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Single-molecule sequencing detection of N6-
methyladenine in microbial reference materials
Alexa B. R. McIntyre1,2, Noah Alexander1, Kirill Grigorev1, Daniela Bezdan1, Heike Sichtig3, Charles Y. Chiu 4,5 &

Christopher E. Mason 1,6,7,8

The DNA base modification N6-methyladenine (m6A) is involved in many pathways related

to the survival of bacteria and their interactions with hosts. Nanopore sequencing offers a

new, portable method to detect base modifications. Here, we show that a neural network can

improve m6A detection at trained sequence contexts compared to previously published

methods using deviations between measured and expected current values as each adenine

travels through a pore. The model, implemented as the mCaller software package, can be

extended to detect known or confirm suspected methyltransferase target motifs based on

predictions of methylation at untrained contexts. We use PacBio, Oxford Nanopore,

methylated DNA immunoprecipitation sequencing (MeDIP-seq), and whole-genome bisulfite

sequencing data to generate and orthogonally validate methylomes for eight microbial

reference species. These well-characterized microbial references can serve as controls in the

development and evaluation of future methods for the identification of base modifications

from single-molecule sequencing data.
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N6-methyladenine is the most common modified base in
bacterial DNA and plays roles in restriction modification
(RM) systems1, new strand DNA repair2, and regulation

of gene expression3,4. Methyltransferase mutations and over-
expression can affect virulence5,6 and interactions between bac-
teria and host cells7. No enzymes are known to demethylate DNA
m6A in vivo8 but competitive protein binding at target sites can
heritably affect methylation in newly replicated cells and thus
modulate transcription4. Frame-shift mutations at repeat regions
in methyltransferase genes can also lead to changes in the
expression of genes involved in cell wall formation and repair
pathways9,10. These phase variation systems can help bacteria
evade mammalian host defenses11,12, but it is unknown whether
methyltransferase frame-shifts contribute to adaptation to other
environments.

Methyltransferases couple with restriction enzymes to form
RM systems that protect bacteria through the selective recogni-
tion and cleavage of unmethylated motifs in foreign DNA while
the same motifs in bacterial genomes are shielded by methylation.
RM systems differ in target site characteristics and whether their
restriction enzymes and methyltransferases are consecutively or
separately encoded, which may affect their efficiency13,14. Type I
target sites are typically symmetrical sequences separated by six to
seven arbitrary nucleotides for a total length of ten to sixteen
bases, type II recognition sites often palindromic and between
four and six bases, and type III sites asymmetrical and between
four and six bases in length. Unlike types I and II, type III
methyltransferases catalyze methyl group addition to only a single
strand. Based on known motifs, near homologs among types I
and III methyltransferases target the same sites14. However, not
all methyltransferases are associated with active restriction
enzymes; Dam in Gammaproteobacteria and CcrM in Alpha-
proteobacteria play roles in replication repair and the cell cycle,
respectively8.

Prior to the development of single molecule sequencing,
methods to detect m6A in DNA included restriction digests or
sequencing after immunoprecipitation. Immunoprecipitation can
reveal methylated areas, but not identify individual bases, while
restriction enzyme-based methods are limited to particular motifs
and many are unable to differentiate between hemimethylation
and symmetrical methylation of both strands15. Alignment of
data from single molecule sequencers and comparison of kinetic
data to a model or an unmodified reference can more precisely
localize modifications. The single-molecule, real-time (SMRT)
analysis pipeline for PacBio sequencing data uses a t-test to
compare DNA polymerase kinetics surrounding methylated bases
and models for unmethylated bases, measured as an inter-pulse
duration (IPD)6,16–20. Multiple groups have also found that small
changes to electrical signal as DNA travels through nanopores
can reveal the presence of base modifications using sequencers
developed by Oxford Nanopore Technologies (ONT)21–23.
Methods of detection have so far focused on common mamma-
lian modifications, specifically looking at the eukaryotic contexts
of homo-methylated CG-repeats21 and 5-methylcytosine (m5C)
versus 5-hydroxymethylcytosine (hm5C)22, and have also been
used to investigate other modifications, including m6A, albeit at
lower accuracy (~70% based on published reports22,23). However,
there are no available reference materials that have been analyzed
with multiple single-molecule sequencing methods for evaluating
the accuracy, validity, or detection limits of modified bases.

To address this need, we develop a method for detecting
modified bases in ONT data, and generate PacBio, ONT, and
Illumina data from a set of reference strains to complete de novo
assemblies and methylation profiles for these strains. Specifically,
using known motif sites confirmed with orthogonal PacBio data
generated for ONT-sequenced E. coli DNA samples24, we identify

sets of methylated and unmethylated positions in the E. coli
MG1655 K12 genome to train and test binary classifiers for the
detection of m6A in nanopore data based on deviations between
observed and expected currents. To further validate the best-
performing classifier, we generated ONT, PacBio, and MeDIP-seq
data to identify and compare detection of m6A in individual
strains from a commercially available microbial reference com-
munity (ZymoBIOMICS) that includes five gram positive bacteria
(Bacillus subtilis, Enterococcus faecalis, Lactobacillus fermentum,
Listeria monocytogenes, and Staphylococcus aureus), three gram
negative bacteria (Escherichia coli, Pseudomonas aeruginosa, and
Salmonella enterica), and two fungal species (Cyptococcus neo-
formans and Saccharomyces cerevisiae).

Results
Modeling m6A effects on nanopore current. We first demon-
strate that the effects of DNA methylation on template strand
sequence Phred-like quality scores vary depending on the version
of the technology and base caller used, and that there is no
consistent decrease in quality at modified bases (Supplementary
Figure 1). ONT provides an estimated mean and standard
deviation for currents corresponding to individual 5-mers or 6-
mers, which were used for base calling with hidden Markov
models25, before ONT switched to recurrent neural network
algorithms. These distributions assume that five or six bases in
and around the pore affect the current through the pore at a given
time point. Previous modification callers built similar distribu-
tions for methylated 6-mers, although Rand et al.22 noted that
these distributions were less distinguishable for m6A than m5C.

Across the extended sequence context surrounding an
individual methylated site, shifts from the model differ in
magnitude and direction depending on context (Fig. 1a, b). We
looked at current deviations (observed-expected values) using a
sliding window approach, in which each window slides over the
six 6-mers composing an 11-mer surrounding an adenine. We
were initially concerned that longer sequence contexts would
require prohibitively large and diverse datasets for training, since
the number of 11-mers that contain a single central modified
position exceeds a million (410). Nevertheless, we hypothesized
that patterns in current shifts would be shared enough to predict
m6A; overall for R9 E. coli data, methylation at the 4th and 5th
positions of a 6-mer in particular tended to increase the current
with respect to the model values (Figure 1c). We thus used
current deviations as features to train four binary classifiers
(Fig. 2a), including neural network, random forest, naïve Bayes,
and logistic regression.

The neural network classifier produced the highest accuracy,
although a random forest model performed comparably (Supple-
mentary Figure 2). Tested on a second data set from the same E.
coli strain produced in a second lab, the model achieved 81.3%
accuracy (compared to 80.8% for the random forest model) using
all quality levels of reads and comparing methylated positions to a
random selection of unmethylated sites in the same genome
(Fig. 2b, Supplementary Table 1). The Spearman correlation
between the probability estimates from the top two predictors,
neural network and random forest, was high, at 0.93 (Supple-
mentary Figure 2D). A receiver operator characteristic curve
showed the changes in accuracy at varying thresholds for
classification (Fig. 2c). Accuracy improved to 84.2% for higher
quality reads (mean quality > 9) and decreased to 77.8% with a
maximum of two skips per prediction, or 6-mers for which the
sequencer missed recording a current value. When summarizing
predictions at single sites with a minimum of 15× coverage, the
classifier achieved 95.4% accuracy and an area under the curve
(AUC) of 0.99, with comparison to true negatives drawn from
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unmethylated positions, although these estimated accuracies did
not account for bias towards specific sequence contexts, as
discussed below. We then tested the hypothesis that methylation
would affect a similar range of surrounding current levels as the
canonical bases in the ONT models (six) and found that using
four or eight 6-mers surrounding a base reduced classification
accuracy (Supplementary Figure 2A and C).

We further tested mCaller on a second base modification found
in more variable contexts, m5C. Using data from samples lacking
methylation (through PCR amplification) and samples methy-
lated using the bacterial methyltransferase M. Sssl from Simpson
et al.21, we trained and tested the method for the identification of
5-methylcytosine in CG contexts. We again found features
sufficiently similar across contexts for prediction, with per-read
accuracy of 82.2% (Supplementary Figure 3).

Validating reference material RM targets. For bacterial species
like Escherichia coli in which one enzyme (Dam) is responsible
for most methylation and specifically targets GATC motifs,
similarity among training sequence contexts could bias a model.
We used PacBio sequencing for seven of eight bacteria (Table 1)
and one of two fungi in the ZymoBIOMICS Microbial Com-
munity Standard to evaluate the accuracy of an E. coli-trained
model for R9.5 nanopore data in a wider variety of contexts.
Nineteen motifs were predicted based on the PacBio data and the
overlap was taken between motif sites and MeDIP-seq peaks
(Fig. 3a); previous base modification detection from nanopore
data has shown variable success depending on motif23. To detect
modifications at these sites using per-position, multi-read pre-
dictions from mCaller, we trained an AG model using
GAGNNNNNTCTT sites in the Zymo E. coli strain and left AA,
AC, and AT sites pooled under a separate model, which led to
sufficiently clear enrichment of most target motifs to confirm
their identification. For Bacillus subtilis, in which we annotated a
type I RM system with perfect sequence homology to that of the
nearly identical strain Bacillus subtilis T30 (99.99% genome
pairwise identity)26, we compared enrichment for 1032 unique
methyltransferase target sequences from REBASE27 using AME28.
The test returned a corrected p-value for the known motif of this
RM system (CNCANNNNNNNRTGT/ACAYNNNNNNNTGN
G, one-tailed Fisher’s exact test p= 1.56e−154) over a hundred
orders of magnitude lower than that of the next most significant
motif (CGAYNNNNNNNRTRTC, p= 6.18e−13), showing the

detection of known m6A motifs is possible with nanopore data
alone. Across species, calculations of percent m6A in the reference
species based on motif sites detected as methylated by PacBio
correlated highly (Spearman ρ= 0.97, p= 6.54E−6) with
experimental values measured using an ELISA kit (although the
assay appeared to consistently overestimate m6A levels), further
increasing our confidence that most motifs were correctly iden-
tified (Fig. 3b).

After annotating putative methyltransferase genes in the ten
strains, we looked for evidence of phase variation by scanning for
simple sequence repeats according to previously described
criteria10. We found widespread homopolymeric tracts (Table 1).
Most were six to eight bases and shorter than repeats previously
connected to phase variation in Helicobacter pylori methyltrans-
ferases (10–13 bases11), and involved A/T homopolymers, which
were associated with weaker candidates for true phase variation in
Neisseria gonorrheae10. In Pseudomonas aeruginosa, we detected
neither methylation using ELISA nor methylated motifs using
PacBio and nanopore data. We found no length polymorphisms
for a five GC-dinucleotide repeat in the putative P. aeruginosa
methyltransferase gene across 132 strains aligned using BLAST,
suggesting phase variation does not explain the lack of
methylation observed in our strain. Notably, the only region
annotated as a potential “Adenine specific DNA methylase Mod”
using RAST lacked either of the canonical catalytic motifs for
amino methyltransferases, DPPY, found in 1262 of 2065 (61.1%)
of unique adenine methyltransferase sequences in REBASE, and
NPPY, found in an additional 680 (32.9%), providing further
evidence that this reference species lacks a functional m6A
methyltransferase.

We next combined mCaller with PacBio detection methods
and MeDIP-seq to refine predictions of methyltransferase fidelity.
Both Mod (methyltransferase) and Res (restriction) enzymes are
thought to be highly specific, although there are reports of off-
target effects with overexpression29. In cases where a Mod
enzyme is linked to a nonfunctional Res enzyme, methylation is
estimated to occur at more variable contexts or at a lower fraction
of sites30,31, and a non-specific E. coli methyltransferase has
recently been described32. Previous analyses of methyltransferase
target sites based on PacBio data report high, but not complete,
methylation of target motifs for most methyltransferases, along
with limited off-target effects16,31. In each of the strains analyzed,
adenines marked as methylated by PacBio that did not
correspond to motifs were called as methylated by mCaller only
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Fig. 1 m6A methylation affects nanopore signal. Picoampere currents deviate from model values as the DNA surrounding a methylated adenine is pulled
through a nanopore. a, b The deviations vary according to the position of the adenine within the pore and its surrounding sequence context. c Across all
sequence contexts, the greatest deviations for R9 data occurred with the adenine in the fourth or fifth position among six nucleotides considered by the
model in and around a pore. Boxplot center lines show medians and whiskers 1.5× interquartile range. Outliers are truncated at +/− 20 pA to better
visualize data trends
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at low rates (~10–20%) and most did not overlap with MeDIP-
seq peaks (Fig. 3c). Because MeDIP-seq does not reach single base
resolution, a higher percentage of peaks in strains with more m6A
(E. coli and S. enterica) also overlapped non-motif sites. The low
identification rates from mCaller and MeDIP-seq suggest that
most non-motif sites are false positives, and indeed the low
average IPD ratios and reproducibility from PacBio data support
this result (Supplementary Table 2).

Before nanopore sequencing, no single-molecule sequencing
validation was available for PacBio predictions of m6A motifs.
For questionable motifs and motifs identified as adenine-
methylated at <90% of sites by PacBio, we plotted nanopore
signal changes surrounding motif sites and compared to the
same motifs in P. aeruginosa as a negative control (Supple-
mentary Figure 4). Smaller deviances from model values were
seen in nanopore current measurements for BATGCATV
motifs missed by PacBio than detected in S. enterica, suggesting
incomplete methylation at this motif and potentially a role
independent of RM. By contrast, we found a consistent decrease
with adenine at the 5th position for GATCGVNY in S. aureus,
indicating PacBio may underestimate modification at this
motif. With PacBio, results varied between our two sequencing
runs and depending on the SMRT Tools parameters used, with
modifications at the GATCGVNY motif and similar motifs
alternately identified as m6A, m4C, unknown A, or unknown T,
but it was unclear which base was modified. To test which base
was modified, we used MeDIP-seq, which did not detect high
levels of m6A at these sites (30 out of 399 fell under peaks), and
bisulfite sequencing, which did detect cytosine methylation (388
out of 399 sites had coverage of ≥100× and ≥50% methylation).
However, standard bisulfite sequencing does not distinguish
well between m4C, m5C, and hm5C, therefore we cannot
confirm which cytosine modification is present33.

Most TTAANNNNNNTAGA motif sites in S. aureus were not
called by mCaller, but changes from model values were
comparable to those for its reverse complement,
TCTANNNNNNTTAA, indicating m6A is likely present at
TTAANNNNNNTAGA. In E. faecalis, the putative motifs
CTCCAG and CTKVAG showed little change in signal at any
position in sites identified or missed by PacBio but MeDIP-seq
suggested partial methylation of CTCCAG and CTKVAG motifs.
Positions identified as m6A by PacBio were significantly more
likely to fall under MeDIP-seq peaks than positions missed by
PacBio (CTKVAG two-tailed Fisher’s exact test odds ratio= 4.35,
p= 8.2e−117), suggesting these are true m6A motifs.

We next compared mCaller performance to the m6A model for
Tombo, an updated version of the tool developed by Stoiber
et al.23 and the only other tool with an m6A model currently
available (Fig. 4). Results varied for both tools depending on
motif, with mCaller generally increasing accuracy for trained
motifs (GATC AUC of 0.91 for mCaller vs. 0.83 for Tombo,
AAGANNNNNCTC AUC of 0.71 for mCaller vs. 0.86 for
Tombo, and GAGNNNNNTCTT AUC of 0.90 for mCaller vs.
0.64 for Tombo), with true positives from the species of interest
and true negatives consisting of the same motifs in the P.
aeruginosa genome. Tombo called similarly few CTKVAG and
CTCCAG sites in E. faecalis as m6A as mCaller (1265 vs. 1167 of
CTKVAG sites and 78 vs. 89 CTCCAG sites detected as
methylated by PacBio had ≥50% m6A for Tombo and mCaller,
respectively), perhaps because of only modest deviations in
current (Supplementary Figure 4).

For two species, L. fermentum and C. neoformans, we did not
have PacBio data and our ELISA indicated low levels of m6A
(Supplementary Figure 5). We ran mCaller and AME but were
unable to detect any known motifs close to the level of certainty
seen for B. subtilis (p < 1e−100), suggesting any methylation in
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these strains occurs at motifs yet to be characterized. No MeDIP-
seq peaks were identified for L. fermentum. Two thousand eight
hundred and twenty MeDIP-seq peaks were identified for C.
neoformans, 1092 of which overlapped with at least one mCaller-
predicted site (conversely, only 6527 of 213,478 mCaller-
predicted sites fell under MeDIP-seq peaks). De novo motif
predictions using HOMER for sites detected by both mCaller and
MeDIP-seq showed enrichment of repeat regions, consistent with
known noise in MeDIP-seq data34,35. Since false positive sites
from mCaller outnumber true positives in species with trace levels
of methylation, we do not yet recommend using nanopore data
alone to predict new motifs.

Methyltransferase target motifs in associated phages. We then
examined the types and distributions of RM motifs in these
strains. Palindromic type II restriction modification sites are
avoided in both phages36–38 and their bacterial hosts13. Other
types of sites are rarely depleted in hosts, but have been hypo-
thesized to be depleted in phages39. We found under-
representation of GATC, BATGCATV, and CAGAG in S.
enterica and E. coli genomes compared to expected values cal-
culated by a maximum order Markov model40 (Fig. 5a), and only
slight underrepresentation of other motifs. Motif depletion in
predicted prophage sequences weakly followed the same trend as
in bacterial genomes, with little evidence for systematic depletion
of longer, gapped, type I motifs (Fig. 5b). A second method of
estimation that accounts for biases in gapped sub-motifs showed
less variance and no underrepresentation of non-palindromic
sites41 (Supplementary Figure 6). Since there were a limited
number of prophage sequences in each genome, we also com-
pared to phages known to infect the same reference species42. We
found results noisy for the palindromic targets in our dataset but
greater evidence for depletion of type II targets for species-motif
pairs from REBASE (Fig. 5c, d). Whether the phages associated
with different species in the database could infect our specific
reference strains is difficult to establish, given that host range is
poorly characterized for most phages43, and the suggestion of
greater efficiency for type II RM systems would need to be

confirmed in strains with both well-validated motifs and virus
associations.

Discussion
For bacteria and other kingdoms of life, single molecule
sequencing with PacBio or ONT can reveal both genomic and
epigenomic states of nucleic acids. Recent research showed that
nanopore sequencing can detect m5C with per-read accuracy of
upwards of 80% but m6A with lower accuracy (~70%). We show
here that m6A, the most common bacterial base modification, can
be detected using picoampere-scale changes in current as indi-
vidual DNA molecules travel through a nanopore. Our program
is the first designed for training using orthogonally validated
positions, rather than artificially methylated or unmethylated
reads. It also does not rely on the inclusion of a particular k-mer
context within the training dataset to make a prediction. Stoiber
et al.23 required 20× coverage and both native DNA and whole-
genome amplification of the same sample to approximately
localize base modifications with predictions based on statistical
differences in currents, although we note that the updated version
of this tool (Tombo) shows improved resolution and no longer
requires amplification. As described for Stoiber et al.’s original
tool23, accuracy varied by sequence motif; mCaller showed
60–98% per-position accuracy at most motifs, with notable failure
at one S. aureus motif. Tombo and mCaller both showed variable
performance across the motifs tested and predicted lower
methylation than the combined predictions from PacBio and
MeDIP-seq where current deviation were small (CTKVAG and
CTCCAG motifs in E. faecalis). For mCaller, training biases could
decrease accuracy at contexts with lower similarity to the training
examples. Assuming Tombo still uses the same strategies as the
2016 version, lower accuracy than mCaller at certain motifs could
indicate instances where Tombo is less successful at integrating
information from multiple points in a base’s passage through the
pore. Overall, our results demonstrate a need for tool evaluation
at a variety of sequence contexts, for which we propose the
continued use of this well-validated microbial reference
community.

Table 1 Predicted DNA methyltransferase genes and their features in reference community bacteria

Species (PacBio data) Positions Protein length Predicted type Short sequence repeats Canonical catalytic motif

B. subtilis (Y) 446228–448240 (+) 671 I A8, A6 NPPY
2545852–2546838 (−) 329 – A6 * 5, T6 –

E. faecalis (Y) 296156–297748 (+) 531 I A7 * 4, A6 * 2 NPPY
1483533–1484801 (+) 423 – A6 * 4, T6, A7 DPPY
1913501–1914508 (−) 336 – A6 * 2, T6, A7, TGC4 –
1942230–1943087 (−) 286 II T6, A6 * 2, A7 –

E. coli (Y) 2009620–2009922 (−) 101 Repair A6 –
3996959–3997795 (+) 279 Repair T6, A6 * 2 DPPY
4100327–4101221 (−) 297 II A6, A7 DPPY
4759457–4761004 (−) 516 I – –

L. fermentum (N) 740224–742155 (+) 643 III T6 * 2, A6 * 4 DPPY
1665653–1666522 (−) 289 – G7 –

L. monocytogenes (Y) 1259612–1260610 (+) 333 – A6 –
2539806–2542382 (−) 859 I A7 * 2, A6 * 6 NPPY

P. aeruginosa (Y) 4062465–4062764 (−) 100 – GC5 –
S. aureus (Y) 939806–941362 (+) 519 I A6 * 4 NPPY

942659–943006 (+) 116 – A8, A7, A6, T7 –
943165–943512 (+) 116 – T6, A6 DPPY
2353109–2351553 (−) 518 I A6 * 4 NPPY

S. enterica (Y) 424176–424829 (−) 218 – – NPPY
2945089–2945925 (+) 279 Repair A8, T6 DPPY
3025834–3026718 (−) 295 II A6 * 5 DPPY
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In most cases, mCaller could identify m6A at untrained con-
texts in reference strains with sufficient accuracy to find known
motifs or confirm new motifs predicted through PacBio
sequencing. The same non-motif sites were not often detected by
the two methods, suggesting that these are false positives that
reflect different sources of noise for nanopore current deviations
and PacBio IPD ratios. However, both single-molecule sequen-
cing methods can fail to distinguish between types of methylation,
as we saw for the GATCGVNY motif in S. aureus. As previously
demonstrated for PacBio sequencing of m5C following Tet con-
version to 5-carboxylcytosine44, chemical or enzymatic treat-
ments may be able to facilitate the identification and
differentiation of base modifications difficult to pick up with
nanopore data. Whereas PacBio is more suitable for detecting
m6A and m4C than m5C, the latter seems more easily distin-
guishable than m6A in nanopore data based on results thus far.
Nevertheless, by combining the two data types, we identified
target motifs for eight likely m6A methyltransferases in five

species and confirmed a known motif in B. subtilis; there was no
evidence for an active adenine methyltransferase in P. aeruginosa.
We were unable to confidently assign motifs or identify sites
consistently detected using PacBio, nanopore, and MeDIP-seq
data in the two Dikarya fungi in the reference community, C.
neoformans and S. cerevisiae. Mondo et al.45 were likewise unable
to confirm PacBio-identified sites in Dikarya using mass spec-
trometry and m6A immunoprecipitation. Our ELISA results
suggest that if m6A is present in either species, it is at levels far
below those recently described for early-diverging fungi45.

In bacteria, evolutionary selection against motifs associated
with type II RM systems13,36–38 and CRISPR46 can enable phage
evasion of bacterial defenses, but our results for the reference
community strains and others suggest limited selection against
motifs associated with type I RM systems. This suggests the
possibility for faster evolution on both sides with type II RM
systems, as small variations in sequence for type II but not type I
or III methyltransferases lead to different target motifs14. Just as
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motif avoidance in bacterial genomes relates to RM system life-
span13, avoidance in phage may depend on how long a phage
species has been exposed to a particular methyltransferase. Of
note, a motif with incomplete methylation in S. enterica
(BATGCATV) was still underrepresented in the host genome, as
was the Dam target motif GATC in E. coli, suggesting that
underrepresentation of ungapped palindromic motifs may not
depend on current involvement in type II RM systems38.

Although much of bacterial epigenomic research focuses on
species relevant to human disease, the power of m6A to modulate
gene expression suggests methyltransferase gene evolution could
be a function of environmental pressures in addition to phage
exposure. Recent use of nanopore sequencers during missions on
the International Space Station24, the Ebola virus outbreak in
West Africa26,27 and the Zika virus outbreak in the Americas28,29

all demonstrate the possibility for remote genomic and epige-
nomic studies. Notably, our method for base modification
detection can improve detection compared to existing models,
depending on motif. While this method still has limitations,
particularly for sequence contexts on which a model hasn’t been
trained, m6A methylomes of diverse reference species readily
available for re-sequencing47 can aid in training and testing of

future methods and serve as positive controls or titrated stan-
dards for metagenomic and microbial studies.

Methods
Model training data and parameters. Two datasets for the same mixture of equal
masses of native mouse and E. coli MG1655 K12 DNA, and m6A-free λ phage
DNA recently sequenced by Castro-Wallace et al.24] were generated using version
R9 flow cells and 2D kits at Weill Cornell Medicine (Mason lab) and University of
California, San Francisco (Chiu lab). Reads were basecalled using Metrichor from
ONT (v 2.42.2). One R7.3 run from Castro-Wallace et al.24 was used to compare
quality scores in Supplementary Figure 1. Orthogonal PacBio data for the same E.
coli strain was also generated and a single contig was assembled using HGAP v2.
Reads were realigned to the de novo assembly and methylated positions identified
through differences between measured and expected inter-pulse durations using
SMRTPortal v2.3.0-RS_Modification_and_Motif_analysis.118,19. All methylated
positions included for training were associated with known methyltransferase
target motifs for the strain (GATC and AACNNNNNNGTGC/
GCACNNNNNNGTT), and had PacBio QV scores ≥20 (p-values ≤ 0.01) for
confidence in the modification type (“identificationQv”) and estimated modifica-
tion fraction >90%. We excluded any sites that overlapped the λ phage genome to
avoid any ambiguity in the provenance of reads (failing to do so decreased cross-
validation accuracy by approximately 5%). A control set of the same number of
positions was chosen at random from adenines not called as methylated at any
score and not associated with E. coli K12 methyltransferase target motifs. Sites from
the first half of the genome were used for training, and sites from the second half of
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the genome for testing (though we found no change in accuracy with separation
solely by experiment).

Nanopore reads were aligned to the genome from PacBio using GraphMap48,
although tests with BWA-MEM49 did not show any effect on mCaller
performance. We used an existing program, nanopolish eventalign21,50, to re-
align the R9 current data to reference sequences. Average read quality was added
as an additional classification feature to better control for variation among
experiments. By default, we did not classify observations with skips. All binary
classification models were tested using the python package scikit-learn51.
Parameters for the classifiers were adjusted using random grid search and 5-fold
cross-validation. For the random forest model, grid search parameters were
{“bootstrap”: [True,False], “n_estimators”: [40,50,60,100], “max_depth”:
[5,8,10,12], “max_features”: [1–4], “min_samples_leaf”: [1–3,10]}, with final

parameters {bootstrap= True, n_estimators= 50, max_depth= 10,
max_features= 4, min_samples_leaf= 2}. For the neural network, grid search
parameters were {“hidden_layer_sizes”: [(4,4,4,4,4),(100),(100,100,100),
(100,100,100,100)], “alpha”: [0.0001, 0.001, 0.01], “activation”: [“tanh”, “relu”,
“logistic”, “identity”]} and final parameters {hidden_layer_sizes= (100), alpha
= 0.001, learning_rate= “adaptive”, activation= “tanh”}. The logistic regression
grid search parameters were all valid combinations of “solver”: [“liblinear”,
“newton-cg”, “lbfgs”, “sag”], “penalty”: [“l1”, “l2”]}. We did not see any
differences and kept the default parameters {solver= “liblinear”, multi_class
= “ovr”, penalty= “l1”}. The naïve Bayes classifier parameters were the
defaults for the GaussianNB classifier: {priors=None, var_smoothing= 1e
−09}. The final parameters for each algorithm were used to test on a second
dataset.
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Model accuracy was calculated as # sites called correctly
# total sites , with equal weight given to

known methylated and unmethylated sites. Area under the curve was calculated
using the roc_auc_score function from the python package scikit-learn by sweeping
over estimated probabilities of methylation for single-read predictions, or the
fraction of reads with estimated probability of methylation ≥50% for multi-read
predictions.

Reference materials. Data was generated on a variety of sequencing platforms for
strains in a reference community (summary in Supplementary Table 3). Eight
strains from the ZymoBIOMICS Microbial Community Standard were individually
sequenced on the PacBio RSII and Sequel sequencer at two sites (FDA-ARGOS and
University of Florida). PacBio reads were assembled using HGAP v2 where
available and putative adenine methyltransferase genes annotated using RAST via
PATRIC52. We did not have PacBio data for two strains because the DNA provided
failed initial quality control. For L. fermentum, an assembly was generated using
nanopore and Illumina iSeq100 data (further described in the legend for Supple-
mentary Table 4), and for C. neoformans, an assembly was generated using Canu
for nanopore data alone53. Bacterial assemblies were completed as one or two
contigs (Supplementary Table 4). To verify the accuracy of the assemblies, we used
the software package pyani (github.com/widdowquinn/pyani), which calculates
Pearson’s correlations of TETRA ANI values between assembled contigs and
genomes in the NCBI database. For prokaryotes, similarity of contigs to both
chromosomes and plasmids was considered; for eukaryotes, the similarity of the
whole genomes was used. Pearson’s r was 0.99866 or higher for all identified pairs
of genomes. Completeness of each assembly was assessed with BUSCO, or
Benchmarking Universal Single-Copy Orthologs54 (Supplementary Table 5). Since
different species have varying genetic similarity to the BUSCO database, genome
completeness was compared between the assemblies and the genomes of the
identified related strains. All assemblies had high scores, with percentages of total
identified BUSCOs from 96.2 to 100%. The scores for the prokaryotic assemblies
were on par with those for previously published genomes while the eukaryotic
assemblies had lower scores. Most genome lengths matched published strains well,
except for C. neoformans, for which the assembly was longer than the reference.
Reads sequenced from the Zymo pooled community aligned slightly, but not sig-
nificantly, better to our assemblies than the closest related strains (Supplementary
Figure 7).

Modifications and motifs called with both SMRT Tools v2.3.0 and an updated
version, v.5.0.1. Results were similar between the two versions although the newer
version detected fewer false positive motifs and predicted a motif for L.
monocytogenes that combined those found by the older version. We present the
newer results in the main text and summarize all motifs and non-motif sites for
which the modified base was an adenine in Supplementary Table 2. Results differed
when we specified m6A detection rather than including all adenines detected as
modified bases; the former strategy can increase precision at a cost to sensitivity.
Six strains were resequenced on a PacBio Sequel and motifs again identified using
SMRT Tools v.5.0.1.

The MethylFlash m6A DNA Methylation ELISA Kit from Epigentek was used
to compare overall percent methylation, with two replicates generated for all ten
Zymo Community strains and the average results for each species compared to
percent methylation based on PacBio motif sites (all motifs in Fig. 3 were included
in the calculation except for ANARAGTANYR, which was not recaptured in the
Sequel data).

Nanopore data was generated by multiplexing strains and sequencing using a
1D ligation kit and R9.5 flowcell. Reads were basecalled using albacore (v1.2.2 and
v2.0.2) and those with mean QV scores ≥10 were realigned and analyzed as
described above (we have found that read quality scores are inconsistent between
flowcell and basecaller versions and this threshold is not comparable to the high-
quality reads described for R9 data, but that lower quality reads led to issues with
nanopolish). A new neural network for R9.5 data was trained using E. coli positions
identified by PacBio as methylated and corresponding to known m6A motifs, with
a separate model trained for AG sites. The model was then tested on the nine other
strains and a second run for the same E. coli species. Methylated motifs were
compared to all known methylated motifs in REBASE27 by taking the 40-mer
surrounding a base identified as methylated and using AME28 to compare to a
random selection of control sites with <50% of reads called as methylated, with
results described for B. subtilis, C. neoformans, and L. fermentum.

Tombo was run using the following commands:
$tombo resquiggle <fast5 directory> <reference genome fasta>--processes 8
$tombo test_significance --fast5-basedirs <fast5 directory>/
--alternate-bases 6 mA --statistics-file-basename sample
$tombo write_wiggles --wiggle-types fraction --statistics-filename sample.6 mA.

tombo.stats
Precision-recall curves were generated by comparing percent methylation at

each PacBio-validated motif position to percent methylation of either randomly
selected unmethylated adenines in the same genome or the same motifs in P.
aeruginosa (as we found no adenine methylation in the strain), as described in the
legend for Fig. 4.

MeDIP-seq. A MeDIP-seq protocol was adapted from Koziol et al.55. RNase
treatment was used only for C. neoformans and B. subtilis because of limited DNA.

Briefly, starting with 5 μg per sample, DNA was sheared for 80–120 s using a
Covaris E220 sonicator with intensity 4, 175W, 200 cycles/burst, at 7+/−2 degrees
Celsius to generate fragments of approximately 200–300 base pairs. Three
microgram of DNA were taken for immunoprecipitation and the rest set aside as
an input control. For immunoprecipitation, DNA was incubated overnight in
200 μl 30 μg/μl bovine serum albumin stock solution (BSA), 200 μl 5× DIP buffer
(0.5 ml 1 M Tris-HCl, pH 7.4, 1.5 ml 5 M NaCl, 0.5 ml 10% vol/vol Igepal CA-630),
and water to a final volume of 1 ml, with 2.5 μl of 1 μg/μl anti-m6A antibody stock
(SYSY 202 003). Hundred microliter magnetic protein A beads (Invitrogen) per
sample were prepared by washing three times in 1 ml 1× DIP buffer and incubating
overnight in 105 μl 1× DIP buffer and 105 μl BSA. Two hundred microliter of the
bead suspension were added to each sample and the mixture incubated for 90 min,
then washed four times in 1× DIP buffer, resuspended in 200 μl DIP elution buffer
(45 μl 5× DIP buffer, 75 μl 20 mM N6-methyladenosine 5ʹ-monophosphate sodium
salt stock, 105 μl water), and placed at 42 °C for 1 h at 1400 RPM. To precipitate,
the supernatant was transferred to a new tube and 300 μl water, 2 μl GlycoBlue
(Invitrogen), 50 μl 3 M NaOAc, and 500 μl isopropanol added, then frozen at
−80 °C, centrifuged for 30 min, washed twice in 70% ethanol, and resuspended in
1× TE.

The NEBNext Ultra I DNA Library Prep Kit for Illumina (E7645) with
NEBNext Multiplex Oligos for Illumina (E6440) was used to prepare
immunoprecipitated samples and input controls for sequencing. Reads were
aligned to their appropriate genomes using BWA-MEM56, and peaks called using
MACS2 (--nomodel)57. Motif or non-motif sites that overlapped with peaks were
considered m6A methylated for comparison between MeDIP-seq and single-
molecule methods.

Bisulfite sequencing. Libraries for all ten strains from the Zymo BIOMICs con-
trols and the E. coli K12 strain were prepared using the TruSeq DNA Methylation
kit from Illumina 100 bp paired end reads generated on an Illumina HiSeq 2500.
Reads were mapped using Bismark58.

REBASE canonical catalytic sites. A list of all m6A methyltransferases was
downloaded from REBASE (http://rebase.neb.com/cgi-bin/mtypelist?m6+f) and
their associated unique protein sequences searched for DPPY and NPPY motifs.

Phage motif underrepresentation. Prophage genomes within our assemblies
were identified using PHASTER59. We used all annotated prophage sequences,
from incomplete to intact, for motif analysis. Additional phages that target the
same species were identified using the GenomeNet Viral-Host Database42. Other
species and methyltransferases, labeled by type, were taken from Rusinov et al.13

and then associated with viruses using the same database. Only dsDNA viruses
were considered as potential targets for RM systems. The maximal order Markov
expected count was calculated as Nðs1:n�1ÞNðs2:nÞ

Nðs2:n�1Þ where N is the count for a submotif
sx of a motif with length N. The Kr ratio was calculated as described by Rusinov
et al.13—see Supplementary Information for details. In Fig. 5, density curves
were plotted for all restriction enzyme types associated with at least fifteen
motifs.

Code availability. The python 2.7 package is open source and available at github.
com/al-mcintyre/mcaller. Scripts used for analysis and figure generation are
available at https://github.com/al-mcintyre/mCaller_analysis_scripts.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data (fastq, fast5, and PacBio files) have been submitted to NCBI SRA
with bioproject number PRJNA477598. Regulatory-grade genomes for the Zymo
microbial community are also available in the FDA-ARGOS repository at
PRJNA231221 under sample names FDAARGOS_606 to FDAARGOS_612. All
other data are available from the authors upon reasonable request.
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