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Abstract: Mosquitoes are a public health concern because they are vectors of pathogen, 

which cause human-related diseases. It is well known that the occurrence of mosquitoes is 

highly influenced by meteorological conditions (e.g., temperature and precipitation) and 

land use, but there are insufficient studies quantifying their impacts. Therefore, three 

analytical methods were applied to determine the relationships between urban mosquito 

occurrence, land use type, and meteorological factors: cluster analysis based on land use 

types; principal component analysis (PCA) based on mosquito occurrence; and three 

prediction models, support vector machine (SVM), classification and regression tree 

(CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 
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to 2012. Mosquito abundance was highest from August to September in both years. The 

monitoring sites were differentiated into three clusters based on differences in land use 

type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. 

These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence 

was highly influenced by land use types. Lastly, the RF represented the highest predictive 

power for mosquito occurrence and temperature-related factors were the most influential. 

Our study will contribute to effective control and management of mosquito occurrences. 

Keywords: urban mosquito; land use type; meteorological factor; random forest 

 

1. Introduction 

Mosquitoes are one of the most notorious and influential insects in the public health field [1]. Even 

though only a few species among the 3000 mosquito species identified in the world are known for 

feeding on human blood, mosquitoes act as virus vectors for human-related diseases such as malaria, 

dengue fever, yellow fever, and West Nile virus, as well as animal diseases such as equine encephalitis 

and canine heartworm [2–6]. For example, Culex pipiens (C. pipiens) complex including C. pipiens 

pallens and C. pipiens molestus, which primarily occur in urban areas, are the primary vectors of West 

Nile virus [7], and Aedes aegypti (A. aegypti) is a key vector for the arboviruses causing dengue and 

yellow fever [8,9]. 

The occurrence and transmission of mosquito-borne diseases can be strongly related to the 

abundance of the host vector (i.e., mosquito) [10,11]. Thus, for effective mosquito control, there have 

been several approaches related to quantifying and/or predicting the occurrence of mosquitoes within 

various spatial and temporal ranges. Udevitz et al. [12] predicted the occurrence of four mosquito 

species (Anopheles punctipennis, Culex territans, Aedes atlanticus, and Psorophora ferox) based on 

physico-chemical factors using stepwise logistic regression; Hales et al. [13] predicted the global 

distribution of dengue fever under current and future climates based on regressions with macroclimatic 

data; Peterson et al. [14] used a machine-learning approach to describe patterns of mosquito 

occurrence through space and time; Kearney et al. [15] predicted climate impacts on the potential 

range of the dengue fever vector, A. aegypti, based on biophysical models of energy and mass transfer; 

and Ruiz et al. [16] evaluated the impact of temperature and precipitation on West Nile virus infection 

in Culex species using random forest. 

These approaches have also highlighted the roles and importance of meteorological factors, natural 

predators, competitors, prey, and mosquito density [17–19]. High tide frequency and low rainfall in the 

late dry season and early wet season led to higher population growth rates in Aedes vigilax, which 

facilitated mosquito breeding and subsequent abundance peaks, especially if low rainfall occurred 

during favorable tides [20]. Precipitation can support and maintain a “comfort zone” for mosquito egg 

laying as well as growth during the immature larval phase even though it can also be detrimental 

depending on the strength, intensity, and amount of precipitation [6,21,22]. Warm temperatures can 
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trigger peak occurrences of mosquitoes [16,23–27], whereas winter freezing can cause high mortality 

of mosquito eggs, larvae, and adults [28]. 

Changes in land use (e.g., urban expansion, industrialization, etc.) have influenced the spread and 

dispersal of mosquitoes. For instance, increased soil moisture due to irrigation development and/or the 

construction of dams promoted a rapid density peak of Culex quinquefasciatus [29]. The continuous 

increase in artificial ecosystems as a result of industrialization and urbanization has enhanced 

successful introduction and establishment of vector mosquitoes. Generally, urban mosquitoes breed in 

open water habitats and stagnant water with high organic content such as sewage ditches, leading to 

successful establishment of mosquito populations [30–36]. 

However, to date, despite several studies on the relationships between environmental variables and 

mosquito occurrence [16,37], there are insufficient studies on various scaled environmental factors 

(e.g., meteorological and land use) and/or their combined influence on the prediction of occurrence 

patterns of mosquitoes in Korea. Thus, we analyzed the occurrence patterns of urban mosquitos based 

on meteorological and land use types. We characterized the environmental conditions that cause higher 

probabilities of mosquito occurrence. We also investigated the importance of meteorological factors in 

predicting the occurrence of mosquitoes according to the land use type. Our study can contribute to 

effective control and risk assessment of mosquitoes. 

2. Materials and Methods 

2.1. Mosquito Data 

The data on mosquito abundance were obtained from a public health center in Yeongdeungpo-gu, 

Seoul, Korea. In total, the data were collected at 12 sites using digital mosquito monitoring systems 

(DMS, Environmental Technology & Development: E-TND) [38] from May 2011 to October 2012. 

The system attracted female mosquitoes by diffusion of CO2 during the night when mosquitoes are active 

(6:00 p.m.–7:00 a.m.), and then the number of mosquitoes attracted to the system were counted using an 

infrared ray LED sensor. After counting the attracted mosquitoes, the system sent the collected data to a 

data server by a CDMA module in real-time. The monitoring system showed high efficiency (R2 > 0.85) 

between manual observation and automatic observation [38,39]. During the data preprocessing 

procedure, we excluded extreme and unrealistic values due to mechanical errors in the mosquito 

monitoring system (daily maximum observed value in waterfront area: 2000 individuals/day; daily 

maximum observed value in non-waterfront area: 200 individuals/day), based on consultation with a 

mosquito expert in the study areas. Missing data (e.g., extreme data, unrealistic data, etc.) were 

calculated with average value of observations before and after a day, then daily monitoring data were 

summarized to weekly data at each site, and then used in further analyses. 

2.2. Environmental Data 

To clarify the relationships between land use types and the occurrence of urban mosquitoes, land 

use data are extracted from each monitoring site within a 250-m buffer on a digital map using  

ArcGIS 9.3 (ESRI, Redlands, CA; http://ww.esri.com). The main components of the land use types in 

our monitoring areas were residential areas (RESD), commercial areas (COMM), culture and sport 
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areas (CULT), public facilities areas (PUBL), artificial grassland (GRAS), inland wetland (WETL), 

bare soil (BARE), inland water (WATE), industrial areas (INDU), and traffic areas (e.g., roadways) 

(TRAF) (Table 1). The land use data were obtained from the Ministry of Environment, Korea. 

Table 1. Characteristics of land use types and meteorological factors at 12 monitoring 

sites. Land use data was extracted from each monitoring site within a 250-m buffer, and 

then the proportions (%) of land use were calculated. 

Category Variables Abbreviation Mean (±SD *)

Land use types 

Residential area (%) RESD 28.4 (±23.8) 

Commercial area (%) COMM 16.2 (±13.2) 

Culture and sport area (%) CULT 7.9 (±13.5) 

Public facilities area (%) PUBL 8.5 (±11.8) 

Artificial grassland (%) GRAS 7.5 (±10.3) 

Inland wetland (%) WETL 0.0 (±0.1) 

Bare soil (%) BARE 2.6 (±4.1) 

Inland water (%) WATE 5.0 (±6.4) 

Industrial area (%) INDU 0.1 (±0.3) 

Traffic area (%) TRAF 23.8 (±6.7) 

Meteorological factors 

Average daily temperature (°C) TempAVE 21.4 (±4.7) 

Maximum daily temperature (°C) TempMAX 25.6 (±4.6) 

Minimum daily temperature (°C) TempMIN 17.7 (±5.2) 

Average daily wind speed (m/s) WindAVE 1.4 (±0.7) 

Average daily precipitation (mm) PrcpAVE 0.3 (±1.1) 

Average daily humidity (%) HumiAVE 70.6 (±13.3) 

Total daily precipitation (mm) PrcpTOT 5.7 (±22.6) 
* SD: standard deviation. 

In addition, we used seven meteorological factors, which can influence mosquito occurrence, 

including temperature (mean, maximum, and minimum), precipitation (average and total), wind speed, 

and humidity (Table 1). These factors were then applied to predict the degree of mosquito occurrence 

(see Data Analysis Section for the detailed explanations). All the meteorological data were obtained 

from three automatic weather stations (AWSs), which were located near the research sites and operated 

by the Korea Meteorological Administration (http://www.kma.go.kr). Three AWSs were located within 

a 2 km distance, and meteorological factor differences among the stations were small (Figure 1). 

2.3. Data Analysis 

2.3.1. Classification of Habitats 

We evaluated the relationships between the occurrence patterns of mosquitoes and land use types in 

two phases. First, a hierarchical cluster analysis was applied to classify the spatial difference in 

monitoring sites based on the proportions of land use types (Table 1) using Ward’s linkage method 

with a Euclidean distance measure. A multi-response permutation procedure (MRPP) [40] was applied 

to test whether or not there were significant differences among the clusters. Second, principal 
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component analysis (PCA) was conducted based on mosquito abundance. Mosquito abundance at each 

site was transformed with natural log (ln (x + 1)). Then, the sites on the PCA ordination map were marked 

as groups from the cluster analysis extracted from the similarities of land use types. PCA is an indirect 

gradient analysis method for seeking the strongest linear correlation structure among variables [41], and it 

is a technique widely used for reducing the dimensions of multivariate problems. In PCA, eigenvalues, 

which explain a portion of the original total variance, are calculated. Each axis score using the 

eigenvector, which contains the coefficients of the linear equation for a given axis, was shown in an 

ordination [42]. Cluster analysis, MRPP, and PCA were performed using PC-ORD 5.0 [43]. 
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Figure 1. Location of sampling sites and automatic weather stations (AWS) in 

Yeongdeungpo-gu, Seoul, Korea. 

2.3.2. Prediction of Mosquito Occurrence 

Mosquito abundance was categorized into four groups based on the boxplot (A: <25%,  

B: 25%–50%, C: 50%–75%, D: >75%) (Table 2). Based on meteorological factor differences, we 

predicted mosquito abundance categories using three machine learning techniques which have been 

widely applied in the prediction of various organisms: Support vector machine (SVM), classification 

and regression tree (CART), and random forest (RF) (e.g., [37]). Predictions were conducted 

separately in each land use type cluster defined by the cluster analysis. SVM is a machine learning 

system that uses a hypothesis space of linear functions in a high-dimensional space and is trained using 

a learning algorithm from optimization theory that implements learning bias derived from statistical 

learning theory [44]. In its classical implementation, it uses two classes (e.g., presence/absence) of 

training samples within a multidimensional feature space to fit an optimal separating hyperplane (in 

each dimension, the vector component is shown as a gray image) [45]. CART uses recursive 

partitioning to split the data into increasingly homogenous subsets, in terms of the dependent variable, to 

yield a binary decision tree, and the decision rules at the nodes use one or more of the independent 

variables [46]. The tree approach has several advantages over traditional classification methods. It is 

better suited to handling non-normal, non-homogeneous data sets [47]. The decision tree in CART 

consists of branching nodes, branches, and leaf nodes. The branching nodes represent the successive 

splits of the data set, each featuring the split variable and its split level. The branches indicate the path 

taken by individual cases, as determined by their value for the split variable. The leaf nodes display the 
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resulting classification [48]. RF is a non-parametric method for predicting and assessing the relationships 

between a large number of potential predictor variables and response variables [49]. It is a  

model-averaging approach that generates hundreds or thousands of random trees built from a set of 

randomly selected predictors and observations [49,50]. After the trees have been built, data are entered 

into them and each grid square is classified by all trees. At the end of the run, the classification given 

by each tree is considered as a “vote”, and the classification of a grid square corresponds to the 

majority vote among all trees [49]. The RF model has demonstrated its learning and predicative power 

as well as its explanatory capacity by demonstrating a high capability for modeling ecological 

problems involving non-linear relationships between data [51]. After the learning process, accuracy 

test was applied to evaluate the predictability among three machine learning techniques. The accuracy 

(i.e., the correct prediction rate) was computed based on the proportion (%) of the correct predictions 

between predicted and observed values [52]. 

The prediction models were conducted in the R computing environment (http://cran.r-project.org) 

with relating packages e1071 [53] for SVM, rpart [54] for CART, and CORElearn [55] for RF.  

In each prediction model, the relative importance of meteorological factors for predicting mosquito 

occurrence was evaluated using the minimum description length (MDL), which measures the ability of 

an attribute to compress the data [56]. The values of MDL were rescaled to range from 0 to 100 to 

compare the relative importance of each environmental factor. 

2.3.3. Statistical Analysis 

The differences in meteorological factors and land use types among clusters were compared using 

the Kruskal-Wallis test (K-W test). Dunn’s nonparametric multiple comparison tests were then used 

only if there were significant differences between clusters. The analyses were conducted using the 

statistical software STATISTICA 7.0 [57]. 

Table 2. Average abundance (per week) of mosquitoes at three different clusters. 

Abundance categories were defined based on the boxplot method and clusters were 

extracted from the Ward’s linkage method with Euclidean distance measures based on land 

use types. 

Abundance Category 
 Cluster  

1 2 3 

A (<25%) ≤21.6 ≤1.0 ≤1.8 

B (25–50%) 21.6–63.3 1.0–2.9 1.8–6 

C (50–75%) 63.3–221.4 2.9–8.9 6–15.8 

D (>75%) >221.4 >8.93 >15.8 

3. Results 

3.1. Mosquito Occurrence 

Mosquito abundance was highest in August and September in both years (Figure 2), showing 

relatively higher values in 2012. The highest abundance was observed at Sites 1, 2, and 3  
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(Site 1: 177.1 ± 228.5 (mean ± SD) individuals/week, Site 2: 86.1 ± 164.8 individuals/week, and  

Site 3: 149.9 ± 168.4 individuals/week). On the other hand, the abundance at Site 4 was much lower, 

ranging from one to six individuals/week during the monitoring period. 
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Figure 2. Changes in mosquito abundance at 12 monitoring sites. Sites 1, 2, 4, and 6 were 

only collected in 2012. 
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Figure 3. Classification of 12 monitoring sites based on the composition of land use types 

through a hierarchical cluster analysis with the Ward’s linkage method using the Euclidean 

distance measures. 

3.2. Relationships between Mosquito Abundance and Land Use Types 

Twelve monitoring sites were classified into three clusters (1–3) based on the differences in land 

use composition in the surrounding area (Figure 3), and the MRPP showed significant differences 
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among clusters (A = 0.32, P < 0.01). Cluster 1 showed the highest values for culture and sport area 

(29.57 ± 7.88%; mean ± SD) and inland water (14.13 ± 1.89%) land use types, whereas these values 

were the lowest in Cluster 3 (Dunn’s test, P < 0.05) (Figure 4). In Cluster 2, the percentage of artificial 

grassland (21.90 ± 3.56%), bare soil (7.20 ± 6.26%), and traffic area (32.30 ± 5.72%) were 

significantly higher than that in other clusters (Dunn’s test, P < 0.05). Residential area was highest in 

Cluster 3 (46.2 ± 20.0%) (Dunn’s test, P < 0.05). Mosquito abundance in each month (from May to 

October) was significantly different among the three clusters (K-W test, P < 0.05) (Figure 5). 

Mosquito abundance was significantly higher in Cluster 1 during all the sampling months. 

The mosquito occurrence differences according to the land use type were also reflected in PCA 

based on the mosquito abundance (cumulative variance of axes 1 and 2: 87.2%) (Figure 6). For 

instance, the monitoring sites in Cluster 1 were ordinated mainly on the left part of the ordination; sites 

in Cluster 2 were on the upper right part, and sites in Cluster 3 were on the right lower part. 

Considering the correlation between PCA axes and the relative ratio of land use types, culture and 

sport area (r = −0.82, P < 0.05) and inland water (r = −0.55, P < 0.05) were negatively correlated with 

axis 1, whereas traffic area (r = 0.68, P < 0.05) was positively correlated with axis 1. 
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Figure 4. Differences in land use types among three different clusters. Land use types:  

(a) residential area (RESD), (b) commercial area (COMM), (c) culture and sport area 

(CULT), (d) public facilities area (PUBL), (e) artificial grassland (GRAS), (f) inland 

wetland (WETL), (g) bare soil (BARE), (h) inland water (WATE), (i) industrial area 

(INDU), and (j) traffic area (TRAF). Different alphabet letters in the figure represent 

significant differences based on Dunn’s multiple comparison tests (P < 0.05). NS indicates 

“not significantly different among clusters”. 
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Figure 5. Changes in mosquito occurrence in each month from May to October in each cluster. 
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Figure 6. PCA ordination based on the differences in mosquito abundance. The land use 

types that showed significant correlation coefficients (P < 0.05) with the first two principal 

axes are shown as straight lines. The line length indicates the magnitude of the correlation 

and the line direction implies a negative or positive correlation with each axis. Land use 

types: culture and sport area (CULT); inland water (WATE); and traffic area (TRAF). 
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3.3. Prediction of Mosquito Occurrence 

In the prediction of the four categories of mosquito abundance calculated from the box plot method, 

RF showed the highest predictive power (accuracy in Cluster 1: 0.80, Cluster 2: 0.71, and Cluster 3: 

0.71) (Table 3), whereas SVM had the lowest predictive power (accuracy in Cluster 1: 0.59, Cluster 2: 

0.61, and Cluster 3: 0.51). In the evaluation of the relative importance of environmental variables for 

the prediction of the four categories, mainly temperature-related factors showed high contributions 

based on the MDL in the RF model (Figure 7). For instance, minimum daily temperature was the most 

important variable for the prediction of mosquito abundance in Clusters 2 and 3, whereas maximum 

daily temperature was the most influential variable in Cluster 1.  

In addition, when only the highest abundance group was predicted, the RF model showed the 

highest prediction power regardless of clusters (i.e., accuracy in Cluster 1: 0.86, Cluster 2: 0.88, and 

Cluster 3: 0.88) (Table 3). Average humidity was the most influential variable for predicting the group 

with the highest mosquito abundance (Figure 6). 
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Figure 7. Relative importance of meteorological factors for the prediction of the category 

(categories) of mosquito abundance in each cluster using the random forest model:  

(a–c) prediction for the four categories of mosquito abundance; (d–f) prediction for the 

category of the highest abundance; and (a,d): Cluster 1, (b,e) Cluster 2, and (c,f) Cluster 3. 

Meteorological factors: average daily temperature (TempAVE; °C), maximum daily 

temperature (TempMax; °C), minimum daily temperature (TempMIN; °C), average daily 

wind speed (WindAVE; m/s), average daily humidity (HumiAVE; %), average daily 

precipitation (PrcpAVE; mm), and total daily precipitation (PrcpTOT; mm). 
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Table 3. Prediction accuracy of mosquito occurrences using three different models: 

support vector machine (SVM), classification and regression tree (CART), and random 

forest (RF). Categories (A–D) of mosquito abundance are given in Table 2. 

Dataset  Model 
 Cluster  

1 2 3 

Four categories of abundance (A–D) 

SVM 0.59 0.61 0.52 

CT 0.61 0.67 0.67 

RF 0.8 0.71 0.71 

Category with highest abundance (D) RF 0.86 0.88 0.88 

4. Discussion  

We analyzed the spatial and temporal differences in urban mosquito occurrence and the 

relationships with meteorological and habitat conditions such as land use type. Some mosquito habitats 

such as Culex spp. are easily found in urban environments, and mosquitoes often emerge in huge 

numbers from sewage and organic enriched water bodies [58]. In this study, we extracted the land use 

type characteristics at 12 monitoring sites using GIS, in order to examine the differences in habitat 

conditions around the monitoring sites. Twelve monitoring sites were classified into three clusters 

based on the land use type composition, which explained the strong relationship between land use 

types and mosquito occurrence. For instance, three monitoring sites (Sites 1–3) in Cluster 1 had 

relatively high mosquito abundance, and they were located near the Anyang stream with significantly 

higher proportions of inland water and culture and sport areas. Mosquitoes such as Culex spp. prefer 

unsanitary conditions and breeding in stagnant water with high organic content (e.g., sewage ditches 

and pools of water) [34,35,59]. Therefore, these sites had suitable habitats (Sites 1 and 2, ponds; and 

Site 3, storm-water pumping station) for mosquitoes. The oviposition behavior of mosquitoes is also 

attracted to water with high levels of organic substrates [31]. Meanwhile, six monitoring sites  

(Sites 7–12) in Cluster 3, which were in a residential area with a low proportion of inland water, 

displayed relatively low mosquito abundance. This indicates that the environmental conditions of these 

sites are not favorable for mosquitoes, although there are potential habitats for mosquitoes such as 

apartments and septic tanks in the residential area [60]. The low abundance might also be caused by 

mosquito control activities of the local government. Meanwhile, Cluster 2 showed significantly lower 

mosquito occurrence, although the monitoring sites have high proportions of grassland areas and 

intermediate proportions of inland water. Mercer et al. [61] reported that large open water bodies or 

running water are not suitable habitats because of the low nutrient concentrations and high predator 

abundance. 

The multivariate techniques used in this study, including cluster analysis for classification and PCA 

for ordination, were useful for characterizing differences in mosquito abundance in different habitats 

over time. Twelve monitoring sites were separated by the first PCA axis, which explained 78.5% of the 

variance, reflecting differences in mosquito occurrences. For example, Cluster 1 with high mosquito 

abundance was located on the left side of axis 1, while other sites in Clusters 2 and 3 with low 

mosquito abundance were on the right part of axis 1. In particular, Site 4, located on the rightmost part 

of axis 1, showed the lowest abundance among the 12 monitoring sites. Meanwhile, the second axis 
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reflected temporal changes in mosquito occurrence, although axis 2 exhibited only explained 8.7% of 

the variance. Sites 1 and 2, which showed a similar temporal pattern, were located in the upper part of  

axis 2, while Site 3, with relatively high abundance in September and October, was located on the 

lower part of axis 2. These occurrence results could also be influenced by meteorological conditions. 

For example, mosquito occurrence was suppressed by falling temperatures with losses of eggs and 

larvae by heavy rains during the monsoon [26,27]. Similar results have been reported for the seasonal 

change in mosquito oviposition activity in Shanghai, China [62] and Jeju, Korea [63]. 

Among the three prediction models in this study, the RF showed the highest prediction power for 

mosquito occurrence in urban areas. Similarly, [64] reported that the RF was the best-suited model for 

defining environmental conditions for several mosquito species, such as Culiseta annulata, Anopheles 

claviger, and Ochlerotatus punctor. Similar results have been documented in ecological studies 

comparing the performance of several prediction models [65,66]. As a prediction model, the RF has 

several advantages over other statistical methods, such as high classification accuracy, a novel method 

of determining variable importance, and the ability to model complex interactions among predictor 

variables [51]. Therefore, the RF offers powerful alternatives to traditional parametric and 

semiparametric statistical methods for the analysis of ecological data.  

The emergence, dispersal, and feeding activity of urban mosquitoes were known to be highly related to 

meteorological factors, including temperature, precipitation, and humidity [59,67]. In our study, 

temperature-related factors such as average daily temperature and minimum and maximum daily 

temperature showed relatively higher importance in the prediction of the four categories of mosquito 

abundance, although there were some differences between clusters. Similarly, Vinogradova [68] 

emphasized the important role of temperature on the occurrence of Culex pipiens pallens. Increases in 

temperature facilitated rapid increase in mosquito populations [69]. The oviposition activity of mosquitoes 

(e.g., Culex pipiens pallens) also strongly depended on seasonal changes in temperature [62,70]. In 

addition, precipitation is particularly important for mosquito oviposition [6,71,72]. In our study, 

precipitation was important in the prediction of the four categories of mosquito abundance, as mosquitoes 

require water for the larval and pupal stages. Meanwhile, humidity was important for predicting the highest 

abundance category. High humidity can increase mosquito survival [73], and relative humidity influences 

longevity, mating, dispersal, feeding behavior, and oviposition of mosquitoes [74]. Bi et al. [75] reported 

that mosquitoes generally survive for a longer period of time and disperse more at higher humidity. 

However, extremely high humidity might indicate incoming rainfall, and therefore limit the dispersal of 

adult mosquitoes [71], and heavy rainfall might destroy the immature stages [67]. 

5. Conclusions  

We analyzed the occurrence of urban mosquitoes according to differences in meteorological and 

habitat conditions. To evaluate the relationship between mosquito occurrence and habitat condition, 

combined multivariate analyses with cluster analysis and PCA were conducted. The monitoring sites 

were classified into three groups based on similarities in land use types, reflecting differences in 

mosquito occurrence in different land use types. Mosquito abundance was the highest in culture and 

sport areas and inland water land use area. The RF showed the highest prediction power for mosquito 

occurrence. The sensitivity analysis of the model showed that temperature-related factors such as 
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average daily temperature, minimum and maximum daily temperature, and precipitation were highly 

important in the prediction of the four categories of mosquito abundance, whereas humidity was 

important for predicting high mosquito abundance. Our research can be applied for the efficient control 

of urban mosquitoes. 
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