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Abstract
Purpose: Histological analysis of artery tissue samples is a widely used method for diagnosis
and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue
staining procedures hinder efficient and informative histological image analysis.
Procedures: In this study, we developed a deep learning-based method to transfer bright-field
microscopic images of unlabeled tissue sections into equivalent bright-field images of
histologically stained versions of the same samples. We trained a convolutional neural network
to build maps between the unstained images and histologically stained images using a
conditional generative adversarial network model.
Results: The results of a blind evaluation by board-certified pathologists illustrate that the virtual
staining and standard histological staining images of rat carotid artery tissue sections and those
involving different types of stains showed no major differences. Quantification of virtual and
histological H&E staining in carotid artery tissue sections showed that the relative errors of
intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %,
respectively. The training time of deep learning network was 12.857 h with 1800 training patches
and 200 epoches.
Conclusions: This virtual staining method significantly mitigates the typically laborious and time-
consuming histological staining procedures and could be augmented with other label-free
microscopic imaging modalities.

Key words: Virtual histological staining, Conditional generative adversarial network, Blind
evaluation, Bright-field microscopic imaging

Introduction
Coronary artery disease (CAD) is the leading cause of
mortality globally. Fundamental studies regarding CAD
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pathophysiological mechanisms and potential therapeutic
methods have considerable clinical and scientific signifi-
cance, which highly rely on histology analysis of artery
tissue sections [1–4]. Histological staining can be used to
identify arterial features such as intima, media, collagen, and
elastic lamina. However, histological staining of artery tissue
is an invasive and laborious process that typically includes
the artery tissue being fixed and paraffin-embedded, sec-
tioned into 2–10-μm thin slides, chemically stained or
fluorescently labeled, mounted on a glass slide, and imaged
using a bright-field microscope. Inevitably, the variability of
histologically stained tissue sections in these irreversible
steps introduces major challenges in histopathological image
analysis. These variations are due to human-to-human
variability, differences in protocols and microscopes be-
tween labs, and color variations in staining procedures [5].
More importantly, to identify various arterial features,
multiple stains of the same tissue section are required,
whereas the standard histological staining procedure is
applied for one type of stain on single artery sections. The
time-consuming histological staining procedures also create
obstacles for fast pathological diagnosis. Recently, tissue-
sectioning microscopies, such as confocal and multiphoton
microscopes, have been applied for non-invasive volumetric
or quantitative measurements of artery tissue sections to
accelerate and improve the microscopic imaging step in this
workflow [6, 7]. Nevertheless, tissue-sectioning microscopy
requires fluorescence agents as imaging probes in contrast to
specific artery tissue compositions.

The use of nonlinear microscopy has been suggested for
visualization of unstained tissue samples based on tissue
autofluorescence [8, 9], two-photon fluorescence [6, 10],
second-harmonic generation [11], third-harmonic generation
[12], and Raman scattering [13, 14]. Moreover, optoacoustic
imaging has also been investigated for label-free imaging of
red blood cells in atheroma [15, 16]. Furthermore, multi-
modal multiphoton and optoacoustic microscopy was pro-
posed for hybrid imaging of histological features and
moieties in excised human carotid atheroma [17]. However,
these microscopy methods require ultrafast pulse lasers or
spectrometers, which have lower output power, and their
implementation on a microscope is a complex process.
Therefore, they might not be readily available in most
settings and require relatively long scanning times because
of the weak optical signals.

Although the aforementioned state-of-the-art microscopy
techniques have unique capabilities to visualize different
histological moieties in tissue samples using exogenous
staining, autofluorescence, or intrinsic information, patholo-
gists are trained to examine histologically stained tissue
samples to make diagnostic decisions. Inspired by this,
recently, efforts have been focused on virtually creating
histological staining images by training microscopic images
of tissue samples via deep learning-based methods.
Rivenson et al. trained a network that maps the autofluores-
cence microscopic images of unlabeled tissues to the

histological staining images using a convolutional neural
network (CNN) [18]. Another study used conditional
generative adversarial networks (cGANs) to transfer un-
stained hyperspectral lung histological images to their
corresponding hematoxylin and eosin (H&E) staining
images [19]. To address the problem of stain color
variations, as approach based on unpaired image-to-image
translation using cycle-consistent adversarial networks has
also been proposed [20]. Bautista and Yagi [21] proposed a
method to transform H&E-stained multispectral images into
its Masson’s trichromatic stained equivalent by enhancement
spectral transmittance and linear transformation.

In this study, we propose a deep learning-based virtual
staining method to generate virtually stained images from
bright-field microscopic images of unlabeled rat carotid
artery tissue sections imaged with a conventional wide-field
microscope (Fig. 1). We trained a deep CNN using the
concept of cGAN to match the bright-field microscopic
images of unstained tissue sections after obtaining standard
histological stains (Fig. 2 and Suppl. Fig. 1). Thus, we could
replace the histological staining and bright-field imaging
steps with the output of the trained neural network, which is
fed with the bright-field microscopic images of the unstained
tissue.

We demonstrated the applicability of this deep learning-
based virtual histological staining method by imaging fresh
rat carotid artery tissue samples. The network output created
equivalent images that were well matched with the images of
the same samples labeled with three different stains—H&E,
picrosirius red (PSR), and orcein stain. Furthermore, the
staining efficacy of our approach was blindly evaluated by
three board-certificated pathologists. They could recognize
histopathological features in images generated with our
virtual staining technique, and a high degree of agreement
was observed between the histologically stained images and
the virtually stained images. Quantification of virtual and
histological staining in tissue sections shows that our deep
learning-based virtual staining method achieved results
comparable to the histological staining technique.

Materials and Methods
Sample Preparation and Image Acquisition

The carotid artery balloon injury rats (male SD, 200–250 g,
purchased from experimental Animal center of Chinese PLA
general Hospital) model was built using a previously well-
established method [22]. The injured artery was excised
aseptically from euthanized animals, washed with
phosphate-buffered saline (PBS), and fixed with 4 %
buffered formalin for 24 h at 4 °C in the dark. The 4-μm
cross sections of paraffin-embedded rat carotid artery were
collected and immediately imaged with an inverted micro-
scope (Leica DM IL LED) equipped with a × 10/0.22 NA
objective. After a bright-field imaging of unlabeled tissue
sections, the corresponding slides were histologically stained
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Fig. 1 Main framework of the proposed virtual histology staining method of unstained carotid artery tissue using the
conditional generative adversarial network. The bright-field images of unstained carotid artery cross-sections are fed into the
generator network to generate synesthetic staining images (top). The standard histological staining (bottom) process is
performed to output histological staining image. After discriminator network, the cGAN outputs a virtually stained image (H&E in
this case) in response to the input of a bright-field image of an unstained tissue section, bypassing the standard histological
staining procedure.

Fig. 2 Architecture of virtual staining cGAN. The generator consists of eight convolution layers of stride two that are each
followed by a batch-norm module to avoid overfitting of the network. The eight upsampled sections are followed by the
deconvolutional layers to increase the number of channels. Each upsampling section contains a deconvolution layer
upsampled by stride two. Skip connections are used to share data between layers of the same level. The discriminator is used
to discriminate between virtual staining images and histological staining images. It comprises five down blocks, each of which
have convolutional layers of stride two to reduce the tensor size. The down block reduces the size of the images while
increasing the number of channels to 512 and reduce to 1 followed by a sigmoid activation function. The variable n represents
the number of pixels of each image patch that passes through the network.
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with hematoxylin and eosin (H&E), picrosirius red (PSR),
and orcein. The images from H&E-, PSR-, and orcein-
stained sections were acquired with the same configuration
of the microscope. These tissue-staining methods are only
performed for the training and validation of the proposed
approach. The samples were obtained from the Department
of Cardiology, Chinese PLA General Hospital, and were
prepared by the Histology Laboratory at Chinese PLA
General Hospital. All animal experiments were approved in
accordance with the guidelines of the Institutional Animal
Care and Use Committee (IACUC) of Chinese PLA General
Hospital.

Preparing Dataset for Training

Our virtual staining networks transformed unstained tissue
images to H&E-, PSR-, and orcein-stained images. Follow-
ing the bright-field imaging, unstained tissue slides
underwent a standard histological staining procedure. To
acquire the input and target images with the same resolution
and field of view (FOV), microscopic imaging of unstained
sections and corresponding stained sections was performed
at the same imaging system. However, the unstained tissues
may be deformed during histological staining. Therefore, it
is crucial to register the FOVs of the input-targeted image
pairs. In this work, we performed rigid registration to align
unstained and stained images. We acquired 60 images for
the unstained, H&E-, PSR-, and orcein-stained groups. In
total, 240 whole-slide images (WSIs) were obtained. Each
WSI (1079 × 1079 pixels) was randomly cropped into 25
smaller overlapping patches (500 × 500 pixels). After elim-
inating the patches without intima and media, we obtained
training image pairs (1800, 1500, and 1500) and testing
image pairs (200, 150, and 150) for virtual H&E, PSR, and
orcein staining, respectively.

Conditional Generative Adversarial Network
Architecture

To learn the nonlinear mapping from unstained images to
standard histological staining of the sample, we utilized a
conditional generative adversarial network (cGAN) [23],
which is an extension of the generative adversarial network
(GAN) [24]. GAN is based on deep convolution learning
network, which consists of two networks: generator (G) and
discriminator (D). G is responsible for generating new
images from prior random data distribution by simulating
the real image data distribution. The discriminator D learns a
rule to distinguish the images generated by G or the real
histological staining images in our case. The two networks
have a competitive relationship and are trained at the same
time.

In this work, the generator D and the discriminator G of
the cGAN comprised a U-net architecture [25] and of
PatchGAN [26], respectively, as shown in Fig. 2. The

cGAN architecture was updated with the following changes:
downsampling path learns image context information and
upsampling path target location added to the cGAN model to
facilitate input images of 500 × 500 pixels.

To acquire results without generating blurring images, we
chose the L1 norm instead of the L2-norm (mean squared
error) penalty as a cost function [23, 27]. We defined the
loss function of the cGAN as follows:

LcGAN G;Dð Þ ¼ Ex;y∼pdata x;yð Þ logD x; yð Þ½ �
þ Ex∼pdata xð Þ log 1−D x;G xð Þð Þð Þ½ �;

where x is the input unstained image to the generator, y is the
ground truth image (the corresponding histological stained
image in our case), z is a random noise added as dropout in
this work, pdata(x, y) is the joint probability distribution of
the training data including pairs of input image x and ground
truth image y, and Ex;y∼pdata x;yð Þ is the expectation of log
likelihood of (x, y). To reduce blurring and generate shaper
images, the L1 regularization term was chosen as follows:

LL1 Gð Þ ¼ Ex;y;z

�
y−G x; zð Þk1

�� �
:

The global cost objective of adversarial learning in
cGANs is defined as follows:

G ¼ argmin
G

max
D

LcGAN G;Dð Þ þ λLL1 Gð Þ:

The regularization parameter λ is empirically chosen to
100 to balance the adversarial loss and global loss. The
convolution kernels of cGAN were set to be 4 × 4. These
kernels were randomly initialized using a uniform distribu-
tion with a minimum value of 0. We set all biases as random
uniform distribution. A dropout rate of 0.5 was used in our
experiments. We trained our virtual staining network model
for 200 epochs with a learning rate of 0.001 for the generator
network and 0.0002 for the discriminator network. Adam
optimizer with a batch size of 1 and an exponential decay
rate of 0.5 was used in our training. For each iteration of the
discriminator, there was one iteration of the generator
network.

Implementation

Our virtual staining network was implemented using Python
version 3.6.9. The cGAN was implemented using
TensorFlow version 1.12.0. The other Python libraries used
were cv2, os, time, tqdm, the Python imaging library (PIL),
SciPy, glob, ops, sys, and numpy. We implemented the
software on a desktop computer with a Core i7-8700K CPU
at 3.20 GHz (Intel) and 12 GB of RAM, running a Linux
4.15.0 operating system. All the experiments including
network training and testing were performed on Nvidia
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GeForce RTX 2080Ti GPU. The other implementation
details, including the number of trained patches, the number
of epochs, and the training times, are summarized in Suppl.
Table 2.

Evaluation

Calculation of the area of intima, media, and intima-to-
media ratio for virtual and standard staining in tissue
sections was performed using ImageJ package FIJI (version
1.51) [28]. Data were represented as mean ± SD (standard
deviation).

Results
Virtual Staining of Rat Carotid Artery Tissue
Sections

We present three virtual staining results for carotid artery
tissue sections, which were generated by our trained cGANs
from the testing dataset, as shown in Fig. 3. These generated
images demonstrated that the cGANs can transform bright-

field images of unstained tissue sections (Figs. 3a–g) into the
corresponding colorized images that are expected from
H&E-, PSR-, and orcein-stained tissue sections. Evaluation
of Figs. 3b and c shows that the neointima, media, and
elastic lamina are present in both H&E staining techniques.
Notably, the presence of neointima formation is clearly
displayed in both panels. The replication of neointimal cells
can also be identified in both virtual staining and histological
staining images.

We further trained our cGAN to virtually stain other
tissue types using PSR and Orcein stains. Figures 3e and f
show the results for virtual staining of an unstained tissue
section that matches very well with a bright-field image of
PSR staining. These results illustrate that the cGAN can
stain patterns of different histological staining for different
tissue sections. The virtual PSR staining technique for
carotid artery tissue sections in Fig. 3e correctly displays
the distribution of collagen. This result is consistent with the
histologic appearance in the bright-field images of the same
tissue samples after histological staining (Fig. 3f). Similarly,
orcein virtual staining of the tissue section shown in Fig. 3h
reveals consistently stained external elastic lamina and

Fig. 3. Virtual staining results versus the H&E-, PSR-, and orcein-stained images. a, d, g Bright-field images of unstained
carotid artery tissue sections used as input of cGAN. b, e, and h Show virtual H&E, PSR, and orcein staining of carotid artery
tissues, respectively. c, f, and i show the bright-field images of H&E, PSR, and orcein histologically stained tissues. Note that
the neointima (NI), media (M), elastic lamina (EL), collagen (C), and external elastic lamina (EEL) are clearly displayed in both
staining techniques. Scale bar, 100 μm.
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histological features that correspond to their appearances
shown in the bright-field image after histological staining
(Fig. 3i).

Multiple Virtual Stains on the Same Unstained
Tissue Section

We trained our deep network to perform multiple virtual
stains—H&E stain, PSR stain, and orcein stain—on the
same unstained tissue section using StarGAN [29]. This
network is capable of learning mappings among multiple
stained domains using a single generator. Multiple virtual
stains on the same unlabeled tissue section match well
with the bright-field images of the three consecutive

sections captured after histological staining (Fig. 4).
These results illustrate that the StarGAN method can
infer multiple types of histologically staining methods
from a single bright-field image of an unlabeled sample.
In an example of multiple virtual staining, the H&E
virtual stain correctly revealed the histological features of
the H&E staining and the degree of neointima hyperpla-
sia. Virtual PSR staining captured the histological
features of collagen; this is consistent with the histolog-
ical appearance in the bright-field images captured after
histological staining. Similarly, orcein virtual staining
revealed consistently stained histological features of
elastin in the bright-field images after histological
staining.

Fig. 4. Multiple virtual staining results match the H&E, PSR, and orcein stains for the same unlabeled tissue section. Scale bar,
100 μm.

Table 1. Blind evaluation of virtual and histological H&E staining in carotid artery tissue sections

Tissue number Pathologist 1 Pathologist 2 Pathologist 3 Average

NI M EL NI M EL NI M EL NI M EL

1 (VS) 3 3 3 3 3 3 4 4 4 3.33 3.33 3.33
1 (HS) 4 4 3 3 4 4 4 4 4 3.67 4.00 3.67
2 (VS) 3 4 3 3 4 3 4 4 4 3.33 4.00 3.33
2 (HS) 4 4 4 3 4 3 4 4 4 3.67 4.00 3.67
3 (VS) 3 3 3 3 4 3 4 5 4 3.33 4.00 3.33
3 (HS) 4 4 4 4 4 3 4 5 4 4.00 4.33 3.67
4 (VS) 3 3 3 3 4 3 4 4 4 3.33 3.67 3.33
4 (HS) 4 3 4 4 4 3 5 4 4 4.33 3.67 3.67
5 (VS) 3 3 3 3 3 3 4 4 4 3.33 3.33 3.33
5 (HS) 4 4 4 3 4 3 5 5 4 4.00 4.33 3.67

Carotid artery tissue sections were stained with H&E and graded for neointima (NI), media (M), and elastic lamina (EL). HS, histologically staining; VS,
virtually staining. The winner (and tied) average scores are in italics
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Blind Evaluation of Virtual and Histological
Staining

To demonstrate the efficacy of our approach, H&E, PSR,
and orcein virtual staining and the corresponding histolog-
ical staining of the same tissue sections were blindly
evaluated by three board-certified pathologists. These pa-
thologists were blinded to the staining techniques and asked
to apply a grade from 1 to 5 for the quality of the different
stains: 5, perfect; 4, very good; 3, good; 2, acceptable; 1,
unacceptable. The pathologists could recognize histopatho-
logical features, including neointima, media, elastic lamina,
collagen, and external elastic lamina, presented in both
virtual and histological stains. The blind testing results are
summarized in Table 1 (H&E staining). Moreover, the
pathologists applied the same score scale (1–5) for PSR
and orcein staining features, that is, collagen and external
elastic lamina, respectively. The results are summarized in
Suppl. Table 1.

Furthermore, the three pathologists were asked to
calculate the intima thickness (IT), intima area (IA), media
area (MA), and intima-to-media ratio (IMR) to evaluate the
neointima hyperplasia in both virtual and histological stains.
The IMR was calculated as the mean area of intima divided
by the mean area of media. We compared the relative error
(RE) between the histologically stained and virtually stained
samples to evaluate the quantification accuracy. The quan-
tification results are summarized in Table 2 (H&E staining).

Our results indicate that the pathologists could recognize
neointima hyperplasia-related histopathological features
using both staining techniques and with a high degree of
agreement between the techniques.

Discussion
Histological staining analysis is performed as a “golden
standard” in diagnostic pathology. It is widely used to
identify carotid artery tissue constituents such as intima,
media, collagen, and elastic lamina, under light microscope
with a high magnification objective. However, the histolog-
ical staining process is laborious, and image quality of tissue
staining images is variable because of the different staining

protocols, imaging devices, and human-to-human variations.
Such staining processes lead to a barrier in developing
standard and fast histological image analysis systems.
Notably, the standard histological staining procedure can
only be performed on single tissue sections with one type of
stain. Therefore, the identification of various components of
the same tissue section is highly required.

In this work, we proposed a trained cGAN that virtually
stains the label-free fresh tissue sections into the corre-
sponding H&E-, PSR-, and orcein-stained sections of rat
carotid artery tissue samples. This deep learning-based
method can provide a digital staining of label-free tissue
sections, which can bypass the lengthy and laborious tissue
preparation process and can mitigate human-to-human
variations for standard histological staining of tissue sam-
ples. We trained this statistical learning-based network using
white light images of unstained sections to learn from
histologically stained tissue sections. A blind test was
performed to demonstrate the performance of the network
by board-certified pathologists. After training, this virtual
staining method can be enhanced by combing the unstained
images acquired using other advanced label-free imaging
techniques, for example, autofluorescence microscopy and
Raman microscopy.

For the training process, it is important to match the
bright-field images of unstained sections and the corre-
sponding images acquired after histological staining. How-
ever, during the whole histological staining process, tissue
can be deformed or contaminated by dust, resulting in
challenges of the loss function in the training step. To reduce
these impacts on the performance of the network, we
performed a global co-registration using rigid algorithm
(https://www.mathworks.com/help/images/registering-multi-
modal-mri-images.html). We further performed a visual
inspection of the registered unstained and histological
staining image pairs to eliminate the images that included
dust or large deformations.

It is important to note that, gradient descent-based GAN
training is not always locally convergent partly due to the
discontinuous dataset, such as bright-filed microscopic
images of unstained tissue sections that used in this study.
Here, we transfer bright-field images of unlabeled carotid

Table 2. Quantification of virtual and histological H&E staining in carotid artery tissue sections

Tissue number IT (μm) RE of IT (%) IA (μm2) RE of IA (%) MA(μm2) RE of MA (%) IMR

1 (VS) 228.5 ± 0.9 0.2 261,474.5 ± 2253.0 0.8 175,412.1 ± 7082.3 3.3 1.49
1 (HS) 228.1 ± 1.9 263,530.1 ± 1136.2 169,753.7 ± 3665.8 1.55
2 (VS) 244.6 ± 1.3 1.6 128,655.6 ± 5884.7 4.1 149,911.9 ± 7493.7 0.1 0.86
2 (HS) 248.5 ± 1.9 134,151.7 ± 1535.5 150,026.1 ± 2436.2 0.89
3 (VS) 206.9 ± 2.9 0.1 259,228.6 ± 15,163.9 0.3 183,164.8 ± 14,245.2 4.1 1.42
3 (HS) 206.6 ± 1.1 258,425.0 ± 14,351.3 175,953.6 ± 7619.6 1.47
4 (VS) 140.0 ± 1.4 1.6 254,563.0 ± 12,650.4 3.6 205,179.6 ± 10,924.2 12.7 1.24
4 (HS) 137.9 ± 2.0 264,064.6 ± 8300.7 181,998.4 ± 5369.6 1.45
5 (VS) 223.6 ± 2.5 1.1 128,244.5 ± 1436.1 5.6 162,862.3 ± 4462.2 1.2 0.79
5 (HS) 226.1 ± 0.7 135,838.3 ± 414.6 164,876.6 ± 1722.3 0.82

IT, intima thickness; IA, intima area; MA, media area; IMR, intima-to-media ratio. RE, relative error. HS, histologically staining; VS, virtually staining
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artery tissue into equivalent images of histologically stained
versions of the same samples using conditional generative
adversarial network, which are extensions of GANs where
both generator and discriminator are conditioned on addi-
tional information. To stable the training, we chose L1
regularization term to reduce blurring and generate shaper
images. In addition, the regularization parameter λ was used
for balancing the adversarial loss and global loss.

Our virtual staining procedure is implemented by training
separate cGAN for each staining. To reveal multiple virtual
stains, namely H&E, PSR, and orecin stains in our case, we
trained the StarGAN network to generate three different
stained images from the same unstained image. This is
practical for histological applications, that is, the number of
staining types on the same unlabeled tissue will be
unlimited. This virtual staining method can provide fast
pathological diagnosis of various components. In this study,
it can generate three different type of stains, including H&E,
PSR, and orcein, within 3 s with current hardware
configuration. Although this is an improvement compared
to the virtual stain cGAN for single tissue stain combina-
tions, the multiple virtual stain image is a little inferior for
generating high-quality multiple virtual staining images.
Within this network, a generator generates images of
multiple domains, solving the problem of image pairing
and reducing network parameters. The output results
demonstrated that multiple virtual staining images generated
from an unstained image simultaneously can express the
main staining components according to the stained images.

Our study has some limitations. Firstly, the output image
of network needs to be corrected according to the stained
images. Substantially, a wide-scale, randomized evaluation
of virtual staining images by more pathologists will regulate
the network to achieve a high-quality image. This is very
useful for fast analysis of bright-field microscopic images of
tissue sections in the future. In addition, the combination of
high-resolution bright-field images of unlabeled tissue
sections with virtual staining in the deep learning-based
network results in high-resolution virtual staining images
with more detail in histological features. Finally, the
quantitative virtual staining evaluation indexes, including
the quantitative image-based metrics like SSIM, are required
to assist pathologists during routine clinical diagnosis.
Notably, this virtual staining method could be transferred
into a clinical research on unlabeled human artery tissue
samples, which would be necessary to improve the diagnos-
tic efficiency and accuracy of the trained network with the
histological stains.

Conclusions
In conclusion, we have developed a deep learning-based
virtual staining method that transformed bright-field micro-
scopic images of unlabeled tissue sections into their
corresponding images of histological staining of the same
samples using a conditional generative adversarial network

model. This virtual staining method has been validated by
pathologists via blind evaluation. Further improvement of
this method will be focused on the combination of advanced
other label-free microscopic imaging modalities and the
evaluation by large-scale randomized clinical study. We
envision that this virtual staining method will provide strong
support to the applications of histology analysis in study for
CAD.
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