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Abstract
Infectious disease surveillance is key to limiting the consequences from infectious patho-

gens and maintaining animal and public health. Following the detection of a disease out-

break, a response in proportion to the severity of the outbreak is required. It is thus critical to

obtain accurate information concerning the origin of the outbreak and its forward trajectory.

However, there is often a lack of situational awareness that may lead to over- or under-reac-

tion. There is a widening range of tests available for detecting pathogens, with typically dif-

ferent temporal characteristics, e.g. in terms of when peak test response occurs relative to

time of exposure. We have developed a statistical framework that combines response level

data from multiple diagnostic tests and is able to ‘hindcast’ (infer the historical trend of) an

infectious disease epidemic. Assuming diagnostic test data from a cross-sectional sample

of individuals infected with a pathogen during an outbreak, we use a Bayesian Markov

Chain Monte Carlo (MCMC) approach to estimate time of exposure, and the overall epi-

demic trend in the population prior to the time of sampling. We evaluate the performance of

this statistical framework on simulated data from epidemic trend curves and show that we

can recover the parameter values of those trends. We also apply the framework to epidemic

trend curves taken from two historical outbreaks: a bluetongue outbreak in cattle, and a

whooping cough outbreak in humans. Together, these results show that hindcasting can

estimate the time since infection for individuals and provide accurate estimates of epidemic

trends, and can be used to distinguish whether an outbreak is increasing or past its peak.

We conclude that if temporal characteristics of diagnostics are known, it is possible to

recover epidemic trends of both human and animal pathogens from cross-sectional data

collected at a single point in time.
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Author Summary

We have developed a Bayesian approach that can estimate the historic trend of incidence
from cross-sectional samples, without relying on ongoing surveillance. This could be
used to evaluate changing disease trends, or to inform outbreak responses. We combine
two or more diagnostic tests to estimate the time since infection for the individual, and
the historic incidence trend in the population as a whole. We evaluate this procedure by
applying it to simulated data from synthetic epidemics. Further, we evaluate its real-
world applicability by applying it to two scenarios modelled after the UK 2007 bluetongue
epidemic, and a small outbreak of whooping cough in Wisconsin, USA. We were able to
recover the epidemic trends under a range of conditions using sample sizes of 30–100
individuals. In the scenarios modelled after real-world epidemics, the hindcasted epi-
demic curves would have provided valuable information about the distribution of infec-
tions. The described approach is generic, and applicable to a wide range of human,
livestock and wildlife diseases. It can estimate trends in settings for which this is not pos-
sible using current methods, including for diseases or regions lacking in surveillance;
recover the pattern of spread during the initial “silent” phase once an outbreak is
detected; and can be used track emerging infections. Being able to estimate the past trends
of diseases from single cross-sectional studies has far-reaching consequences for the
design and practice of disease surveillance in all contexts.

Introduction
Infectious disease surveillance is the first line of detection and defence against infectious path-
ogens and therefore crucial to maintaining animal and public health. However, the current
state of disease surveillance has been characterised as deficient in terms of both coverage and
reporting speed for both humans [1] and animals [2,3]. The challenge is to use the data gener-
ated by this often sparse and biased surveillance to decide on an appropriate response to dis-
ease outbreaks. This is dependent on the extent of situational awareness, which can be defined
as “Knowledge and understanding of the current situation which promotes timely, relevant,
and accurate assessment . . . in order to facilitate decision making.” (taken from [4], p 171).
Such situational awareness is necessary in order to balance the social and economic conse-
quences of the adopted control strategy with the social and economic risks posed by the out-
break [5].

Limited situational awareness can have substantial negative impact. In the case of the pan-
demic H1N1 flu in 2009, early analyses mistakenly assumed that the epidemic had been only
recently introduced, causing substantial overestimates of the basic reproduction ratio [6] and
case fatality rates [7] that suggested a far greater risk to human life than was actually the case,
leading to a more resource-intensive response than was necessary [8]. The more complex set-
tings typical of livestock and particularly wildlife systems tend to result in the available surveil-
lance data being sparser still for animal diseases [9].

Adding missing information on the time of exposure of detected cases would allow for a
better awareness of the early development of an epidemic and would help inform evaluations
of the potential risks posed by an outbreak, leading to a more proportionate response than
would be the case when waiting for the epidemic trends to be revealed by subsequent real-
time monitoring. In the current study, we introduce a novel statistical approach to infer the
timing of exposure events for individuals by combining knowledge of the dynamic character-
istics of multiple diagnostic tests. This approach could be integrated into any model of a
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disease epidemic to replace missing information on case exposure times. In this paper, we
demonstrate its usefulness by recovering population-level trends of exposure from cross-sec-
tional data collected from a single point in time. Here we refer to the process of recovering
such trends as “hindcasting”, following terminology established in other papers [10–12] for
reconstructing historical trends from currently available data.

Disease surveillance has been described [13] as improving the situational awareness in rela-
tion to a disease outbreak on three levels: Perception, Comprehension, and Projection. Percep-
tion refers to the collection of data that allows us to monitor disease; Comprehension to
extracting information from this raw data that places the current disease situation in a context
that allows us to understand its characteristics; and Projection to statistical models as well as
more holistic approaches that aim to describe what is likely to happen in the future. Research
focused on improving the collection of surveillance data [14–16], on risk-based surveillance
[17,18], or the extensive literature focusing on the early detection of statistical deviations in
surveillance data to outbreaks [19–21], can be seen as improving the Perception stage.
Approaches such as phylodynamics contribute to the Comprehension stage by modelling the
genetic change of the pathogen, e.g. using this to estimate the epidemiological parameters gov-
erning an outbreak such as the recent Ebola outbreak [22–24]. Models that use current infor-
mation to predict the future [25–27] instead focus on improving the situational awareness at
the Projection stage. From this perspective, hindcasting contributes to the Comprehension
stage by leveraging quantitative diagnostic test results (using the statistical methods described
in this paper) to add a temporal dimension to data for which the times of exposure of cases are
missing, thus improving the understanding of unfolding epidemics.

Several papers have recovered limited historical characteristics of epidemics from cross-
sectional data using a single diagnostic test, e.g. an antibody test. For example, Giorgi et al.
estimated the time of the start of an HIV outbreak under assumptions of exponential growth
of viral load [28]. Others have exploited information on diagnostic test kinetics, i.e., the pat-
tern of diagnostic test values during the course of infection, to estimate average incidence
rates. Examples include the use of antibody test kinetics to estimate sero-incidence rates for
influenza [29], Salmonella in cattle [30] and Salmonella in humans [31]. One challenge in
these kinds of studies is that the relationship between the magnitude of signals from diagnos-
tic tests and time since exposure is usually not monotonic; they tend to increase and then
decrease. This means that the inverse problem of estimating time since exposure given a test
value is non-unique, and although this can be framed as a statistical problem the resulting
inference is highly uncertain [28,32], limiting what can be estimated from test data. How-
ever, there are often several diagnostic tests available that target different aspects of the
multi-faceted dynamic interaction between host and pathogen, and thus exhibit different
test kinetics [33]. That is, the profile of test responses, as a function of time since exposure,
will differ depending on the underlying diagnostic used and the immune-pathogenesis of the
disease. Thus, in principle we can generate a unique signal for a given time since exposure by
combining results of diagnostic tests that respond on different time scales. Here, we exploit
this fact to develop a more robust statistical approach for analysing cross-sectional field data
from multiple diagnostic tests. To do so we make use of empirical infection models that
characterise test kinetics to infer the time since exposure for each individual. While there is
considerable uncertainty in the estimated exposure time for each individual, the combined
estimates from multiple individuals can be used to describe the overall population-level dis-
tribution of infection times and estimate the shape of the overall epidemic trend with a high
level of confidence.

A detailed description of the hindcasting framework and implementation of the evaluation
scenarios can be found in the methods section. We demonstrate the hindcasting of epidemic
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trends by applying the framework developed here to case studies of real outbreaks of two con-
trasting diseases, whooping cough in humans and bluetongue in cattle (see Fig 1). For each
disease, we investigate two scenarios representing detection during either the increasing or
the decreasing phase of the epidemic. We conclude that when combined with knowledge of
the temporal characteristics of two (or more) appropriate diagnostic tests, our methods allow
historical epidemic trends to be recovered from cross-sectional sample data. Moreover, for
the example diseases considered suitable diagnostic tests and data describing their temporal
characteristics already exist.

Results
We evaluated the hindcasting framework by applying it to simulated data sets, and comparing
the recovered trend with the known underlying distribution. We first generated collections of
exposure times from lognormal probability distributions with different sets of parameters.
Using published test kinetics for whooping cough, we then generated diagnostic test data
based on these infection times and an assumed cross-sectional sampling time. The hindcasting
framework was applied to these generated test data, and the estimated posterior distribution
for the epidemic trends was compared to the known simulated epidemic trend. In order to
explore the real-world applicability of this approach, we also simulated diagnostic test data
using published test kinetics and published distributions of case reporting times, from an out-
break of bluetongue in the UK in 2007, and from an outbreak of whooping cough in Wiscon-
sin in 2003.

Fig 1. Outbreak scenarios together with estimated epidemic curves. Top left: Testing 100 whooping
cough cases at week 35 of a 2003Wisconsin outbreak. Top Right: Testing 100 bluetongue cases at week 7
of the 2007 UK outbreak. Bottom left: Testing 25 cases at week 25 of the Wisconsin outbreak. Bottom right:
Testing 30 cases at week 3 of the 2007 UK outbreak. In all scenarios, cases were sampled from the full
population of cases shown in the outbreak data of Fig 1 that had been exposed before the time of testing.
Vertical dashed lines indicate time of cross-sectional sample. Red bars indicate cases included in the
sampling frame for testing, grey bars indicate cases not included (note that hindcasting is designed to
estimate historic, not future, trends). Red lines indicate the mean posterior hindcast trend based on the cross-
sectional test data. The grey transparent regions around the trends indicate the 95% posterior credible
interval.

doi:10.1371/journal.pcbi.1004901.g001
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Recovering the parameters of lognormal epidemic trends
We generate exposure times from four different lognormal distributions, each representing a
different epidemic scenario as follows:

Epi1 � logNðlogðmÞ ¼ logð2Þ; logðsÞ ¼ logð
ffiffiffi

5
p

ÞÞ

Epi2 � logNðlogðmÞ ¼ logð4Þ; logðsÞ ¼ logð
ffiffiffi

5
p

ÞÞ

Epi3 � logNðlogðmÞ ¼ logð20Þ; logðsÞ ¼ logð
ffiffiffi

2
p

ÞÞ

Epi4 � logNðlogðmÞ ¼ logð50Þ; logðsÞ ¼ logð
ffiffiffi

2
p

ÞÞ
where the above notation means that the exposure times in each epidemic are drawn from the
corresponding log-normal distribution. These represents epidemics peaking 2, 4, 20, and 50
days before the time of sampling, with the relative standard deviation chosen to provide more
and more gradual increasing trends.

We found that we could reliably recover the epidemic trends when using sample sizes of 30
or more, and with levels of test variability less than 1.5, and that the estimated trend showed
better fit when the peak was less recent than if it had just occurred (likely due to a difficulty in
resolving very rapid dynamics relative to diagnostic test characteristics).

Fig 2 shows the hindcasted trends for 320 simulations that were conducted with a sample
size of between 30 and 100, with a test variability of 1.3, evenly split across the four parameteri-
zations. As can be seen, these trends all manage to adequately capture the timing and duration
of the true epidemic, with a clear separation between the estimates for different sets of true
parameter values.

Turning to summary statistics of the epidemic fit across these sets of posterior mean trends,
the median R2 (and root mean squared error of prediction—RMSEP) for the Epi1 parameteri-
sation was 0.71, with a 95% inter-quantile range (IQR) of 0.19–0.97 (RMSEP of 0.054[0.021–
0.109]), a median of 0.85 with a 95% IQR of 0.48–0.99 (RMSEP of 0.019[0.005–0.041]) for the
Epi2 parameterisation, a median of 0.96 with a 95%IQR of 0.64–0.998 (RMSEP of 0.005[0.01–
0.020]) for the Epi3 parameterisation, and a median R2 of 0.97 with a 95% IQR of 0.69–0.999
(RMSEP 0.002[0–0.007]) for the Epi4 parameterisation.

Fig 3 shows the relationship between sample size and estimation performance. As can be
seen, increasing the sample size improved the performance as measured with R2 for all of the
parameterizations except Epi1 (fitting Epi1 was limited by the time resolution of the diagnostic
test kinetics used). The posterior credible intervals for the parameters of the epidemic also
shrunk in width, as would be expected. The performance when hindcasting using sample sizes
of 10 was not very reliable; however, for sample sizes of 30 or more, the recovered trends reliably
represented the true trend, with R2 values of 0.75 or more for all parameterizations except Epi1.

Robustness of the hindcasting framework
In order to evaluate the robustness of the hindcasting framework, we explored a range of test-
ing errors from 1.1 up to 2.0 (multiplicative standard deviation). We found that that the width
of the credible intervals increased moderately with increasing variability, but that the recovered
parameters exhibited similar levels of bias regardless of the level of test variability. This was
true even for testing errors of as high as 2.0, far beyond the reported variability of the examined
diagnostic tests for bluetongue and whooping cough. (See S1 Text for full plots regarding the
relationship between test variability and performance.)
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Finally, we investigated the effect of violating the assumption of conditional independence
of antibody and nucleic acid tests. Changing the amount of correlation from 0 up to 1 in
0.25-unit intervals showed no detectable difference in the results, whether measured with R2,
RMSEP, or parameter estimates. (See S1 Text for related figures.)

Case studies
We also applied the hindcasting framework to two case studies based on a recorded outbreak
of whooping cough in humans, and a bluetongue outbreak in cattle (see Fig 1). See the methods
section for details. For each outbreak we simulated two scenarios, firstly where a random subset
of all individuals exposed thus far was sampled and tested at a single time, midway through the
outbreak (increasing epidemic trend/early detection), and in a second scenario where a random
subset of all exposed cases were sampled and tested at a time point at the end of the outbreak
(decreasing epidemic trend/late detection). We assumed that no information about the time
since exposure was available, nor any other information about the epidemic trend. Based on
published temporal characteristics of real diagnostics, test results were then simulated for these
samples (see Methods and Fig 4). For each disease (whooping cough and bluetongue) and each

Fig 2. Hindcasted epidemic trends compared to the true lognormal trends. Each row shows 80
hindcasted posterior mean trends (each estimated trend shown in thin red lines), estimated from between 30
and 100 test results, with exposure times generated using one of four different lognormal epidemic trends
(see main text; true trend shown in black), and assuming a lognormal measurement error of 1.3 for the
diagnostic tests. Vertical dashed line indicate the time of the cross-sectional sampling.

doi:10.1371/journal.pcbi.1004901.g002
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scenario (increasing and decreasing outbreaks) the hindcasting framework was applied to the
corresponding test results to assess performance in recovering early increasing phases and late
decreasing phases of outbreaks.

The results show that the recovered epidemic trends provided a representative picture for
both increasing and decreasing scenarios, in both whooping cough and bluetongue outbreaks
(Fig 1). For the increasing whooping cough epidemic, when assuming a sample of all 122 cases
that had occurred between the start of the epidemic up to week 25, the R2 between underlying
case counts (smoothed by a 7-day moving average) and the estimated epidemic trends was
0.74, with a 95% confidence interval of [0.69–0.78]. The corresponding RMSEP was 0.0017
[0.0015–0.0018] When sampling 230 cases from the full whooping cough epidemic up until
week 36, after it had declined, the curve fit was somewhat better, with R2 of 0.82[0.68–0.94]
(RMSEP 0.0013[0.0008–0.0017]).

The results from hindcasting the bluetongue outbreak indicated that when assuming that a
sample of the 26 animals had occurred during the increasing phase, the fitted curve was nearly
perfect, with an R2 of 0.9[0.86–0.92] (RMSEP 0.0019[0.0018–0.002]). However, for the corre-
sponding decreasing scenario, assuming a sample of the 61 animal cases that had occurred up
to week seven, the hindcast trend could not fully capture the erratic nature of the underlying

Fig 3. Relationship between prediction accuracy and sample size, as measured with R2. Each boxplot
represents the results of applying the hindcasting framework to ten different data sets generated with the
same set of parameters.

doi:10.1371/journal.pcbi.1004901.g003
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case count data, as indicated by R2 values of 0.21[0.15–0.27]). The trend did indicate an ele-
vated incidence over the stretch of time when the majority of cases occurred, thus capturing
the approximate time that had elapsed between the start of the epidemic and the time of sam-
pling. This aspect is also captured by the RMSEP, which is more sensitive to shifts in locations,
and less sensitive to upward- and downward trends, and which slightly improved to 0.0016
[0.0015–0.0016].

When reducing the sample size, the hindcasting technique was still able to recover both
increasing and decreasing phase for the whooping cough scenarios. The good fit was main-
tained with sample sizes as low as 20 individuals, with R2 values of 0.77[0.27–0.83] (RMSEP
0.0064[0.0055–0.0124]), for the increasing and 0.67[0.09–0.86] (RMSEP 0.0038[0.0022–
0.0069]) for the decreasing scenario. The performance was also maintained for the increasing
bluetongue scenario, also assuming 20 samples, with an R2 of 0.91[0.87–0.93]) (RMSEP 0.042
[0.034–0.051]). However, the full bluetongue scenario performed substantially worse with the
reduced sample size with an R2 of 0.12[0.07–0.36] (RMSEP 0.014[0.013–0.015]).

Benefit of two tests
We further investigated how the hindcasting framework would be affected by different combi-
nations of test kinetics. Fig 5 shows the mean likelihood surface of true vs. posterior times of

Fig 4. Graphs of the kinetics of diagnostic test kinetics used in the paper. Top: Diagnostic test kinetics
for whooping cough, with an antibody test (solid line) and a test measuring bacterial load (dashed line).
Bottom: Diagnostic test kinetics for bluetongue, with an antibody test (solid line), and a test measuring viral
load (dashed line). The graph is showing idealised test kinetics, based on published data for whooping cough
[34,35] and bluetongue [36] tests(see methods for details).

doi:10.1371/journal.pcbi.1004901.g004
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exposure when using antibody-based tests, nucleic-based tests, or a combination, for the
whooping cough and bluetongue exemplar diseases. For the hindcasting framework the ideal
combination of diagnostic tests would have a likelihood surface with a single narrow diagonal
representing a maximum likelihood coinciding with the true exposure time given observed
data. A likelihood surface with a more diffuse diagonal implies a wider posterior distribution.
A likelihood surface where there is an “X” of high-likelihood regions implies that the true expo-
sure times are not uniquely identifiable.

Each pixel represents the average likelihood of 10 observations from the distribution of test
measurements at a time since exposure given by the X axis, calculated at a time of exposure
given by the Y axis. Areas in dark red indicate regions of higher likelihood. The times shown
are times since exposure, with low numbers indicating more recent exposure, where the test
response is changing rapidly. Looking at Fig 5a, during the first 20 days the probable exposure
times (red pixels), given the data, are centred on the diagonal (i.e. the true exposure times) with
a narrow band of high-probability red pixels. For times since exposure of greater than 20 days,
when the kinetics of the antibody test are developing at a slower pace, the diagonal of red pixels
becomes more diffuse, indicating a greater variation around the true times since exposure. Fur-
thermore, we can see that there are two different diagonals crossing at 25 days. This

Fig 5. Log likelihood of inferred times of exposure as a function of true time since exposure. The log likelihood values plotted are conditional on
test data generated assuming that the individual was exposed to whooping cough (top row) or bluetongue (bottom row) at the true time. Both the X and Y
axes are on a log scale. Each pixel represents the value of the likelihood at a time of exposure given by the Y axis, given 10 test results, generated
assuming a time since exposure given by the X axis. The colour of the pixel indicates the likelihood for an estimated time, given the sample data, with dark
red being most likely, and pale yellow being least likely. A clear, dark red diagonal indicates that the time since exposure is easily recoverable, while a
more diffuse diagonal indicates higher levels of uncertainty (see the results section for details). The first column shows results based only on data from the
antibody test relevant to the disease in question, the middle column results based on an appropriate nucleic acid test, and the right hand column shows
the results based on both tests. (See text for details.)

doi:10.1371/journal.pcbi.1004901.g005
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corresponds to the peak of the diagnostic response curve, with the two diagonals indicating the
possibility that a given test result could have been the result of testing an individual during
either the increasing or the decreasing phase of the response curve. Estimation of the time
since exposure is more precise when the true time since exposure corresponds to phases where
the response is changing rapidly, and is more difficult to infer when the test response levels out
(Fig 5b and 5d). For diagnostic tests with a peaking response, estimating the time of exposure
can be precise but not unique, with two different regions of probable exposure times for a given
test response (Fig 5e).

To further evaluate the gain from utilizing two different tests, we ran simulations against
the four parameterizations of a lognormal epidemic mentioned above, using two diagnostic
tests and starting with respectively whooping cough and bluetongue test kinetics. The kinetics
were then modified to be increasingly similar to each other (full details and results in S1 Text).
We found that for the bluetongue scenarios, the level of similarity of the tests did not seem to
noticeably affect the accuracy (as measured with R2/RMSEP) of the estimated trends, while for
the whooping cough scenarios when recovering Epi3 and Epi4 scenarios, performance
degraded gradually, with a very low R2 when using two identical tests. bluetongue test kinetics,
the MCMC sampler converged well for the unmodified test configuration (as measured using
Gelmans R statistic), but the convergence behaviour then degraded as the tests became increas-
ingly similar. It completely failed to converge in the limit when the two tests were identical
(either identical NA tests, or identical antibody based tests). For the whooping cough scenarios
the sampler converged for all combinations of diagnostic tests, no matter how similar.

Discussion
We have shown how to recover epidemic trends of both human and animal pathogens from
cross-sectional data collected at a single point in time. We were able to recover this temporal
information using a novel statistical framework which combines paired diagnostic test mea-
surements made on collected samples with known temporal kinetics of diagnostics test mea-
surements over the course of infection.

The inferential framework introduced here allow us to extract rich temporal information
from collected diagnostic samples. Here we focused on purely cross-sectional samples, but the
methods are applicable to longitudinal data and data sets combing both longitudinal and cross-
sectional samples. We were able to estimate the trends of both increasing epidemics and
decreasing epidemics, as well as estimate the approximate pace of increase or decrease. Such
information would improve situational awareness during outbreaks, enabling appropriate
management decisions to be implemented immediately when an outbreak has been detected,
without the need to observe its subsequent spread to estimate the trend.

The implementation of the framework used in this paper combines surveillance data with
information on the test kinetics using a simplified model. For example, individual variation in
the test response is modelled as variation around a common mean test curve, rather than as
variation in the shape of the curve itself. Variations in the two tests are considered independent,
and the error distribution is assumed to be log normal. This limits the pattern and range of var-
iation our model can capture, but facilitates model specification and estimation. We also
assume that the test variability is known. While this is partly owing to technical limitations
(models with unknown variance parameters tended to converge to degenerate solutions by
maximising the variance), it is a realistic assumption since the reliance on test kinetics require
that the diagnostic test has been studied in depth. More detailed modelling of the individual
and population level processes (including the effect of various covariates such as age or gender)
in order to tailor the model to a particular disease is entirely consistent with the statistical
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framework introduced and would increase the real-world validity and predictive power beyond
what has been demonstrated here.

The current implementation of the framework does not include a sampling process compo-
nent, and so the generated posterior distribution does not currently take sampling uncertainty
into account. If the samples are randomly drawn from a larger population of infected individu-
als, the estimated trend will be an unbiased estimator of the wider population trend. A potential
avenue for future research would be to integrate hindcasting into a wider framework describing
the sampling process in detail; such an approach might also allow for simultaneously estimat-
ing potential sampling bias.

We make use of the lognormal distribution as a parsimonious parameterization of the epi-
demic trend. This is suitable for epidemics where a single peak is expected, allowing fast model
fitting whilst capturing the time span and general direction of the trend. The trade-off is that
more complex aspects of trends in the epidemic are omitted. A second limitation is that the
lognormal distribution requires the trend to decline to zero after any peak. Should either of
these limitations pose a problem, more complex parameterizations of the epidemic trend—
with multiple peaks and stages, or even compartmental SEIR-type models—could be used,
though such models are likely to come at substantially higher computational cost.

The hindcasting framework introduced here estimates epidemic trends by combining
observed data with information on how test responses develop after exposure. Woolhouse and
Matthews [37] give an extensive overview of studies that incorporate different data sources to
recover the underlying dynamics of disease spread [38,39], and argue that the future of disease
analysis lies in models taking account of a wider range of inputs, such as diagnostic test perfor-
mance, disease pathogenesis, or transmission mechanics, in addition to regular surveillance
data. Our methodology improves on earlier studies incorporating test kinetics [29–31] in three
ways: by incorporating information from more than one diagnostic test; by considering their
joint kinetic pattern; and by modelling non-constant incidence. It could be further extended to
model other aspects of the disease system such as population demography, contact networks,
or the spatial distribution of cases.

The hindcasting approach make use of knowledge of the within-host development of test
markers. Phylodynamics, on the other hand, leverages information about how the genetics of
the pathogen change as it spreads through the population to estimate between-host transmis-
sion events, and use this to e.g. reconstruct the transmission network of outbreaks [40] and to
inform future control measures and forecasts of outbreak trajectories such as the 2015 Ebola
outbreak [41], and the 2009 H1N1 influenza outbreak [42]. However, phylodynamics requires
sequenced samples of genetic material, and that the pathogen of interest is mutating quickly
enough that the dynamics of the epidemic can be resolved. In contrast, the hindcasting
approach relies on test kinetics and measures within-host times since infection. Recent papers
[43,44] discuss ways to integrate epidemiological and genetic information when modelling dis-
ease epidemics; given the complementary nature of phylodynamics and hindcasting, a natural
future step would be to combine the two sources of information into a single framework.

Since hindcasting exploits knowledge of the host-pathogen interaction, it relies on previ-
ously conducted longitudinal studies of such interactions, and requires that the test response
after initial pathogen exposure has been described. Our results demonstrate one of the many
ways in which experimental infection studies can provide substantial additional benefits to dis-
ease control and research. Currently, only a fraction of pathogen tests have published informa-
tion on how time since exposure affects test response; this has limited which pathogens we
could usefully simulate. Similarly, data sets of infectious diseases often only record whether a
test has been positive or not. Presentation of the underlying continuous test response is rare—
and it is rarer still to find such results for paired diagnostic tests.
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It is hoped that the method introduced here can give some further motivation to record con-
tinuous test responses from more than one diagnostic test, and that it can also serve as an argu-
ment for conducting further studies on test kinetics. The results regarding the impact of
combining diagnostic tests indicate that combining diagnostic tests increases the robustness of
the hindcasting procedure. The bluetongue scenarios exhibited severely degraded convergence
behaviour with two identical tests, while the whooping cough scenarios converged, but pro-
duced posterior estimates that did not match the true trend.

Further research is required to characterise how combinations of tests interact to affect
hindcasting. In general, however, the diagnostic tests used in disease surveillance should be
chosen to complement each other. By combining early responding tests with later responders,
it becomes possible to create a joint test signature that combines the best features of both tests.
In terms of the method presented here, the best combination of tests is likely that which pro-
vides a unique and precise signature along the timeline of infection for an individual.

The hindcasting framework described here makes use of diagnostic test information, that
has up until now been under-utilized, to improve situational awareness during an outbreak.

This approach could also be used to improve the detection of new outbreaks by extracting
more information from existing surveillance data and thus make outbreak detection algorithms
[20,21] more sensitive. It could similarly be used to provide additional sources of information
when estimating epidemiological parameters and trends, and thus improve the accuracy of
forecasting models.

We have described a new framework for hindcasting the temporal patterns of epidemics,
using two example host-pathogen systems and the pairing of antibody tests with pathogen
load. The framework demonstrates the potential to utilise the information inherent in the
increasing variety of diagnostic tests. We were able to estimate both increasing and declining
epidemic trends under the assumption that all individuals were being tested at a single point in
time, implying its usefulness for cross-sectional surveillance data as well as in less restrictive
settings. Recovering temporal incidence trends using multiple tests on cross-sectional field data
has the potential to be of considerable value, and is a key determinant of introducing propor-
tionate responses to ongoing disease outbreaks.

Methods

Statistical framework
Our method assumes test data yik from multiple disease diagnostics indexed by k = 1, . . ., K on
individuals i = 1, . . ., N. We assume that each individual is tested at some time ti, after having
been exposed to the pathogen at some earlier time ei. We further assume that these individuals
are chosen in an unbiased, random manner from a larger population. Each diagnostic test is
assumed to return a value in the form of a continuous ‘level’, which might, for example, be the
highest dilution at which antibodies are detected in a serological test. Without loss of generality
we assume that these levels are scaled to the unit interval [0,1].

Initial exposure to a pathogen is the start of a complex dynamical process within the host.
We conceptualize such internal host-pathogen interactions as a multivariate process that
depends on the time since initial exposure. Each diagnostic test is assumed to target the state of
a different component of this process so that each test k carried out at time ti on individual i
can be modelled as a latent variable lik(ti, ei) = lik(di), with each test having differing but corre-
lated response patterns over the time since initial exposure di = ti−ei. We model these latent
variables using results from experimental infection studies for a given host-pathogen system,
where the length of time since initial exposure di is known.
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The known data, across all individuals in the sample, comprises a set of test results denoted
by Y = {yik} with sampling times T = {ti}. Our aim is to infer the unknown set of exposure times
E = {ei}, using information on the behaviour of the latent processes L = L(T, E) = {lik(ti, ei)} gen-
erating the test results. Note that when describing these sets the limits of each index k = 1, . . .,
K and i = 1, . . ., N are implicit.

Under our statistical model we assume that the sampling times T are precisely known
whereas the quantities Y, L and E are assumed to be subject to uncertainty and variation. There
are thus three components to the statistical model: a latent process model P(L|T, E, θL) describ-
ing uncertainty and variation in the host-pathogen interaction process within the host in terms
of the time since initial exposure; a testing or observation model P(Y|L, θY) describing the dis-
tribution of results from tests carried out on the hosts conditional on the internal latent pro-
cess; and an epidemic trend model P(E|T, θe), describing the historical development of the
epidemic in terms of the distribution of exposure times in the sampled host population, at the
time of sampling. We discuss specific implementations of each of these components in the
examples described below.

Combining the three parts of the model, we write the full data likelihood given an observed
data set {Y, T}as

PðY ;E; LjT; yÞ ¼ PðY jL; yYÞPðLjT;E; yLÞPðEjT; yEÞ;

where θ = {θY, θL, θE}. Thus the likelihood combines models for testing with those for within
and between host pathogen interactions.

According to Bayes’ theorem, the so-called posterior distribution for the unknown parame-
ters is proportional to the data likelihood and prior P(θ). We can express this relationship for
the parameters of interest, the latent process L, the exposure times E and the parameters θ,
given the observed test data Y and sampling times T, by the equation

PðL;E; yjY ;TÞ ¼ PðY ;E; LjT; yÞPðyÞ
PðY ;TÞ

Within the Bayesian framework all inference is based on the posterior. The prior P(θ) can
result from previous measurements or expert opinion, and represents knowledge about the val-
ues of parameters before we see the data used in the likelihood.

In what follows, we will make the simplifying assumption that the latent process L is mod-
elled by a known deterministic function of T and E, and represents the expected value of the
test results given the times since exposure. This means that the term P(L|T, E, θL) drops out of
the likelihood which then simplifies to P(Y, E|T, θ) = P(Y|L(T, E), θY)P(E|θE), and the posterior
becomes

PðE; yjY ;TÞ ¼ PðY ;EjT; yÞPðyÞ
PðY ;TÞ

Note that under this notation any parameters defining the deterministic latent process L(T,
E) = {lnk(tn, en)} are suppressed since they are not inferred i.e. θ = {θY, θE}.

In both cases above the normalisation factor P(Y, T) is typically unknown and computation-
ally expensive to calculate. However, standard Markov Chain Monte Carlo (MCMC) methods
circumvent this problem and are able to generate samples from the posterior even though the
normalisation is unknown. The results presented in this paper are generated from an MCMC
sampler implemented with a Metropolis-Hastings algorithm in JAGS [45] using Gibbs sam-
pling [46].
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Case studies
Whooping cough is a human disease caused by the bacteria Bordetella pertussis, causing pro-
longed spasmodic coughing. Despite widespread vaccination coverage there has been a resur-
gence of cases in several countries. In the Netherlands there has been a steady increase in the
incidence since 1996; and in California, USA, in 2011, there was a widespread outbreak with
9000 cases and ten deaths [47]. The reasons for such resurgence is currently a matter of scien-
tific debate; some hypotheses include antigenic drift of the bacterium [48,49], asymptomatic
transmission of B. pertussis by vaccinated individuals [50], or the resurgence being the conse-
quence of changing vaccines and vaccination schedules [51]. Here we make use of data describ-
ing a county-wide outbreak of whooping cough primarily among adolescents and adults in
Fond du Lac County, Wisconsin, USA in 2003–2004, [52]. After an early cluster of cases in a
high school in early May 2003, there was a large outbreak of whooping cough throughout the
county starting from October. After some time, this outbreak was contained, and the final
cases occurred in February 2004. The upper part of Fig 1 shows interpolated case counts per
48-hour period over the duration of the outbreak.

Bluetongue virus (BTV) is a midge-borne virus that can infect ruminants such as sheep, cat-
tle, deer, and camelids, causing bluetongue disease with symptoms such as internal haemor-
rhages, swelling of the tongue, lesions in the mouth, and in some species death (most notably
in naïve sheep and white-tailed deer). Bluetongue infections can have severe economic conse-
quences for livestock farming, both due to loss of productivity, and because of the severe con-
trol measures needed to prevent spread [53]. In 2006, bluetongue emerged throughout
northern Europe, with recorded outbreaks in the Netherlands, Belgium, Germany, and Luxem-
bourg. In 2007, the UK had its first recorded outbreak [54]. The first infections occurred some-
time in early August 2007 [54] when midges introduced the pathogen to the British Isles, but
the first case was not detected until September. The lower part of Fig 1 shows the case count
per day, with numbers interpolated from the published weekly data [54].

In order to assess our methodology, we consider two scenarios for each pathogen outbreak.
In the “increasing” scenarios we assume the epidemic is recognised early and explore test
results from samples taken at a time early on in the outbreak (when the outbreak is increasing,
see e.g. Fig 1). In contrast in the “decreasing” scenarios we use test results assumed to be
obtained from individuals exposed during the entire outbreak, with samples collected at a rela-
tively late stage in the outbreak (i.e. when it is in decline). The goal was to see how well hind-
casting could distinguish between increasing scenarios and scenarios where the epidemic is in
decline. We were also interested to see if it was possible to estimate the approximate time span
of the epidemics.

Implementation of the whooping cough scenarios. We based our whooping cough data
set on the case count curve of the 2003 Wisconsin whooping cough outbreak. We used pub-
lished bi-weekly case counts, and interpolated these using a LOESS [55] approach to generate
estimated 48-hour case counts.

We investigated two hypothetical scenarios for when the outbreak could have been first
detected and cases tested. We simulated one scenario where we assumed that a random subset
was selected from all cases that had occurred between the start of the epidemic and 25 weeks
after the first observed case. The selected cases were assumed to be sampled and samples tested
at the 25 week time point. At this time point, the first wave had passed, and the second sharp
increase in incidence had been going on for about a month. 126 cases had been reported by this
time in the actual outbreak. The second scenario assumed that cases were selected from the 230
cases from the full whooping cough epidemic up until week 36, and that samples were taken and
tested at that time. This time point marks the end of the epidemic, with no later cases reported.
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Implementation of the bluetongue scenarios. As with whooping cough, we assumed
two different hypothetical scenarios for when the outbreak was noticed and animals tested:
one assuming that a random subset of the 26 exposed animals up week two were sampled and
tested at the end of the second week, and the other assuming that a random subset of the 61
animals exposed by the end of week seven were sampled and samples tested at this time
(Fig 2).

Generation of simulated test results
The results of diagnostic testing are characterised in terms of an underlying mean trend and a
model which accounts for variation around this reflected measurement error, and within and
between individual variability in test response.

Given simulated times of exposure, we then simulated test results, based on the elapsed time
between the time of exposure in the outbreak and the assumed time of sampling, using pub-
lished kinetics of real-time PCR analysis and quantitative ELISA for B. pertussis [34,56], to
inform a latent process P(L|T, E, θL). Specifically these were the kinetics of ELISA IgG B. per-
tussis antitoxin [35] for antibody test response ab(d)as a function of time since exposure d, and
real-time PCR measurement of persistence over time of B. pertussis DNA in nasopharyngeal
secretions [34] (see Fig 2) for the pathogen load DNA(d). As noted earlier formally, we defined
the deterministic function L(di) = (DNA(di), ab(di)) by fitting interpolated curves to the pub-
lished data on DNA and antibody levels using LOESS [55].

The distribution P(Yi|L(di)) of test measurements was modelled as a lognormal distribution
conditional on the state of the latent process: let yi = (yNA, yab)i represent a bivariate measure-
ment of nucleic acid and antibody levels on individual i, and define the distribution

PðYijLðdiÞÞ ¼ lN ðLðdiÞ;S2ÞÞ, where S2 is a diagonal covariance matrix, reflecting the
assumption of no correlation between test results when conditioned on the time since expo-
sure. The variance for each test (i.e. the diagonal elements of S2) was assumed to be known.
Antibodies as well as levels of pathogens in a host often follow log-normal distributions, as has
been rigorously argued [57]; the suitability of using the lognormal distribution for modelling a
wide range of biological phenomena has also been described more recently [58].

We modelled the test behaviour based on published data [36], and assumed lognormal dis-
tributions for the epidemic trend, as well as for the variance of the diagnostic tests (test kinetics
shown in Fig 4). Specifically, we based the behaviour of the latent process P(L|T,E, θL) on a
study of experimental infection of European red deer with BTV serotype 1 and 8 that described
the dynamics of BTV serotype 1 viral load (vl) as measured with RT-PCR, and antibody levels
(ab) as measured with ELISA. As above, we define the latent process describing antibody con-
centration and viral load as a deterministic bivariate function of the duration d elapsed since
exposure as L = {l(di)}� (vl(di), ab(di)), which does not vary between individuals. We estimate
L by fitting smooth and interpolated curves to the experimental study data on viral load and
antibody levels independently and take the values of these curves at each exposure time d to
define the values of the deterministic functions, vl(d), ab(d). A smoothing spline algorithm
[55] was used as a nonparametric fitting method. Conditional on the time since exposure, the
observed test values yi = (yvl, yab)i were modelled as a bivariate log-normal distribution with
mean equal to the deterministic latent process = {l(di)} = (vl(di), ab(di)). For individual i, this

can be formally written as PðyijlðdiÞÞ ¼ lN ðlðdiÞ;S2Þ, where lN indicates a bivariate lognor-
mal probability function, and S2 is the covariance matrix. We assumed that the variation in
observed antibody levels and viral loads to be independent so that the covariance matrix S2 is
diagonal, with variance components s2

1; s
2
2. The variance for each test (i.e. the diagonal ele-

ments of S2) was assumed known.
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Modelling the epidemic trend
The third and final part of the model, the distribution of times since exposure P(E|T, θe), was
modelled as a lognormal distribution PðEjT; ye ¼ fm; sgÞ ¼ lN ðm; sÞ.

In this case, we exploit the ability of the lognormal to model extreme skewness to capture
both increasing and decreasing epidemics using only two parameters. Note that the implemen-
tation of the lognormal distribution as an epidemic trend must be conducted in such a way as
to allow the sampler to jump between tails of the distribution for the individual times since
infection. Details for how to do this can also be found in the supplementary information.

Choice of priors
We followed the recommendations of Gelman et al. [59] and used vague priors for the parame-
ters. Such priors incorporate information about what parameter values are nonsensical in a
given problem setting, but without using any previously collected data. The means for the log-
normal distribution describing the epidemic trends were themselves given lognormal priors.
These priors were set to indicate the timescale of relevance for the epidemics in question. This
translated to setting the prior means for the for the increasing whooping cough to 100 days,
and prior means for the decreasing whooping cough scenario to 200 days. The corresponding
values for bluetongue were 10 days and 100 days, respectively. The standard deviations for the
prior distributions were chosen as log(10) corresponding to 99% confidence intervals of
(mean/100,mean�100). This standard deviation was chosen to model that any peak time more
than a factor 100 different from the time scale of interest was nonsensical.

The standard deviation of the lognormal distributions for the epidemic trend was given a
vague prior parametrized as a folded, non-standardized t-distribution with five degrees of free-
dom, a standard deviation of log(100), and a mean of 0, indicating in the spirit of vague priors
that a spread of on the order of more than 100 days in the past was not sensible.

In the process of developing this work, we also explored the use of uninformative priors
with nearly flat distributions, such as the standard gamma distribution, and uniform priors
with very wide support; however, these were found to lead to very slow mixing and a high rate
of convergence failure of the MCMC algorithm. Changing the specific values of the priors did
not influence the posterior estimates noticeably. See the supplementary information for
MCMC traceplots, details of convergence evaluation and sensitivity analysis of the priors.

Supporting Information
S1 Text. Extended simulation results, details on data generation and implementation and
convergence evaluation of the MCMC sampler.
(DOCX)
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