals were not immedi-

ately re-equipped with GPS trackers after the removal of the GPS tracker; we waited at least 7

days before re-equipping bats with GPS trackers. The weight of the GPS trackers varied

between 5.2% (minimum) and 8.9% (maximum) of the individual body masses, above the 5%

threshold of the body mass of C. auritus, which is commonly recommended for birds and bats

[45].Chrotopterus auritus is a gleaner and capable of carrying prey weighing over 40% of its

body weight and taking it to the roosting site [20]. Previous studies [38,46,47] tested for an
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effect on the extra weight of the devices by comparing the body mass of bats when captured

and equipped with trackers, to their mass when recaptured a few days later for device removal.

To assess if the GPS trackers negatively affected foraging, we also measured their body mass

before placing the GPS trackers and after individuals were recaptured and trackers were

removed. If the bats were negatively affected by the GPS trackers, we would expect to detect a

decrease in mean body mass.

We handled all bats following the guidelines for the use of wild mammals in research by the

American Society of Mammalogists [48]. The bats were captured with a Scientific Collector’s

permit (Colector Cientı́fico de Flora y Fauna) issued by the environmental authority in Mexico

(SEMARNAT; permit number SGPA/DGVS/07161/15 to R. Medellin). The Institute of Ecol-

ogy approved the animal manipulation procedures before the start of the study. Permission

was granted from the National Institute of Anthropology and History of Mexico (INAH) to

work at the Hormiguero Temple. The cave was situated on community property of the town

of Centenario in the state of Campeche. The community issued the permission to study the

bats in the cave.

Data analysis

We used Ranges 9 software (Antrack Ltd, Wareham, UK) [49] to analyze the home range and

core foraging area. We constructed 100% minimum convex polygons (MCPs) to determine

home ranges for each complete night of movement data per individual. Although several

methods are available to estimate the home range of animals [50–53], the use of minimum-

linkage estimate cluster polygons seems the most fitting technique when it comes to mobile

animals with relatively small foraging area [54]. This technique tends to overestimate home

ranges, but using this method facilitates the comparison of habitat ranges among species

because this method has been used by other recent studies evaluating movement of bats [39,

55–59].

After plotting the locations from the GPS trackers, we distinguished locations that either

followed a clear path from one location to another, or that formed a cluster in a relatively small

area. We considered the latter to be areas where bats foraged, perhaps using a sit-and-wait

strategy. We estimated the core foraging area per individual by visualizing and manually

selecting the locations that formed a cluster area of GPS locations and clearly did not form a

path from one location to another. We constructed 100% MCP’s from these clusters to esti-

mate the core foraging area. We estimated the maximum travel distance by calculating the

straight distance from roost to the farthest fix. To account for effects of moon brightness and

position, we created a moon index that was highest (5) when the moon was brightest and at a

position of 90 degrees, and that was lowest (1) with a new moon or when the position of the

moon did not reach above the horizon.

We defined an evening trip as starting when an individual left the roost and ending when it

returned to the roost. With bat identity as a random effect, we tested for the fixed effects of sex,

site, the interaction between sex and site, moon, and season on several responses observed dur-

ing each trip: the number of fixes (natural log), the maximum distance traveled from the roost,

the total time the GPS registered locations outside of the roosts, the home range (natural log

+1), and core foraging area (natural log transformed) using general linear mixed models (lme4

package) in R (versions 3.3.1 and 3.4.0, R Development Core Team, 2006). We used natural

log transformations when the model’s residual distributions were lognormal. For all model

fits, we confirmed that model residuals did not deviate from normality using diagnostic plots

and a Shapiro-Wilk test (p>0.05). When an interaction effect was not detected, we removed it

and refit the model. Degrees of freedom and p-values were based on the Satterthwaite
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approximation for denominator degrees of freedom using the lmerTest package [60–61]. To

convey precision and effect sizes, we used non-parametric bootstrapping (boot package in R)

to estimate 95% confidence intervals around means.

To define the available habitat for C. auritus for each study site, we used the maximum

travel distance obtained from a male C. auritus in Hormiguero (5.3km) as the radius of a circle

around the roosts. To investigate whether the habitats were randomly used by C. auritus, we

used the compositional analysis proposed by Aebischer et al. [62]. Briefly, we tested how the

used habitat (home range and core foraging area) was related to the available habitat in the

area. The significance of habitat selection was tested using Wilks Lambda, and a ranked matrix

was built to indicate which habitat was used significantly more or less than others (1000 per-

mutations); higher ranked habitats were of greater importance [62–64]. Habitat compositional

analysis was performed using the ADEHABITAT package [65].

Code availability

We provide R scripts as a supplement to reproduce all analyses in S1 File.

Results

Movement behavior

The roosts were inhabited throughout the year by most of the same individuals and were rarely

abandoned or only abandoned for a few days. In this case individuals would move to another

roost on the other side of the same Hormiguero temple. During the study, the colony in Hor-

miguero reached a total of eight individuals twice, but on both occasions, after 6–8 months,

one or two individuals would be absent from the group. The number of individuals in the

Monterrey roost had a maximum number of seven C. auritus bats in the beginning but the

group size dropped to four individuals at the end of the study.

We equipped 10 individuals with GPS on 32 occasions and obtained between 1 and 4 nights

of movement data per individual, for a total of 17,976 fixes across 72 evening trips (Table 1, S1

Table). The movement of the tagged individuals are shown in Fig 1. The accuracy of the fixes

depends on factors such as canopy openness, fix rate and the speed of the animal. The clusters

of fixes shown in Fig 1 most likely represent perched individuals, using a sit-and-wait foraging

strategy. We identified a total of 30 clusters of fixes (perching events) during 19 nights of

tracked data. Individuals spent an average of 172 minutes perched each night. The average

Table 1. Description of the captured and tagged Chrotopterus auritus per site and sex.

Ind.

#

Sex Mean

FA

Mean

mass

Site Nights of

tracked data

Mean

number of

fixes

Mean time

outside of

roost

Mean home

range (ha)

Mean core

foraging range

(ha)

Mean

distance

(km)

Maximum

distance (km)

1 Male 83.6 82.6 Hormiguero 10 261.40 03:11:02 213.20 4.94 2.99 4.90

2 Female 84.2 93.8 Hormiguero 13 205.69 05:14:33 66.62 4.66 1.33 2.26

3 Male 82.8 84.4 Hormiguero 10 281.60 06:18:39 185.92 3.49 3.19 5.30

4 Female 84.8 93.7 Hormiguero 5 243.40 05:26:14 68.38 3.98 1.43 2.28

5 Male 81.7 89.0 Hormiguero 9 244.11 05:55:27 108.90 3.46 1.87 4.10

6 Male 81.9 87.0 Hormiguero 8 255.50 04:55:23 113.58 4.61 3.08 5.29

7 Female 81.2 89.0 Monterrey 6 202.50 03:27:12 34.79 3.92 1.12 1.43

8 Male 80.1 77.7 Monterrey 7 205.43 04:54:22 41.33 4.27 1.14 2.44

9 Female 80.7 85.0 Monterrey 2 396.50 08:00:21 39.77 4.15 0.79 0.88

10 Male 79.0 79.0 Monterrey 2 484.00 05:49:31 61.95 9.10 2.33 2.36

https://doi.org/10.1371/journal.pone.0220504.t001
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duration of a perching event was 126 minutes and the mean number of perching events per

night was 1.57. The short distances between clusters of fixes are most likely short flights

between perches, while fixes with larger distances between them represent bats in flight. The

core foraging area and home range are shown in Fig 2 and Fig 3 respectively.

Fig 1. The total recorded night flight paths of two females (A) and four males (B) in the study site of Hormiguero and two female (C) and two males (D) in the

study site of Monterrey. Different colors depict different individuals.

https://doi.org/10.1371/journal.pone.0220504.g001
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Females were larger than males (rank-sum tests; mass: z = 2.286, p = 0.022; forearm:

z = 2.027, p = 0.043; Table 1). The mean change in mass of the bats after placement of the GPS

(Table 2) showed that the GPS-tagged bats did not tend to lose weight (mean change = +0.32,

95% CI = -2.1 to +2.9 g). The emergence times of bats were ambiguous since the GPS trackers

Fig 2. The core foraging ranges per night flight of two females (A) and four males (B) in the study site of Hormiguero and two female (C) and two males (D) in the

study site of Monterrey.

https://doi.org/10.1371/journal.pone.0220504.g002
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were not always capable of getting a fix just after the bats left their roosts, but the earliest fix we

observed was 29 minutes after sunset. The number of fixes averaged 250 per evening trip (95%

CI: 208 to 291; n = 72; range 21 to 746) and did not strongly differ between sites (Hormiguero:

95% CI of mean = 197 to 293, range: 21–712, n = 55 trips; Monterrey: 95% CI of mean = 165 to

Fig 3. The home ranges per night flight of two females (A) and four males (B) in the study site of Hormiguero and two female (C) and two males (D) in the study site

of Monterrey.

https://doi.org/10.1371/journal.pone.0220504.g003
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342, range: 36–746, n = 17 trips) or by sex (95% CI of mean; males: 209 to 315, n = 46 trips;

females: 157 to 290, n = 26 trips). We detected no effects of moon (t = 1.1, p = 0.26), or season

(t = 1.1, p = 0.27) on the number of fixes, either in the full model or when tested as single

effects.

The average maximum flight distance traveled was 2.06 km and was influenced by season

(t = 3.3, p = 0.0018) and an interaction between site and sex (t = 2.6, p = 0.01). The overall

maximum travel distance was roughly twice as great in Hormiguero (mean = 2.4, 95% CI: 2.0

to 2.8 km) compared to Monterrey (mean = 1.2, 95% CI: 0.9 to 1.6 km), but this effect was

driven by male movements, which were more variable than female movements (F(45, 25) =

6.95, p< 0.0001). We detected no effects of site (t = 0.67, p = 0.69) or season (t = 0.94,

p = 0.36) on distance traveled by females. Males, however, flew farther at Hormiguero than at

Monterrey (estimate = 1.92, t = 4.03, p = 0.0002), and male flights were farther in the dry sea-

son (estimate = 1.68, 3.52, p = 0.001).

Flight distances did not vary much with moonlight in either females (t = 1.26, p = 0.22) or

males (t = 0.24, p = 0.81), but moonlight was the sole predictor of time spent outside the roost

(estimate = -0.57, t = -3.43, p = 0.001). Time outside the roost was not predicted by sex

(t = 0.51, p = 0.62), site (t = 0.20, p = 0.62), or season (t = 0.81, p = 0.42). The average time out-

side the roost was 5 hours and 9 minutes. The longest night trip was 10 hours and 8 minutes

and the shortest trip was 26 minutes. All of the individuals were back at the main roost after

every evening trip, but it is possible that individuals used alternative roosts for part of the

night, since the GPS trackers would often lose reception for an extended period of time during

the night (max = 4 hours) and would regain satellite reception when a bat was returning to the

main roost.

The home range averaged 108.24 ha (SD ± 138.92) and was higher in Hormiguero

(mean = 129, 95% CI = 86 to 166 ha) than in Monterrey (mean = 41, 95% CI = 25 to 57 ha; esti-

mate = 0.88, t = 2.73, p = 0.024) with no detected effects of sex (t = 1.22, p = 0.27), moon (t =

-1.21, p = 0.23), or season (t = 0.26, p = 0.80) on home range size. The core foraging area aver-

aged 3.78 ha (SD ± 5.14) and we detected no effects of sex (t = 0.06, p = 0.95), site (t = 0.12,

p = 0.90), moon (t = 0.21, p = 0.83), or season (t = 1.79, p = 0.08). We never observed multiple

tracked individuals visiting the same area at the same time.

Habitat availability and preference

The main habitat available in both areas was predominantly medium semi-deciduous forest,

followed by secondary forest and low semi-deciduous forest in Hormiguero and also predomi-

nantly medium semi-deciduous forest followed by low semi-deciduous forest and savannah in

Monterrey (Table 3). The comparison between the habitat availability and the home range

showed that the habitat use was non-random (λ = 0.0006828, p = 0.001) with medium semi-

deciduous forest (80.2%) as the preferred habitat, followed by secondary forest (18.2%), agri-

culture (0.8%) and finally low semi-deciduous forest (0%). The core foraging area use was also

non-random (λ = 0.04067, p = 0.001) and followed a similar preference in habitat as the home

range, with medium semi-deciduous forest (79.2%) as the most important habitat. We did not

observe the bats moving through low semi-deciduous forest or savannah.

Discussion

This is the first study detailing the movement patterns of the second-largest bat species of the

Americas. Chrotopterus auritus relied on well-preserved late successional forests; their home

range and foraging area were comprised of predominantly well-preserved medium semi-

deciduous forest. The size of the home range of C. auritus differed between the more
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Table 2. Mass before and after GPS placements.

Bat ind. GPS weight (gram) Proportion of body weight (%) Body mass before (gram) Body mass after (gram) Change (gram)

H1 6 7.7 78 80.5 2.5

H3 6 7.2 83 81.0 -2

H3 6 7.4 81 80.0 -1

H3 5.5 6.9 80 85.0 5

H2 8 8.9 90 91.0 1

H5 6.5 8.1 80 80.5 0.5

H2 6 6.6 91 94.0 3

H1 6 7.3 82 76.0 -6

H7 5.2 6.4 81 75.8 -5.2

M2 6 8.6 70 69.0 -1

M7 7 8.9 79 80.0 1

M5 6 7.1 85 85.0 0

H1 6 7.1 85 88.0 3

H2 5.7 6.3 91 92.3 1.3

M1 6.3 7.7 82 81.7 -0.3

M2 6.38 8.6 74 80.2 6.2

H7 5.85 7.1 82 83.0 1

H2 5.94 6.9 86 86.0 0

H6 6.39 6.7 95 78.6 -16.39

H2 6.39 6 107 93.7 -13.26

H3 5.96 7.4 81 90.1 9.1

H5 6.25 6.5 96 98.8 2.75

H1 6.89 7.3 94 108.1 14.11

M2 6.72 7.6 89 82.3 -6.72

H5 5.44 5.2 105 87.6 -17.44

H7 7.42 8.1 92 99.6 7.58

M1 7.34 7.6 96 92.7 -3.34

H1 5.83 7.9 74 91.0 17

H6 5.61 6.2 90 84.0 -6

H3 6.13 6.3 97 104.0 7

H7 6.1 6.6 93 98.0 5

H6 6.03 7.4 82 84.0 2

https://doi.org/10.1371/journal.pone.0220504.t002

Table 3. Percentage of habitat availability assessed for Hormiguero and Monterrey and percentage (+ SD) of home range area and core foraging range within 100%

minimum convex polygons (MCP) of Chrotopterus auritus tagged individuals.

Hormiguero Monterrey

% habitat

availability

Mean % home range

area

Mean % core foraging

range

% habitat

availability

Mean % home range

area

Mean % core foraging

range

Medium semi-deciduous

forest

59.4 74 (18.2) 75.9 (36.5) 80 100 100

Low semi-deciduous

forest

12.2 0 0 16.3 0 0

Secondary forest 20.9 23.87 (17.17) 23.6 (36.8) 0 0 0

Agricultural fields 5.3 1.04 (2.12) 0.44 (3.5) 0 0 0

No vegetation cover 1.8 0.99 (1.22) 0.1 (0.6) 0 0 0

Aguada (pond) 0.4 0.09 (0.18) 0 0 0 0

Savannah 0 0 0 3.8 0 0

https://doi.org/10.1371/journal.pone.0220504.t003
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fragmented Hormiguero compared to Monterrey, and individuals in Hormiguero also flew

farther from the roost compared to the better-preserved study areas of Monterrey. Males flew

at longer and more variable distances than females.

For tracked C. auritus bats, the average home range was 108.24 ha, the core foraging area

was 3.78 ha, and the average maximum flight distance reached 2.06 km with a longest maxi-

mum distance of 5.3 km. Carnivorous bats can be separated from insectivorous and piscivo-

rous bats through a combination of body mass (BM� 0.017 kg), low relative wing loading

(RWL;< 36) and low aspect ratio (RA;� 6.3), which makes continuous flights for these spe-

cies more expensive, but would enhance their maneuverability and allow them to carry high

load prey [66]. The largest carnivorous bat, Vampyrum spectrum (158 g, AR = 5.4, RWL = 34;

[65]), had an estimated foraging area of 3.2 ha during a single tracking event [67]. The frog-

eating Trachops cirrhosus (44 g, AR = 6.3, RWL = 44; [66]), the smallest of the three carnivo-

rous bats in the Americas, reached a foraging area of 3–12 ha and traveled more than 1.5 km

from the roost [68]. Megaderma lyra (50 g, AR = 6.2, RWL = 32; [66]), a carnivorous bat spe-

cies native to Asia, covered distances of 4 km and used foraging areas of 10 ha [69]. Data from

the second largest carnivorous bat Macroderma gigas (123 g, AR = 6.1, RWL = 34; [66])

showed foraging areas reaching over 60 ha [70] and an average distance traveled of 1.9 km in

Australia. Among bats classified as carnivorous from Africa, Cardioderma cor (30 g, AR = 5.2,

RWL = 31; [66]), presented much smaller feeding areas between 0.1 and 1.01 ha [71] and Nyc-
teris grandis (32 g, AR = 5.2, RWL = 35; [66]), used short commuting distances <2.2 km [72].

These carnivorous bat species vary slightly in wing loading and aspect ratio but differ substan-

tially in weight. We lack the data to rigorously link these measures to home range, core forag-

ing area and maximum distance traveled in carnivorous bats. Differences in foraging areas and

movements could depend on energetic constraints due to morphological or physiological dif-

ferences [69,73] or simply landscape differences or seasonal changes in prey abundance

[72,74,75].

A fragmented landscape with small well-preserved patches of primary forests could cause

bats to fly longer distances and use larger home ranges in the search for appropriate foraging

areas. In our study, bats moved farther in the more fragmented landscape of Hormiguero than

in the homogenous landscape of well-preserved forests of Monterrey, which is consistent with

an effect of habitat, although a replicated sample of sites is necessary to test this hypothesis.

Previous reports indicate that C. auritus is most likely an opportunistic hunter that feeds

mostly on small vertebrates such as rodents, bats, birds, and occasionally insects [19,20,22–26].

Prey commonly taken by C. auritus include rodent species of the genera Heteromys and Pero-
myscus [20], which are commonly found in well-preserved forests, but do not shy away from

secondary forest [76]. The distribution of these prey could explain the importance of well-pre-

served forests for C. auritus, followed by secondary forest areas. Secondary forests have dis-

played higher species richness and diversity of small mammals than primary forests [77], but

this was most likely related to the size of the secondary forest areas with higher richness and

diversity in larger areas of secondary forests [78]. Tagged bats did not seem to forage in the

center of secondary forests, but more along the edges. Bats would be unable to perch in agri-

cultural fields due to the lack of trees, but the mosaic of edges of agricultural fields, secondary

forests and medium semi-deciduous forest potentially creates areas of high species diversity

and an increase in potential prey [79,80]. Similar behavior was documented by Vehrencamp

et al. [67], where a radio-tagged V. spectrum was found foraging in broken woodland, second-

ary forest, and forest. However, it is yet unclear which prey species are potentially found more

often in these edges. Homogenous continuous forests are likely to provide less variety in habi-

tats and possibly prey items, while transition areas between secondary forests, agricultural

fields and well-preserved forests could increase the structural and compositional diversity of
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vegetation, attracting small mammals by providing climbing and foraging substrates and nest-

ing possibilities for birds [81, 82]. On the other hand, small mammals and birds experience an

overall increase in predation risk in natural edges [83]. Bats completely avoided low semi-

deciduous forest, which are distinguished by their relative low tree height and high tree and

understory density [40,42]. More detailed information on the ecology of the prey of C. auritus
is necessary to assess the possible role of prey abundance on C. auritus movements.

The formation of clusters of fixes in a relatively small area indicates that bats are perched at

a certain point and can remain perched for several hours. C. auritus probably uses a sit-and-

wait foraging strategy, but is likely to combine this tactic with short continuous flights. A sit-

and-wait strategy can significantly decrease energy consumption by decreasing flight time.

The highest energy consumption these bats face is probably commuting between roosts and

foraging areas, and attacking and carrying prey [73]. Female bats experience higher energetic

costs during reproductive periods [84–86]. We decided not to track pregnant females or

females carrying pups, but only deploy GPS units on non-reproductive females or females

with volant young. We therefore do not know how female reproductive stage influences forag-

ing behavior, and we can only speculate on the reason why males used foraging areas further

away from the roost than females. Sex differences in foraging might contribute to sexual

dimorphism in body size [87,88]. Chrotopterus females were larger, perhaps to support heavier

loads carried during pregnancy [89,90].

We saw no evidence for group foraging. Group foraging in bats might occur when

resources are patchy in distribution but seasonally abundant [91]; however, the individuals we

tracked never coincided with other tracked bats in space and time, which is consistent with the

hypothesis that C. auritus is a solitary forager that does not hunt in groups.

Our data are also consistent with the hypothesis that an increase in fragmentation of the land-

scape could increase the distance C. auritus must move through the landscape to find adequate

foraging areas. Preserved primary forests appear to be important for both commuting and hunt-

ing; however, contrary to our expectations, the bats would sporadically fly through secondary

forests in the fragmented Hormiguero site. Further studies at more sites are needed to under-

stand how fragmentation of well-preserved forests might alter movement and food availability.

Inventory data of Neotropical bat assemblages are often used for assessing biodiversity and

ecosystem functioning. With relatively simple methods, such as mist nets and bat detectors,

species are categorized into groups according to their responses towards disturbance or land

management in a specific area. These studies are important to get a general idea on the local

biodiversity and how bat assemblages are shaped and structured by anthropic activities and

land use changes, but for species-specific information, studies that include GPS and/or radio-

tracking individuals are also important and recommended for monitoring the movement ecol-

ogy of these mobile animals.

Supporting information

S1 File. R scripts to reproduce all analyses.

(R)

S1 Table. Chrotopterus tracking data. Detailed information per tracked individual.

(CSV)

Acknowledgments

We are grateful to the community of Eugenio Castellot II for allowing us to work on their

lands and to The National Institute of Anthropology and History (INAH) for letting us work

Movement ecology of the carnivorous woolly false vampire bat

PLOS ONE | https://doi.org/10.1371/journal.pone.0220504 July 29, 2019 12 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220504.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220504.s002
https://doi.org/10.1371/journal.pone.0220504


in the temple of Hormiguero. We would like to acknowledge all the people at the Comisión
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43. Pérez-Salicrup D. Forest types and their implications. Integrated land-change science and tropical

deforestation in the southern Yucatan: Final frontiers. 2004 Feb 19:63–80.

44. Boose ER, Foster DR, Plotkin AB, Hall B. Geographical and historical variation in hurricanes across the

Yucatan Peninsula. The lowland Maya area. Haworth. New York, NY, EEUU. 2003:495–516.

45. Brigham RM. Load carrying and maneuverability in an insectivorous bat: a test of the 5%" rule" of radio-

telemetry. Journal of Mammalogy. 1988 May 1; 69(2):379–82.

46. Stebbings RE. Radio tracking greater horseshoe bats with preliminary observations on flight patterns.

InSymp Zool Soc Lond 1982 (Vol. 49, pp. 161–173).

47. Cvikel N, Berg KE, Levin E, Hurme E, Borissov I, Boonman A, et al. Bats aggregate to improve prey

search but might be impaired when their density becomes too high. Current Biology. 2015 Jan 19; 25

(2):206–11. https://doi.org/10.1016/j.cub.2014.11.010 PMID: 25578909

48. SncES RS, Gannon W. The animal care and use committee of the American Society of Mammalogists.

2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research.

Joumal of Mammalogy.; 92:235–53.

49. South AB, Kenward RE. Ranges 7, Software for the Analysis of Tracking and Location Data. Antrack

Ltd., Wareham, UK. 2006.

50. Calhoun JB, Casby JU. Calculation of home range and density of small mammals. US Department of

Health, Education, and Welfare, Public Health Service; 1958.

51. Jennrich RI, Turner FB. Measurement of non-circular home range. Journal of Theoretical Biology. 1969

Feb 1; 22(2):227–37. PMID: 5783911

52. Kenward R. Wildlife radio tagging: equipment, field techniques and data analysis.

53. Worton B.J., 1989. Kernel methods for estimating the utilization distribution in home-range studies.

Ecology, 70(1), pp.164–168.

54. Davidson-Watts I, Walls S, Jones G. Differential habitat selection by Pipistrellus pipistrellus and Pipis-

trellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biologi-

cal conservation. 2006 Nov 1; 133(1):118–27.

55. Borkin KM, Parsons S. Effects of clear-fell harvest on bat home range. PloS one. 2014 Jan 22; 9(1):

e86163. https://doi.org/10.1371/journal.pone.0086163 PMID: 24465938

56. Kniowski AB, Gehrt SD. Home range and habitat selection of the Indiana bat in an agricultural land-

scape. The Journal of Wildlife Management. 2014 Apr; 78(3):503–12.

57. Christie JE, O’Donnell CF. Large home range size in the ground foraging bat, Mystacina tuberculata, in

cold temperate rainforest, New Zealand. Acta Chiropterologica. 2014 Dec 30; 16(2):369–77.

58. Zeale MR, Davidson-Watts I, Jones G. Home range use and habitat selection by barbastelle bats (Bar-

bastella barbastellus): implications for conservation. Journal of Mammalogy. 2012 Sep 14; 93(4):1110–

8.

59. Ripperger SP, Kalko EK, Rodrı́guez-Herrera B, Mayer F, Tschapka M. Frugivorous bats maintain func-

tional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments. PloS

one. 2015 Apr 1; 10(4):e0120535. https://doi.org/10.1371/journal.pone.0120535 PMID: 25830222

Movement ecology of the carnivorous woolly false vampire bat

PLOS ONE | https://doi.org/10.1371/journal.pone.0220504 July 29, 2019 15 / 17

https://doi.org/10.1038/srep28961
https://doi.org/10.1038/srep28961
http://www.ncbi.nlm.nih.gov/pubmed/27373219
https://doi.org/10.1016/j.cub.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/25578909
http://www.ncbi.nlm.nih.gov/pubmed/5783911
https://doi.org/10.1371/journal.pone.0086163
http://www.ncbi.nlm.nih.gov/pubmed/24465938
https://doi.org/10.1371/journal.pone.0120535
http://www.ncbi.nlm.nih.gov/pubmed/25830222
https://doi.org/10.1371/journal.pone.0220504


60. Schaalje GB, McBride JB, Fellingham GW. Adequacy of approximations to distributions of test statistics

in complex mixed linear models. Journal of Agricultural, Biological, and Environmental Statistics. 2002

Dec 1; 7(4):512.

61. Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models.

Journal of Statistical Software. 2017; 82(13).

62. Aebischer NJ, Robertson PA, Kenward RE. Compositional analysis of habitat use from animal radio-

tracking data. Ecology. 1993 Jul; 74(5):1313–25.

63. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society.

Series B (Methodological). 1982 Jan 1:139–77.

64. Russo D, Jones G, Migliozzi A. Habitat selection by the Mediterranean horseshoe bat, Rhinolophus eur-

yale (Chiroptera: Rhinolophidae) in a rural area of southern Italy and implications for conservation. Bio-

logical Conservation. 2002 Sep 1; 107(1):71–81.

65. Calenge C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use

by animals. Ecological modelling. 2006 Aug 25; 197(3–4):516–9.

66. Norberg UM, Fenton MB. Carnivorous bats?. Biological Journal of the Linnean Society. 1988 Apr; 33

(4):383–94.

67. Vehrencamp SL, Stiles FG, Bradbury JW. Observations on the foraging behavior and avian prey of the

neotropical carnivorous bat, Vampyrum spectrum. Journal of Mammalogy. 1977 Nov 29; 58(4):469–78.

68. Kalko EK, Friemel D, Handley CO Jr, Schnitzler HU. Roosting and Foraging Behavior of Two Neotropi-

cal Gleaning Bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae) 1. Biotropica. 1999 Jun;

31(2):344–53.

69. Audet D, Krull D, Marimuthu G, Sumithran S, Singh JB. Foraging behavior of the Indian false vampire

bat, Megaderma lyra (Chiroptera: Megadermatidae). Biotropica. 1991 Mar 1:63–7.

70. Tidemann CR, Priddel DM, Nelson JE, Pettigrew JD. Foraging behaviour of the Australian ghost bat,

Macroderma gigas (Microchiroptera: Megadermatidae). Australian Journal of Zoology. 1985; 33

(5):705–13.

71. Vaughan TA. Nocturnal behavior of the African false vampire bat (Cardioderma cor). Journal of Mam-

malogy. 1976 May 20; 57(2):227–48.

72. Fenton MB, Swanepoel CM, Brigham RM, Cebek J, Hickey MB. Foraging behavior and prey selection

by large slit-faced bats (Nycteris grandis; Chiroptera: Nycteridae). Biotropica. 1990 Mar 1:2–8.

73. Norberg UM, Rayner JM. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adap-

tations, flight performance, foraging strategy and echolocation. Phil. Trans. R. Soc. Lond. B. 1987 Sep

16; 316(1179):335–427.

74. Vaughan TA, Vaughan RP. Seasonality and the behavior of the African yellow-winged bat. Journal of

mammalogy. 1986 Feb 25; 67(1):91–102.

75. Fenton MB. The foraging behaviour and ecology of animal-eating bats. Canadian Journal of Zoology.

1990 Mar 1; 68(3):411–22.

76. Reid F. A field guide to the mammals of Central America and Southeast Mexico. Oxford University

Press; 1997.

77. da Fonseca GA, Kierulff MC, Stallings JR. Biology and natural history of Brazilian Atlantic Forest small

mammals. University of Florida; 1988.

78. da Fonseca GA, Robinson JG. Forest size and structure: competitive and predatory effects on small

mammal communities. Biological conservation. 1990 Jan 1; 53(4):265–94.

79. Connell JH. Diversity in tropical rain forests and coral reefs. Science. 1978 Mar 24; 199(4335):1302–10.

https://doi.org/10.1126/science.199.4335.1302 PMID: 17840770

80. Sheil D, Burslem DF. Disturbing hypotheses in tropical forests. Trends in Ecology & Evolution. 2003

Jan 1; 18(1):18–26.

81. Laurance WF. Rainforest fragmentation and the structure of small mammal communities in tropical

Queensland. Biological Conservation. 1994 Jan 1; 69(1):23–32.

82. Gates JE, Gysel LW. Avian nest dispersion and fledging success in field-forest ecotones. Ecology.

1978 Aug; 59(5):871–83.

83. Weatherhead PJ, Blouin-Demers G. Understanding avian nest predation: why ornithologists should

study snakes. Journal of Avian Biology. 2004 May; 35(3):185–90.

84. Kunz TH, Kurta A. Size of bats at birth and maternal investment during pregnancy. InSymposia of the

Zoological Society of London 1987 (Vol. 57, pp. 79–106).

85. Kurta A, Johnson KA, Kunz TH. Oxygen consumption and body temperature of female little brown bats

(Myotis lucifugus) under simulated roost conditions. Physiological Zoology. 1987 Jul 1; 60(4):386–97.

Movement ecology of the carnivorous woolly false vampire bat

PLOS ONE | https://doi.org/10.1371/journal.pone.0220504 July 29, 2019 16 / 17

https://doi.org/10.1126/science.199.4335.1302
http://www.ncbi.nlm.nih.gov/pubmed/17840770
https://doi.org/10.1371/journal.pone.0220504


86. Barclay RM. The effect of reproductive condition on the foraging behavior of female hoary bats,

Lasiurus cinereus. Behavioral Ecology and Sociobiology. 1989 Jan 1; 24(1):31–7.

87. Levin E, Roll U, Dolev A, Yom-Tov Y, Kronfeld-Shcor N. Bats of a gender flock together: sexual segre-

gation in a subtropical bat. PloS one. 2013 Feb 18; 8(2):e54987. https://doi.org/10.1371/journal.pone.

0054987 PMID: 23441148

88. Norberg UM. Flight, morphology and the ecological niche in some birds and bats. InSymp. zool. Soc.

Lond. 1981 (Vol. 48, pp. 173–197).

89. Myers P. Sexual dimorphism in size of vespertilionid bats. The American Naturalist. 1978 Jul 1; 112

(986):701–11.

90. Williams DF, Findley JS. Sexual size dimorphism in vespertilionid bats. American Midland Naturalist.

1979 Jul 1:113–26.

91. Heithaus ER, Fleming TH, Opler PA. Foraging patterns and resource utilization in seven species of bats

in a seasonal tropical forest. Ecology. 1975 Jul 1; 56(4):841–54.

Movement ecology of the carnivorous woolly false vampire bat

PLOS ONE | https://doi.org/10.1371/journal.pone.0220504 July 29, 2019 17 / 17

https://doi.org/10.1371/journal.pone.0054987
https://doi.org/10.1371/journal.pone.0054987
http://www.ncbi.nlm.nih.gov/pubmed/23441148
https://doi.org/10.1371/journal.pone.0220504

