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Abstract: Organisms with highly differentiated sex chromosomes face an imbalance in X-linked
gene dosage. Male Drosophila solve this problem by increasing expression from virtually every
gene on their single X chromosome, a process known as dosage compensation. This involves a
ribonucleoprotein complex that is recruited to active, X-linked genes to remodel chromatin and
increase expression. Interestingly, the male X chromosome is also enriched for several proteins
associated with heterochromatin. Furthermore, the polytenized male X is selectively disrupted
by the loss of factors involved in repression, silencing, heterochromatin formation or chromatin
remodeling. Mutations in many of these factors preferentially reduce male survival or enhance the
lethality of mutations that prevent normal recognition of the X chromosome. The involvement of
primarily repressive factors in a process that elevates expression has long been puzzling. Interestingly,
recent work suggests that the siRNA pathway, often associated with heterochromatin formation and
repression, also helps the dosage compensation machinery identify the X chromosome. In light of this
finding, we revisit the evidence that links nuclear organization and heterochromatin to regulation of
the male X chromosome.

Keywords: heterochromatin; dosage compensation

1. Maintaining Appropriate Ratios of Gene Dosage Is Vital for Cells and Organisms

Cells require precise levels of proteins, and this is particularly important for multi-
subunit complexes. Even small deviations of one subunit from normal levels may de-
grade complex function, cause aggregation of unassembled proteins and produce cellular
stress [1]. Although gain or loss of a single copy of one gene is usually without phenotype,
the cumulative effect when many genes are unbalanced by chromosomal aneuploidy can
be fatal. For this reason, highly differentiated sex chromosomes pose a challenge to the
survival of one sex. In flies and humans, females have two gene-rich X chromosomes and
males have one X and a gene-poor Y chromosome. Although the mechanisms used to
balance gene expression are very different in flies and mammals, each selectively modulates
expression from a single chromosome to maintain a consistent ratio of X to autosomal gene
products in both sexes [2,3].

In eutherian mammals, dosage compensation is achieved by inactivating one of the
two X chromosomes in female cells during early embryonic development [4]. X-inactivation
is controlled by a locus on the X chromosome called the X-inactivation center (XIC). The
XIC contains the X-inactive specific transcript (Xist) gene, which encodes a long non-
coding RNA. The Xist transcript is responsible for triggering silencing in cis [5]. This is
accompanied by sequential eviction of RNA polymerase, recruitment of repressive factors
and deacetylation of histones on the inactivated X chromosome, ultimately establishing a
durable inactive state [6,7]. This process is accompanied by a chromosome-wide structural
reorganization and relocation to the nuclear periphery [8,9].

The roundworm Caenorhabditis elegans also compensates by repression, but in this or-
ganism, hermaphrodites (XX) repress transcription from both X chromosomes [10]. This is
accomplished by a condensin-like Dosage Compensation Complex (DCC) that is recruited
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to both X chromosomes [11]. This complex contains proteins specific to dosage compensa-
tion as well as proteins that function in mitotic and meiotic chromosome segregation [12].

In contrast to mammals and C. elegans, Drosophila males increase expression from their
X chromosome two-fold in somatic cells (Figure 1A). The well-studied Male Specific Lethal
complex (MSL complex, also known as the Dosage Compensation Complex or DCC), is
essential for this process (Figure 1B,C). Composed of five proteins and a long, non-coding
roX RNA, the MSL complex is recruited to active genes on the X chromosome where it
acetylates histone 4 on lysine 16 (H4K16ac) [13,14]. Enrichment for H4K16ac decondenses
chromatin and elevates levels of gene expression by facilitating elongation [15–18]. Low
levels of enrichment around the promoter may also increase initiation [19]. Replacement of
H4 by H4K16R blocks H4K16ac and has a strikingly male-biased lethality, demonstrating
the essential role of this modification in a male-limited process [20].
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Figure 1. Dosage compensation in Drosophila equalizes sex chromosome expression between males and females.
(A) Drosophila males have one X chromosome while females have two. Males increase transcription from their X-linked
genes approximately two-fold to equalize expression. (B) The Male Specific Lethal (MSL) complex, composed of five
proteins and a long non-coding RNA, is recruited to CLAMP-bound Chromatin Entry Sites (red) on the X chromosome.
The MSL complex then spreads in cis to nearby transcribed genes by recognition of active chromatin marks. (C) Polytene
chromosome preparation from a wild type male. MSL2, detected by Texas Red, identifies the X chromosome. DNA is
counterstained with DAPI (blue).
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2. Subunits of the MSL Complex Determine Localization and Chromatin Modification

The core of the MSL complex is formed by the Male Specific Lethal 1 and 2 proteins
(MSL1, MSL2). Loss of either MSL1 or MSL2 eliminates X chromosome binding by the
remaining complex proteins [21]. MSL2 is the only strictly male-limited component of the
MSL complex [22–24]. Expression of MSL2 during early development triggers assembly
of intact complexes that localize to the male X chromosome [25]. MSL1 dimerizes and
serves as a scaffold with binding sites for MSL2, Males absent on the First (MOF), and
Male Specific Lethal 3 (MSL3) [26–29]. Mutations that block MSL1 dimerization or interact
with other MSL proteins inactivate the MSL complex. MSL3 contains a chromodomain
that binds the co-transcriptional H3K36me3 mark and is necessary for enrichment of the
MSL complex within the body of active genes [17,30]. MOF is the histone acetyltransferase
responsible for enrichment of H4K16ac on the male X chromosome [31–33]. The fifth MSL
protein, Maleless (MLE), is an RNA/DNA helicase that binds the non-coding roX RNAs
and is presumed to associate with the other proteins through an RNA tether [34,35].

The X-linked roX1 and roX2 genes produce long non-coding RNAs (lncRNAs) that are
dissimilar in size and sequence but functionally redundant for dosage compensation [36].
Loss of either roX transcript alone is without obvious phenotype, but loss of both is male
lethal. In moribund roX1 roX2 male larvae the MSL proteins continue to associate but
relocalize to ectopic autosomal sites, most notably, heterochromatic regions such as the
chromocenter and the 4th chromosome [37,38]. roX1 and roX2 have little similarity but
small inverted repeats near the 3′ end of each transcript share homology and are conserved
in closely related species [39]. These form stem loops that are essential for roX function [40].
Remodeling of the stem loops by MLE creates an alternative base pairing that enables MSL2
binding and integrates roX into the MSL complex [41–43]. MSL3 and MOF are reported to
bind RNA but, unlike MLE and MSL2, show no great preference for roX transcripts [44–46].
Nonspecific RNA-binding by other members of the complex may promote recruitment to
regions of active transcription or contribute to phase separation of the dosage compensated
X chromosome [47]. While it is clear that roX transcripts are critical for exclusive localization
of the X chromosome, exactly how roX achieves this remains unknown.

3. Compensated X Chromosomes Establish Distinct Nuclear Compartments

The remarkable selectivity of the MSL complex for the X chromosome has been the
subject of considerable investigation and speculation. The combined action of recruiting
elements, local spreading and phase separation convert the dosage compensated male
X chromosome into a unique subnuclear domain with distinctive organization, location
and epigenetic marks [47–50]. The principles that guide X recognition and compensation
are not limited to a single species as compensated X chromosomes of mammals and
Caenorhabditis elegans also form subnuclear domains with organization and localization
that are distinct from the autosomes [12,51].

The mammalian X chromosome often associates with the nuclear envelope [52] or with
the nucleolus periphery [53]. Association of the inactive X (Xi) with the Lamin B receptor
facilitates spreading of Xist across the X chromosome and silencing of transcription [9]. As-
sociation with the perinucleolar periphery is also dependent on Xist and maintains the Xi in
its repressive chromatin state [53]. In addition, the Xi exhibits a distinct three-dimensional
structure compared to the active X (Xa), which is also dependent on Xist RNA [54]. The
Xi shows a smoother and rounder shape, a higher compaction of some segments and the
absence of long-range interactions between silenced loci, suggesting that the chromatin
and nuclear territory of the inactivated X are subject to a dramatic reorganization compared
to other chromosomes [54–56]. These features, and the observation that Xist interacts with
several proteins known or predicted to participate in phase separated bodies, support the
idea that phase separation drives the inactivation and unique structure of the Xi [57].

Similar to the mammalian system, compensation in C. elegans is accompanied by a
change in chromatin architecture and a relocation of the compensated chromosomes to
a distinct region of the nucleus [58,59]. Compared to autosomes that interact strongly
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with the nuclear lamina, both hermaphrodite X chromosomes are only loosely attached
to the periphery [60,61]. In contrast, the single male X is more frequently located at
the nuclear periphery than other chromosomes [58]). The organization and localization
of the hermaphrodite X chromosomes is in part regulated by the DCC, which binds to
recruitment sites followed by spreading along the chromosomes. This results in weakening
of peripheral localization and more compacted chromosomal territories. DCC mutations
alter the topology of the compensated X chromosomes to a conformation resembling that
of autosomes [59,62–64].

While mammalian females silence one of their two X chromosomes and C. elegans
hermaphrodites reduce expression of both X chromosomes, male flies elevate expression
of their single X chromosome. Despite this distinction, repressive factors do have roles in
dosage compensation in flies; current evidence suggests that these are likely to contribute
to X recognition or the characteristic organization of the compensated male X.

4. How Does the MSL Complex Find the X?

A few hundred specialized sites on the X chromosome retain partial MSL complexes
in msl3 or mle mutant backgrounds [65,66]. These have been termed Chromatin Entry
Sites (CES) or High Affinity Sites (HAS). Analysis of sequences that retain MSL2 in a msl3
mutant background identified GA-rich MSL Recognition Sequences, or MREs, that are
enriched approximately 2-fold on the X chromosome and necessary for recruitment by
the CES [67,68]. A subgroup of CES, termed PionX, with extended binding sites enable
an earlier recruitment of the complex [69]. A protein that binds MREs, Chromatin-linked
adapter protein (CLAMP), was subsequently identified in a search for factors necessary for
X localization of MSL proteins [70]. Surprisingly, CLAMP is essential in both males and
females, and so must have vital functions outside of dosage compensation [71]. CLAMP
binds MREs throughout the genome in both sexes but only recruits the MSL complex
to specialized CES on the X chromosome. Insertion of a CES on an autosome enables
recruitment of MSL complex and upregulation of nearby genes, revealing that the CES
fulfills a function in addition to CLAMP binding [67,72–74]. The answer may lie in MSL2,
which has a DNA-binding CXC domain that is necessary for X chromosome association and
interacts with the minor groove of the MRE [27,29,75]. Simultaneous binding of CLAMP
and MSL2 is thought to distinguish CES [76].

Interactions between CES establish a higher order architecture unique to the male X
chromosome that facilitates long-range spreading [48,77]. After recruitment to CES, the
MSL complex spreads to active genes nearby [73,78,79]. Local spreading relies on the
MSL3 chromodomain, which binds the co-transcriptional H3K36me3 mark [30,80]. MSL
complex enrichment is most prominent in the body of highly transcribed genes and closely
follows the profile of H3K36me3 accumulation [81,82]. One consequence is that strongly
expressed genes are more perfectly compensated in suboptimal situations, for example,
when autosomal genes are in proximity to a transgene containing recruiting elements [83].

5. The roX Genes Have Multiple, Intertwined Roles in X Recognition

Not only are the roX genes the source of a subunit of MSL complex, but both roX
genes are X-linked and overlap CES [67,68]. As initial assembly of the MSL complex is
proposed to occur on nascent roX transcripts, proximity to a CES would facilitate local
chromatin association [39,73,78]. The proximity of assembly to entry sites suggested that
the roX genes could mark the X chromosome. This idea was particularly appealing as the
mammalian lncRNA Xist, which originates from the inactive female X chromosome and
initiates silencing, functions strictly in cis [84]. Autosomal roX transgenes recruit the MSL
complex to their insertion site and induce local spreading of the MSL complex into nearby
genes [73]. But, unlike Xist, roX RNA is not limited to action in cis. roX RNA transcribed
from an autosomal transgene supports X localization of the MSL proteins and rescues roX1
roX2 males to adulthood [36]. Furthermore, the redundancy provided by hundreds of CES
distributed across the X chromosome ensures that loss of the roX-associated CES is without
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obvious phenotype. While the capacity of roX genes to recruit dosage compensation in
cis is striking, the situation of roX genes on the X chromosome optimizes function but is
not essential.

6. Satellite Repeats, Epigenetic Modifications and X Recognition

Additional features distinguish the X chromosome and contribute to localization of the
MSL complex. Hundreds of copies of an AT-rich repetitive sequence, the 1.688X satellite re-
peats, are strikingly enriched on the X chromosome. These are also termed the 1.688 g/cm3

repeats (CsCl density) or 359 bp repeats (unit length) [85,86]. Unlike most repetitive DNA,
the 1.688X repeats are dispersed in short tandem clusters in euchromatin [87]. They are
often situated close to or within genes on the X chromosome, leading to the proposition
that they play a role in modulation of expression [88]. In addition, the X chromosome has
large blocks of related repeats near the telomere and comprising approximately 10 Mb of
pericentric heterochromatin [89]. When a few 1.688X repeat units are integrated on an auto-
some, the MSL complex is recruited to nearby actively transcribed genes and expression
is increased in males [83]. 1.688X chromatin does not generally attract high levels of MSL
complex binding and these repeats are dissimilar in sequence to the CES, suggesting that
they function in a different manner.

Many 1.688X repeats are transcribed and siRNA originating from these repeats has
been detected in flies, suggesting the potential for small RNA-directed chromatin modifica-
tion [90,91]. The extreme redundancy of 1.688X sequences on the X chromosome makes
probing their function by deletion impossible. To determine if 1.688X siRNA influences
X recognition, flies expressing double-stranded hairpin 1.688X RNA were generated and
found to contain high levels of siRNA [91]. Remarkably, ectopic 1.688X siRNA partially
restored X localization of MSL2 and enabled recovery of 30% of adult males with lethal
roX1 roX2 chromosomes. Single stranded 1.688X RNA had no effect, or enhanced the
male lethality of partial loss of function roX1 roX2 chromosomes. This suggests that a
siRNA-dependent system contributes to the function of the X-linked 1.688X satellite repeats.
Supporting this idea, recruitment of compensation in cis to autosomal 1.688X insertions
was enhanced by 1.688X siRNA [83]. However, recruitment by a roX1 transgene was not,
revealing a key genetic difference in how 1.688X repeats and CES-containing roX genes
recruit dosage compensation.

In accord with a role of small RNA in X recognition, mutations in several siRNA
pathway members act to enhance roX1 roX2 male lethality (Table 1). Reduction in proteins
necessary for siRNA production, including Dicer 1 and -2, enhance roX1 roX2 lethality [92].
Reduction of the effector protein Argonaute 2 (Ago2) further reduces MSL recruitment to
the X chromosome in roX1 roX2 males. Reduction of Ago2, or of several Ago2-interacting
proteins including the H3K9 methyltransferase Su(var)3-9, also reduce the survival of roX1
roX2 males [93]. Su(var)3-9 is responsible for enrichment of H3K9me2 at many 1.688X

repeats and ectopic 1.688X siRNA increases H3K9me2 enrichment around autosomal inser-
tions of 1.688X DNA. In spite of the well-known repressive role of H3K9me2, enrichment
over autosomal 1.688X transgenes is associated with increased expression of genes up
to 140 kb away in male larvae [93]. Taken together, these studies suggest that siRNA-
directed chromatin modification at 1.688X repeats contributes to X recognition. How a
repressive chromatin mark participates in a process that elevates expression from active
genes remains unclear.
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Table 1. Genes that preferentially disrupt the male X chromosome or interact genetically with roX1 roX2. Genes are grouped
by macromolecular complex or molecular process. Many of these are primarily associated with heterochromatin. Mutations
that enhance the roX1 roX2 phenotype are often in genes necessary for siRNA production or in the RITS effector complex.

Complex or Process Gene Functions Mutant Phenotype Citations

Small RNA production
or action

Ago2 siRNA slicer nuclease

Enhances roX1 roX2
male lethality

[92–94]

Rm62 RNA helicase, RNA
processing [93,95]

Dcr1 Small RNA processing [92,93,96,97]

Dcr2 Small RNA processing [92,93,97,98]

Fmr1 RNA-binding,
translational regulation [93,95]

Elp1 RNAPII elongation,
binds Ago2 Dcr-1,-2 [92,99]

Loqs dsRNA-binding,
siRNA processing [92,100]

vig Interacts with Ago1,
Ago2 and HP1a [93,101–103]

barr Interacts with Ago2
and spn-E [93,104]

Smg

RNA-binding,
translation, mRNA

stability, miRNA
production

[93,105,106]

Heterochromatin

Su(var)3-9
H3K9 methyltrans-

feraseHeterochromatin
formation

Polytenized male X
disorganized

Enhances roX1 roX2
male lethality

[93,107]

Su(var)3-7 Heterochromatin
formation [93,107–109]

HP1a
H3K9me2/3 binding

Heterochromatin
formation

Polytenized male X
disorganized [107]

NURF complex

ISWI ATP-dependent
nucleosome remodeler

Polytenized male X
disorganized

Enhances roX1 roX2
male lethality

[110–112],
Meller lab unpublished

Nurf301 Nucleosome
remodeling

Polytenized male X
disorganized [111]

ATAC complex
Gcn5 Histone

acetyltransferase Polytenized male X
disorganized

[113,114]

Ada2a Chromatin binding [113,114]

Limit compensation
Ocm Polycomb group

interactions Suppresses roX1 roX2
male lethality

[115,116]

Mtor Nuclear pore subunit [117]

Misc.

JIL-1
Dual kinase, boundary

elementEnriched on
male X chromosome

Polytenized male X
disorganized [118,119]

upSET

Maintains
heterochromatin

Binds MSL3, HDAC1
and SIN3-A

Enhances roX1 roX2
male lethality [93,120–122]
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7. Proteins That Bind RNA Interact Genetically with roX1 roX2

Genetic screens for enhancement of roX1 roX2 lethality identified several additional
genes with roles in small RNA silencing and chromatin organization (Table 1) [92,93]. These
include the RNA-binding protein vasa intronic gene (vig), which interacts with HP1a, Ago1
and Ago2 [101,102]. Mutations in fmr1, an RNA-binding protein and possible RITS complex
component, and smg, encoding an RNA-binding protein that modulates translation and
interacts with Ago1 and Ago2, also enhance roX1 roX2 male lethality [123]. The condensin
subunit barren (barr) is necessary for proper chromosome segregation and interacts with
small RNA factors, including Ago2 and spn-E [104]. Mutation of barr similarly enhances
roX1 roX2 male lethality. A recurring theme shared by these factors is the ability to bind
RNA or interact with small RNA effector proteins. Some possible intersections between
these factors and the dosage compensation machinery are depicted in Figure 2. But,
as many of these proteins have extensive interaction networks, the basis of phenotypic
enhancement may be complex. It is important to note that limited, directed screens of
candidates identified the genes presented in Table 1. It is expected that many additional
factors capable of enhancing roX1 roX2 male lethality have yet to be identified.
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8. Heterochromatin and the Male X Chromosome

Discovery of a link between repressive marks and the dosage compensated male X
chromosome was unexpected but far from unusual. In fact, the structure of the polytenized
male X chromosome is selectively disrupted by under- or overexpression of any one of
several proteins with established roles in heterochromatin formation (Table 1). Reduced
levels of HP1a disorganize banding of the male polytene X chromosome, producing a short,
bloated chromosome [107]. HP1a is also modestly enriched along the male X [124–126].
The morphology of the polytene male X chromosome is similarly affected by reduction of
Su(var)3-9 and by reduction or overexpression of Su(var)3-7, a heterochromatin protein that
interacts with HP1a and Su(var)3-9 [107,108,127]. The bloated X phenotype of Su(var)3-7
or Su(var)3-9 mutants is rescued by mutations in MSL complex members, revealing a
genetic interaction with dosage compensation [107]. Reduced levels of Su(var)3-7 cause
displacement of the MSL complex to the chromocenter and acetylation of H4K16 in these re-
gions [109]. Conversely, when Su(var)3-7 is overexpressed, the MSL proteins and H4K16ac
become mislocalized to autosomal regions. Although extreme overexpression disrupts
banding of all chromosomes, the male X is most sensitive.

In wild type males the MSL complex is exclusive to X euchromatin, but manipulation
of the levels of components of this complex produce ectopic localization, often to hete-
rochromatic regions. For example, overexpression of MSL1 and MSL2 produces ectopic
binding of MSL proteins at autosomal sites and the chromocenter [128]. Furthermore,
males with roX1 roX2 mutations have reduced localization of the MSL proteins to the X
chromosome but accumulation at autosomal sites, most prominently the 4th chromosome
and chromocenter [36,38]. This is accompanied by a shift in H4K16ac from the X chromo-
some to the fourth chromosome and chromocenter [37]. The basis of the affinity of MSL
proteins for heterochromatin remains unresolved.

9. Chromatin Remodeling and the Male X Chromosome

The male X chromosome is similarly sensitive to partial loss of function mutations
in the NURF and ATAC complexes, which act to restore regular nucleosome arrays and
acetylate histones, respectively [113,129]. Loss of NURF subunits Nurf301 or the ISWI
ATPase disrupt the architecture of the male X, which appears less condensed than normal,
something not seen in females [110,111,130]. Binding of the MSL complex and acetylation
of the male X chromosome is retained in both mutants. Normal polytenized structure is
restored by mutation of mof or both roX genes, demonstrating that disruption of polytene
structure requires the activity of the MSL complex [110,111]. Mutations in the Gcn5 histone
acetyltransferase or the Ada2a subunit of the ATAC complex also selectively disrupt the
polytenized male X chromosome [114]. Once more, the X chromosome phenotype is
dependent on the action of the MSL complex. The NURF and ATAC complexes regulate
common targets and cooperative interactions between these complexes have been noted
(Figure 2; [114]). Disruption of the male X by loss of ATAC or NURF function may thus
involve the same molecular pathway.

10. The Dual kinase JIL-1 Maintains Interphase Chromatin Structure

The male X is enriched for H3Ser10 phosphorylation (H3S10p) catalyzed by the dual
kinase JIL-1 [118]. JIL-1 forms a heterodimer with Jasper, a protein that binds H3K36me3,
the co-transcriptional mark also recognized by MSL3 [131]. This results in an enrichment of
JIL-1 in the bodies of transcribed genes in a pattern overlapping that of the MSL complex.
Pull down of chromatin-bound MSL complex followed by mass spec identified JIL-1, a find-
ing explained by the proximity of these factors [132]. Loss of JIL-1 preferentially reduces
male survival and, similar to the factors already described, induces shortening of polyt-
enized chromosome arms and disruption of banding [118,119]. More severe JIL-1 alleles
disrupt all chromosomes, but the dosage compensated male X is most sensitive. JIL-1 also
interacts with proteins enriched in interbands, Chromotor (Chro) and Skeletor [133,134].
In accord with a role in nuclear organization, JIL-1 is reported to interact with nuclear
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lamins [135]. Association with active chromatin may be the basis of another role of JIL-1,
enforcement of barriers between heterochromatin and euchromatin [136]. In JIL-1 mutants,
pericentric H3K9me2 spreads into euchromatic chromosome arms, most prominently on
the X chromosome. Interestingly, spreading of H3K9me2 into the X chromosome is also
observed in females and must therefore be independent of the activity of the MSL complex.
In addition to their interphase roles, JIL-1, Chro and Skeletor dissociate from chromosomes
during mitosis and, along with another JIL-1 interacting protein Megator (Mtor), assemble
with the spindle matrix [137]. It is possible that some interactions noted in Figure 2 only
occur in mitotic cells.

11. A Governor to Limit over Activation?

Many of the factors described above have been linked to repression. It is tempting
to speculate that they act to limit overexpression. However, the genes that have been
found to limit activation by the MSL complex lack an obvious link to heterochromatin.
One is over compensating males (ocm), a protein with a role in blood cell differentiation that
interacts with transcription factors and Polycomb Group proteins [115,138,139]. The other
is Megator (mtor), which, in addition to association with JIL-1, has been identified in pull
downs of the MSL complex [50]. Mtor is a component of the nuclear pore basket but is not
limited to the nuclear periphery, associating with active chromatin during interphase and
the spindle matrix during mitosis [140,141]. In accord with roles in limiting activation, mu-
tations of ocm or mtor suppress the male lethality of msl or roX1 roX2 mutants [115,117]. In
contrast, reductions in Su(var)3-9, Su(var)3-7, or siRNA pathway genes enhance roX1 roX2
male lethality [92,93]. This reveals that, rather than limiting activation, these factors support
normal compensation of the male X chromosome.

12. Heterochromatin and Dosage Compensation Are Integrated on the
4th Chromosome

A role for repressive factors in the context of dosage compensation is not unique to
the X chromosome. The small 4th chromosome is a fine-grained mosaic of heterochromatin
interspersed with euchromatin, while other fly chromosomes have a more defined segrega-
tion of heterochromatin to telomeres and pericentric regions [142]. In spite of the autosomal
status of the 4th chromosome, it is capable of dosage compensation and adults that are hem-
izygous for the fourth are recovered. The discovery that the 4th chromosome is an ancestral
X chromosome suggests that an ancient dosage compensation system retains function [143].
Interestingly, the Painting of Fourth (POF) protein, which coats the 4th chromosome in a
manner reminiscent of the MSL proteins on the X chromosome, is necessary for survival
of flies with a single 4th chromosome [144,145]. POF binds nascent RNA and is enriched
within gene bodies [146]. Surprisingly, POF also interacts with HP1a and the SETDB1/egg
H3K9 methyltransferase, both strikingly enriched on the 4th chromosome [147,148]. Al-
though methylation on H3K9 is associated with repression, genome-wide examination of
SETDB1/egg localization suggests that, unlike Su(var)3-9, it tends to associate with active
genes and insulators that are frequently unmethylated [149].

The HP1a and POF binding profiles overlap and HP1a requires POF for wild type
levels of recruitment to the 4th chromosome [144]. Remarkably, depletion of either POF
or HP1a reduces expression of 4th-linked genes [146,150]. Both studies identify a charac-
teristic, low pausing index for 4th linked genes that is disrupted by loss of HP1a or POF,
suggesting that enrichment of these proteins within gene bodies enables the transcrip-
tional machinery to advance. Facilitation of transcript elongation is a strategy similar to
that employed by the MSL complex. While H4K16ac enrichment by the MSL complex
is associated with chromatin de-condensation and elevated expression, how HP1a and
POF modulate transcription is unknown. HP1a has also been shown to bind RNA during
induced transcription of highly expressed genes and exert a positive effect on expression
in this context [151]. Despite the enrichment of HP1a on the male X chromosome and
the role of this protein in maintaining organization of the polytenized male X, a genetic
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interaction with roX1 roX2 has not yet been detected, and the role of this protein in dosage
compensation remains speculative.

13. Genetic Interactions between roX Genes and Male Heterochromatin

Loss or reduction in heterochromatin proteins often reduces the expression of genes
that reside in and rely on a heterochromatic environment [152]. Interestingly, genes in
autosomal heterochromatin decrease in expression in roX1 roX2 males [153]. Reduced
expression is particularly pronounced on the 4th chromosome, where nearly every gene is
reduced by up to 50%. Loss of roX RNA does not affect localization of POF or the survival
of flies with a single 4th chromosome, eliminating the possibility of a dual role for roX RNA
in dosage compensation of the X and 4th chromosomes. Providing further evidence of hete-
rochromatin disruption is a striking suppression of position effect variegation (PEV) in roX1
roX2 males. Surprisingly, this is not due to mislocalization of MSL proteins. Mislocalization
of these proteins and H4K16ac enrichment in heterochromatic regions is recapitulated in
roX1 roX2 females forced to express MSL2, but no misregulation of heterochromatic genes
or suppression of PEV occurs in these females [153]. Suppression of PEV in roX1 roX2 males
does not require a Y chromosome or the absence of Sexlethal (SXL), the master regulator of
sexual differentiation. Instead, it appears to be regulated by the number of X chromosomes.
Specifically, deletion of pericentric 359 repeats from the female X chromosome, or mutation
of topoisomerase 2, a protein enriched at these repeats, “masculinizes” female heterochro-
matin and enables suppression of PEV in roX1 roX2 females [154]. These studies support
the idea that heterochromatin is sexually dimorphic, and that components of the dosage
compensation system are necessary for normal heterochromatin function in males. The
precise mechanism is unclear, but as maternally provided MSL proteins bind throughout
the genome in early embryos, it is possible that they participate in establishment of sexually
dimorphic heterochromatin [155]. These studies highlight the affinity of MSL proteins for
heterochromatin and the complex, multifaceted relationship between dosage compensation
and heterochromatin.

14. Full Compensation Involves Multiple Mechanisms

The MSL complex does not act alone. Inactivation of the MSL complex results in
only partial loss of dosage compensation. X-linked gene expression in S2 cells is reduced
by 22–40% following knock down of MSL2 and expression in male larvae mutated for
both roX RNAs is reduced by 26% [37,79,82]. Additional mechanisms must therefore
contribute to full compensation. A leading candidate is a genome-wide system that buffers
aneuploidy, sometimes referred to as autosomal compensation [2,156]. Our understanding
of autosomal compensation is based on descriptive studies that have identified features
of genes, or rearrangements, that make them more or less subject to buffering in response
to changes in copy number [157,158]. Despite the absence of molecular detail about this
process, features of aneuploidy buffering suggest that systems of repression could play a
role. Genes with low expression that are situated in repressive regions associated with the
nuclear envelope are most effectively compensated in response to loss of a homolog [159].
These authors propose that unpaired regions are released from the nuclear envelope and
relocate to regions more favorable for transcription. Buffering genes with low expression
could complement the effect of the MSL complex. Recruitment and acetylation by the MSL
complex is robust for X-linked genes that exceed a minimum expression level [14]; however,
autosomal genes near integrated recruiting elements are only efficiently compensated when
highly expressed [83].

Other evidence points to a stage-specific mechanism for compensation. Zygotic tran-
scripts from some X-linked genes are compensated in embryos prior to the formation of the
MSL complex [160]. Many X-linked genes are unaffected, but dose-sensitive developmental
genes that participate in embryo patterning are modulated. A mechanistically different
post transcriptional mechanism is suggested by the observation that mRNAs of many
X-linked genes, some with developmental roles, have SXL binding sites in their untrans-
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lated regions [22]. This is intriguing as SXL binding to the MSL1 and MSL2 messages
achieves partial or full repression of translation in females. Taken together, these findings
support the idea that full compensation is achieved by the combined action of the MSL
complex in males, a genome-wide but poorly understood buffering system, translational
repression in females and adjustment of transcript levels from X-linked developmental
genes in early embryos. It is likely that individual genes are compensated by different
mechanisms depending on developmental stage, sex and tissue.

15. Systems of Dosage Compensation Converge on Nuclear Organization

Dosage compensation occurs within a highly structured nucleus and intersects with
virtually every aspect of chromatin regulation. Mutations that influence histone modifi-
cation, nucleosome remodeling, heterochromatin formation and small RNA selectively
disrupt the male X chromosome or interact genetically with mutations that degrade MSL
complex function. Other genes that influence compensation highlight a potential role for
elements of higher order nuclear organization, including insulators, boundary elements,
the lamina and nuclear pore proteins. Disruption of the structure of the polytenized male
X chromosome upon reduction of many of these proteins is dependent on MSL complex
activity. This striking concurrence suggests that these factors influence a common pathway,
but the diversity of function of the many factors sharing this phenotype confounds a
simple hypothesis.

The repressive nature of many genes associated with disruption of the polytenized
male X chromosome suggests a system to limit upregulation. In contrast to this idea,
reduction in the function of several heterochromatin proteins, or the siRNA pathway,
enhances the male lethality of roX1 roX2 mutations. This leads us to the counterintuitive
conclusion that these genes promote, rather than limit, dosage compensation of the X
chromosome. We propose that the involvement of several repressive factors in Drosophila
dosage compensation stems, in part, from the involvement of the siRNA pathway and
1.688X repeats in X chromosome identification [91]. This does not rule out additional roles
for heterochromatic factors in maintaining normal structure of the X chromosome and fails
to explain the well-documented affinity for MSL proteins and heterochromatin. Interest-
ingly, genes that have been found to limit X upregulation have no apparent association
with heterochromatin. One of these, ocm, interacts with Polycomb Group proteins and
transcription factors with developmental roles. The other, mtor, has multiple roles as a
nuclear pore protein, a component of active interphase chromatin and as part of the mitotic
spindle matrix. There is currently no clear link between Ocm and Mtor, and the mechanism
through which they limit X activation is unknown.

Although the strategy of sex chromosome compensation is very different in other
organisms, the important role of nuclear organization in modulation of an entire chromo-
some is a common feature of this process. For example, inactivation of a mammalian X
chromosome takes advantage of preexisting long-range contacts and the X chromosome
territory [51]. Nuclear pore proteins, and the position of compensated X chromosomes
in the nucleus, contributes to modulation of expression in C. elegans [58]. Understanding
of how these systems are integrated to achieve the robust and selective modulation of an
entire chromosome is an important future goal.
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