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Abstract: (1) Background: To evaluate the diagnostic performance of a simulated ultra-low-dose
(ULD), high-pitch computed tomography pulmonary angiography (CTPA) protocol with low tube
current (mAs) and reduced scan range for detection of pulmonary embolisms (PE). (2) Methods: We
retrospectively included 130 consecutive patients (64 ± 16 years, 69 female) who underwent clinically
indicated high-pitch CTPA examination for suspected acute PE on a 3rd generation dual-source CT
scanner (SOMATOM FORCE, Siemens Healthineers, Forchheim, Germany). ULD datasets with a
realistic simulation of 25% mAs, reduced scan range (aortic arch—basal pericardium), and Advanced
Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength
5 were created. The effective radiation dose (ED) of both datasets (standard and ULD) was estimated
using a dedicated dosimetry software solution. Subjective image quality and diagnostic confidence
were evaluated independently by three reviewers using a 5-point Likert scale. Objective image
quality was compared using noise measurements. For assessment of diagnostic accuracy, patients
and pulmonary vessels were reviewed binarily for affection by PE, using standard CTPA protocol
datasets as the reference standard. Percentual affection of pulmonary vessels by PE was computed for
disease severity (modified Qanadli score). (3) Results: Mean ED in ULD protocol was 0.7 ± 0.3 mSv
(16% of standard protocol: 4.3 ± 1.7 mSv, p < 0.001, r > 0.5). Comparing ULD to standard protocol,
subjective image quality and diagnostic confidence were comparably good (p = 0.486, r > 0.5) and
image noise was significantly lower in ULD (p < 0.001, r > 0.5). A total of 42 patients (32.2%) were
affected by PE. ULD protocol had a segment-based false-negative rate of only 0.1%. Sensitivity
for detection of any PE was 98.9% (95% CI, 97.2–99.7%), specificity was 100% (95% CI, 99.8–100%),
and overall accuracy was 99.9% (95% CI, 98.6–100%). Diagnoses correlated strongly between ULD
and standard protocol (Chi-square (1) = 42, p < 0.001) with a decrease in disease severity of only
0.48% (T = 1.667, p = 0.103). (4) Conclusions: Compared to a standard CTPA protocol, the proposed
ULD protocol proved reliable in detecting and ruling out acute PE with good levels of image
quality and diagnostic confidence, as well as significantly lower image noise, at 0.7 ± 0.3 mSv (84%
dose reduction).

Keywords: pulmonary embolism; emergency radiology; radiation dose reduction; iterative recon-
struction; reduced scan range; 3rd generation dual-source CT

1. Introduction

Pulmonary artery embolisms (PE) are a common diagnosis and avertible cause of
death in hospitalized patients [1]. Because of wide availability and the capability to quickly
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and reliably rule out this potentially deadly disease, computed tomography pulmonary
angiography (CTPA) is the diagnostic method of choice [2]. While clinical capabilities
have continually risen in the last decades, there has been an alarming rise in the incidence
of PE as well [3]. The rising incidence of PE is indivisibly connected with an equally
growing need for CTPA examinations, leading to increased patient exposure to radiation
doses [4]. Multiple studies have voiced concern about this fact in the last decades, as
its potentially harmful consequences are difficult to predict [5,6]. Managing radiation
exposition according to the As Low As Reasonably Achievable (ALARA) principle has hence
become a constant goal in clinical routine and radiological research. Radiation dose is,
however, closely linked to image quality and image noise. Reducing radiation dose is,
therefore, not an easy task, as it might severely limit diagnostic accuracy [7,8]. Solving
this dilemma becomes especially important in younger patients and in pregnant women,
where CTPA may result in elevated radiation exposure of the mammary glands [9,10].
In light of this background, there have been numerous approaches to reducing radiation
doses in CT, particularly in CTPA. Apart from modulation of tube current (mAs) and
reducing peak tube voltage (kVp), the introduction of the latest generation CT scanners and
the resurgence of iterative reconstruction (IR) techniques have significantly contributed
towards radiation exposure reductions in CTPA, enabling mean radiation doses below
2 mSv [11]. In addition, approaches using the reduction of the scan range in the z-axis have
shown promising results in abdominopelvic CT and CTPA [12,13]. While these individual
methods are proven to reduce radiation doses in CT significantly, to our knowledge, there
have not been any attempts to evaluate the feasibility of a CTPA protocol that combines
all of these approaches. Therefore, the scope of our study was to evaluate the effects of
a retrospectively simulated ultra-low-dose (ULD) CTPA protocol at 25% radiation dose
with reduced scan range, high-pitch scan mode, and iterative reconstruction techniques on
diagnostic accuracy, image quality, and diagnostic confidence, as compared to a standard
CTPA protocol.

2. Materials and Methods
2.1. Population

Retrospective collection of clinically indicated CTPA for suspected acute pulmonary
embolisms for this study was approved by the institutional review board with a waiver
for the need for informed consent. We included 130 consecutive patients (19–94 years,
69 female) who underwent clinically indicated CTPA for suspected PE from August to Oc-
tober 2019. No patients were excluded. To form a comprehensive image of our population,
we collected biometric details such as sex, date of birth, the patients’ age, and BMI at the
examination. Figure 1 is a flowchart of patient enrollment and the study workflow.
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2.2. Image Acquisition and Reconstruction Parameters

All CT exams were acquired on the same 3rd generation dual-source CT Scanner
(SOMATOM FORCE, Siemens Healthineers, Forchheim, Germany). For image acquisition,
we used the proprietary single-energy high-pitch mode (“flash mode”) with attenuation-
based tube current modulation (CARE Dose4D, reference mAs 180) and automatic tube
voltage selection (80–120 kV, reference kV 110) matrix size set to 512 and field of view set
to 50 cm. Collimation was 0.6 × 192 mm, pitch factor 2.8, and gantry rotation time 0.25 s.
Depending on individual body weight, CTPA was automatically performed with 50–60 ml
contrast medium (Imeron 400, Bracco, Milan, Italy), applied through an antecubital vein
catheter. We used a dual syringe injector with a chaser of 40 ml saline, each at a flow
rate of 3.5 mL/s (CT Stellant, Medrad, Indianola, PA, USA). Bolus tracking was used to
ensure optimal contrast enhancement of the pulmonary arteries by placing a region of
interest (ROI) with a trigger threshold of 200 Hounsfield units (HU) in the pulmonary trunk.
Delay was 5 s. To avoid quality differences due to varying electronic noise levels, image
reconstruction and low dose simulations were conducted solely using the proprietary
reconstruction Software ReconCT (version 14.2.0.40998, Siemens Healthineers, Forchheim,
Germany). We used a medium-hard kernel (Bv40d) with a slice thickness and increment of
1 mm in axial, coronal, and sagittal orientation. In accordance with our hospital’s standard
CTPA protocol, we employed Advanced Modeled Iterative Reconstruction (ADMIRE®,
Siemens Healthineers, Forchheim, Germany) strength3 for standard protocol reconstructions.
For ULD protocol reconstructions, we performed a tube current simulation by reducing the
mAs to 25% and employed a high level of iterative reconstruction (ADMIRE strength 5),
as this combination showed promising results in other studies [11]. In the same step,
we additionally simulated a limited scan range from the top of the aortic arch to the
basal pericardium.

2.3. Radiation Dose

We collected the tube voltage (kV), the CT dose index (CTDIvol) and the dose length
product (DLP) from the study protocol for every patient. To determine the effective
radiation dose, we used a dedicated dosimetry software (Radimetrics ver. 2.9, Bayer
Medical Care, Leverkusen, Germany) that also allows for the estimation of the effective
radiation dose (ED) at 25% mAs, with a reduced scan range.

2.4. Analysis of Subjective Image Quality

Three radiologists (3–6 years experience in chest radiology) independently performed
the subjective analysis of image quality blinded to the examinations’ clinical background
information. All images were initially displayed in a soft tissue window (center 50 HU,
width 350 HU), but individual adjustments were allowed for the reading. Assessment of
subjective image quality and diagnostic confidence was performed according to the criteria
listed in the chapter “Chest, general” of the European Guidelines on Quality Criteria in
Computed Tomography [14], using an equidistant 5-point Likert scale (5 = very good,
4 = good, 3 = average, 2 = below average, 1 = poor).

2.5. Analysis of Objective Image Quality

We used image noise as a marker for objective image quality. We defined noise as the
standard deviation of HU taken from homogenous regions of interest (ROI) with a size of
≥2 cm2 placed in the paraspinal muscles. Noise measurements were performed by each
reviewer in the process of subjective image quality reading. We measured noise bilaterally
in 5 consecutive slices and averaged all results for a mean overall noise value.

2.6. Diagnostic Accuracy and Disease Severity

For diagnostic accuracy and assessment of disease severity, we used a modified
Qanadli score [15]: each reader evaluated the images for the presence/absence of PE in
the ten segmental vessels bilaterally and assigned a binary grade (0 = no PE, 1 = PE).
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Findings positive for PE ranged from partial intraluminal filling defects to complete arterial
occlusions, proximal PE were counted as positive findings for all downstream segments.
Figure 2 shows modified Qanadli score points (white numbers) for PE at the respective
locations. Findings not covered by the given scan range in the ULD protocol were counted
as false-negatives.
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Figure 2. Pulmonary tree with vessel segments (black numbers) and modified Qanadli score points (white numbers) [15].

Vessel segments (black numbers) are defined in Table 1. Pulmonary lobes are abbrevi-
ated as follows: right upper lobe = RUL, right middle lobe = RML, right lower lobe = RLL,
left upper lobe = LUL, left lower lobe = LLL.

Table 1. Definitions of pulmonary vessel segments.

# Lobe Vessel Segment # Lobe Vessel Segment

1 RUL Anterior segment 11 LUL Anterior segment
2 RUL Apical segment 12 LUL Anterior apical segment
3 RUL Posterior segment 13 LUL Apical posterior segment
4 RML Apical segment 14 LUL Apical lingula segment
5 RML Basal segment 15 LUL Basal lingula segment
6 RLL Lateral basal segment 16 LLL Lateral segment
7 RLL Anterior basal segment 17 LLL Anteromedial segment
8 RLL Medial basal segment 18 LLL Posteromedial segment
9 RLL Posterior basal segment 19 LLL Posterolateral segment

10 RLL Superior segment 20 LLL Superior segment

We calculated the overall percentual affection of segmental vessels by PE as an indi-
cator of severity. For reference standard, the original datasets were evaluated by a senior
radiologist with eight years of experience in synopsis with the clinical reports.

2.7. Statistical Analysis

IBM® SPSS® Statistics Version 27 for Windows (Armonk, NY, USA) was used for
statistical analysis. Data distribution was tested using the Shapiro–Wilk test. Normally dis-
tributed variables were expressed as mean ± standard deviation, non-normally distributed
variables as median, and interquartile range (IQR). Normally distributed variables were
analyzed using Student’s paired t-test, non-normally distributed variables with Wilcoxon’s
paired t-test. A p-value ≤ 0.05 indicated statistical significance. We computed Pearson’s
correlation (r) to measure effect size and defined r-values from 0.1 to 0.3 as indicative
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for a small, from 0.3 to 0.5 for a medium, and ≥0.5 for a large effect size. To measure
inter-rater agreement, we used an intraclass correlation coefficient (ICC) [16]. ICC values
of 0–0.2 were considered as slight, 0.21–0.4 as fair, 0.41–0.6 as moderate, 0.61–0.8 as sub-
stantial, and 0.81–1.00 as almost perfect levels of agreement. For patient-based diagnostic
accuracy, we performed crosstabulations to calculate sensitivity and specificity with 95%
confidence intervals. We computed the positive and negative likelihood ratio, positive and
negative predictive value, as well as accuracy. We furthermore added a segment-based
accuracy analysis via bootstrapping the pulmonary vessels to account for the clustered
nature of the data. Pearson’s Chi-Square tests for the contingency of PE diagnosis on a
vessel segment-based level ensued with Bonferroni correction to counteract Type I error
increase in multiple comparisons. Cramer’s V was used as a symmetric measure with
values > 0.3, indicating a strong correlation.

3. Results
3.1. Patient Population, Scan Range, and Radiation Dose

We included 130 patients (61 male, 69 female) in our study. Prevalence of PE was 32%
(n = 42). A total of 88 patients (68%) showed other findings that were deemed causative for
acute thoracic symptoms. Table 2 gives an overview of the patient characteristics and the
radiation dose.

Table 2. Patient characteristics and radiation dose.

Parameter Male Female Total

Patient population
Absolute (n) 61 69 130

Reconstructions (n) 122 138 260
Mean age (y) 65 ± 16 63 ± 18 64 ± 16

Mean BMI 27.7 ± 2.4 27.6 ± 1.7 27.7 ± 2.1
Contrast medium (mL) 62 ± 21 54 ± 20 58 ± 20

Scan range
Mean scan range in standard protocol (cm) 29.7 ± 4.1 28.7 ± 4.1 29.2 ± 4.1

Mean scan range in ULD protocol (cm) 18.7 ± 2.7 17.9 ± 2.7 18.3 ± 2.7
Diagnosis (n)

Pulmonary embolism 20 22 42
Other findings causative of acute thoracic symptoms

Pleural effusion 22 24 46
Pulmonary xongestion 14 9 23

Pulmonary infiltrate 7 3 10
Pneumothorax 4 2 6

No causative findings 1 2 3
kV 108 (80–120) 104 (80–120) 106 (80–120)

mAs 197 190 193
mAs ref 180 180 180

CTDI 6.93 ± 2.76 7.07 ± 3.5 7 ± 3.17
DLP (mGy) 243.4 ± 96.31 236.26 ± 91.86 239.61 ± 95.82

Mean effective radiation dose (ED)
Standard protocol (100% mAs, ADMIRE 3, full scan range) 4.0 ± 1.6 4.6 ± 1.8 4.3 ± 1.7
ULD protocol (25% mAs, ADMIRE 5, reduced scan range) 0.7 ± 0.3 0.8 ± 0.3 0.7 ± 0.3

The mean ED of the standard protocol was 4.3 ± 1.7 mSv. For the ULD protocol,
mean ED was 0.7 ± 0.3 mSv, resembling 16% of the initial radiation dose (p < 0.001). For
visualization of scan ranges, see Figure 3.
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Figure 3. Visualization of scan lengths in full and reduced range protocol.

The mean scan range of the standard protocol was 29.2 ± 4.1 cm. In the ULD proto-
col, the mean scan range was reduced to 18.3 ± 2.7 cm, which amounted to 63% of the
original length.

3.2. Analysis of Subjective Image Quality

Image quality was rated very good (5; IQR 4–5) for the standard protocol and good (4;
IQR 3–5) for the ULD protocol. Diagnostic confidence was very good (5; IQR 4–5) in the
standard protocol and good (4; IQR 4–5) for the ULD protocol. Figure 4 is a graph of the data
of subjective image quality analysis.
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There were no significant differences between the ratings of image quality (p = 0.486)
and diagnostic confidence (p = 0.28) with effect size indicating a strong effect (r > 0.5) in
both groups. For further details, see Table 3.

Table 3. Ratings of image quality and diagnostic confidence.

Protocol
ED Rating ICC ICC: 95% CI Standard vs. ULD

(mSv) Median IQR Av. Measure Lower Bound Upper Bound p r

Image
quality

Standard 4.3 ± 1.7 5 4 5 0.971 0.961 0.979
0.486 >0.5ULD 0.7 ± 0.3 4 3 5 0.967 0.956 0.976

Diagnostic
Confidence

Standard 4.3 ± 1.7 5 4 5 0.979 0.955 0.975
0.28 >0.5ULD 0.7 ± 0.3 4 4 5 0.953 0.937 0.965

3.3. Analysis of Objective Image Quality

For objective image quality, we analyzed image noise. Figure 5 is a graph of the
comparison of image noise.
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Table 4. ULD—Patient-Based Sensitivity and Specificity. 

Protocol 
ED  

Value 
ICC: 95% CI 

(mSv) Patient-Based Analysis Lower Bound  Upper Bound 

ULD 0.7 ± 0.3 

Sensitivity 92.9% 80.5 - 98.5 

Specificity 100% 95.9 - 100 

Positive likelihood ratio     

Negative likelihood ratio 0.1 0 - 0.2 

Disease prevalence 32.3% 24.4 - 41.1 

Positive predictive value 100%    

Negative predictive value 96.7% 90.8 - 98.9 

Accuracy 97.7% 93.4 - 99.5 

Figure 5. Image Noise.

Image noise was 16.3 ± 2. 9 HU in the standard protocol. In the ULD protocol, noise was
significantly lower (p < 0.001, r > 0.5) at 12.3 ± 3.0 HU.

3.4. Diagnostic Accuracy and Severity
3.4.1. Patient-Based Accuracy

We had 42 cases of PE in our 130 patients, 39 of which were classified correctly in the
ULD protocol. Scan range reduction led to 3 false-negative findings and 0 false-positive clas-
sification of PE by all three readers (ICC = 1). Patient-based sensitivity of the ULD protocol



Diagnostics 2021, 11, 1251 8 of 15

was 92.9% (95% CI, 80.5–98.5%) and Specificity 100% (95% CI, 95.9–100%). The positive
predictive value was 100%, the negative predictive value 96.7% (95% CI, 90.8–99.9%). The
overall accuracy (probability that a patient is classified correctly) of the ULD protocol was
97.7% (95% CI, 93.4–99.5%). See Table 4 for further details.

Table 4. ULD—Patient-Based Sensitivity and Specificity.

Protocol
ED

Value
ICC: 95% CI

(mSv) Patient-Based Analysis Lower Bound Upper Bound

ULD 0.7 ± 0.3

Sensitivity 92.9% 80.5 98.5
Specificity 100% 95.9 100

Positive likelihood ratio
Negative likelihood ratio 0.1 0 0.2

Disease prevalence 32.3% 24.4 41.1
Positive predictive value 100%

Negative predictive value 96.7% 90.8 98.9
Accuracy 97.7% 93.4 99.5

3.4.2. Segment-Based Accuracy

In our population, 359 out of 2600 segmental vessels were affected by PE (13.7%
prevalence). Of those, a total of 355 vessels were classified correctly in the ULD protocol
(98.9%). Scan range reduction led to four false-negative findings (0.1%) and no false-
positive classifications of PE by all three readers (ICC = 1). Segment-based sensitivity in
the ULD protocol was 98.9% (95% CI 97.2–99.7%) and specificity 100% (95% CI, 99.8–100%).
As in patient-based analysis, positive predictive value was 100%. The negative predictive
value 99.8% (95% CI, 97.5–99.9%). The ULD protocol allowed for overall segment-based
accuracy (probability that a segment is correctly classified as affected by PE) of 99.9% (95%
CI, 98.6–100%). See Table 5 for further details.

Table 5. ULD—segment-based sensitivity and specificity.

Protocol
ED

Value
ICC: 95% CI

(mSv) Segment-Based Analysis Lower Bound Upper Bound

ULD 0.7 ± 0.3

Sensitivity 98.9% 97.2 99.7
Specificity 100% 99.8 100

Positive likelihood ratio
Negative likelihood ratio 0.01 0 0.3

Disease prevalence 13.81% 12.5 15.2
Positive predictive value 100%

Negative predictive value 99.8% 99.5 99.9
Accuracy 99.9% 98.6 100

Chi-square tests with Bonferroni-corrected significance levels showed a strong correla-
tion between the segment-based classifications of PE in standard protocol and ULD protocol
(Chi-square (1) = 42, p < 0.001, Fisher’s exact test p < 0.001; Cramer’s V ≥ 0.906, p < 0.001).
See Appendix A, Table A1 for further details.

3.4.3. Disease Severity

With a maximum of 20 awardable points, standard protocol yielded a mean modified
Qanadli score of 8.55 ± 6.271 points vs. ULD protocol with 8.45 ± 6.283 points. Mean
severity (the percentage of affected vessels) was 42.74% ± 31.356 in standard protocol
and 42.26% ± 31.434 in ULD protocol. Pearson’s correlation showed a strong coherency
(r = 0.998, p < 0.001) between the modified Qanadli score measurements, as well as severity
in both protocols. Student’s t-test for paired samples showed no significant differences
(T = 1.667, p = 0.103) between the modified Qanadli score measurements and consecutively
the severity in both protocols. Figure 6 illustrates diagnostic accuracy for PE in our
population with example images from three patients for both protocols. Greyed out arrows
mark false-negative findings.
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4. Discussion

This study aimed to evaluate the diagnostic performance of a contrast-enhanced ULD
high-pitch CTPA protocol with a reduced scan range for detection of pulmonary embolisms.
We included 130 consecutive patients with CTPA flash mode scans at a 3rd generation
CT scanner. For the standard protocol (100% mAs, ADMIRE 3, full scan range), the mean
effective radiation dose was 4.3 ± 1.7 mSv compared to 0.7 ± 0.3 mSv in the ULD protocol
(25% mAs, ADMIRE 5, reduced scan range), a decrease of 84% (p < 0.001, r > 0.5).

The possibilities of radiation dose reduction in CTPA for suspected PE have been
explored in some studies before. Concerning mAs reduction, Sauter et al. reported excellent
levels of diagnostic accuracy of PE in combination with iterative reconstruction at effective
radiation doses as low as 0.9 mSv [17]. For scan range reduction, Atalay et al. identified a
possible decrease to 53% coverage in their distribution-based study regarding scan length
optimization at equal levels of diagnostic accuracy [13]. If applied to our dataset, this
method would result in a radiation dose target of 2.3 mSv. The proposed ULD protocol
combines these approaches, yielding the possibility of a tremendous reduction in effective
radiation dose down to 16% (0.7 ± 0.3 mSv).

Image quality and diagnostic confidence were good in the proposed ULD protocol
without any significant differences compared to the ratings of the standard protocol. These
results are accordant to multiple studies that have shown high levels of subjective image
quality and diagnostic confidence when using low dose approaches combined with iterative
reconstruction algorithms [17–19]. In agreement with our study, Sauter et al. reported good
levels of subjective image quality and diagnostic confidence down to 25% radiation dose
with a target of 0.9 mSv [17]. At 0.7 ± 0.3 mSv, the proposed protocol is capable of reducing
radiation dose even further. We found image noise to be significantly lower in the proposed
ULD protocol than in the standard protocol., a fact most certainly due to the higher iterative
reconstruction strength used for the ULD protocol. This is following previous results that
have reported a continuous decrease of image noise with higher levels of model-based
iterative reconstruction, ADMIRE in particular [20].

At a disease prevalence of 32.2%, the proposed ULD protocol yielded excellent values
for sensitivity, specificity, and overall accuracy for ruling out pulmonary embolisms on a
patient-based level, as well as on a segment-based level. We further measured a strong
consistency between the segment-based classifications of PE in both protocols, attesting
to the high reliability of the proposed ULD protocol. Furthermore, there was a strong
coherency between the measurements of the modified Qanadli score and the severity
in both protocols. Regarding diagnostic accuracy of PE in combination with scan range
reduction, multiple studies have shown only minimal distribution of PE in the apical vessel
segments above the aortic arch or the lower segments below the base of the heart [21,22].
This is particularly interesting, as there is still discussion about the clinical significance of
such emboli, especially if weighed against the individual risks of anticoagulation [23–27].
Although the modified Qanadli score and the severity measurements were expectedly
lower in the proposed ULD protocol, the decrease of 0.1 points in Qanadli score and 0.48%
in severity weren’t statistically significant. Therefore, this protocol may be beneficial for
patients by reducing unnecessary radiation exposure.

5. Limitations

Our study has several limitations. Firstly, we chose a retrospective study design with
simulated radiation dose reduction to minimize unwanted radiation dose application,
whereas a prospective study design might have further limited biases and might have
allowed to draw conclusions on clinical decision-making. Secondly, this study only investi-
gated the diagnostic performance and accuracy of the ULD protocol regarding PE. As we
had several patients with other, or even no findings that were causative of acute thoracic
symptoms, a systematic review of the proposed ULD protocol concerning such cases, there-
fore, needs to remain the scope of future studies. Thirdly, we need to mention that this
study was performed using a high-end 3rd generation CT scanner (SOMATOM Force) with
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iterative reconstructions, which is not available at every clinical site. Our results might,
therefore, not necessarily be transformable to other setups, or older scanner generations.

6. Conclusions

Compared to a standard CTPA protocol, the proposed ULD protocol proves reliable
in detecting and ruling out acute PE with good levels of image quality and diagnostic con-
fidence, as well as significantly lower image noise, at 0.7 ± 0.3 mSv (84% dose reduction).
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Appendix A

Table A1. Segment-based crosstabulation, Chi-square tests, and symmetric measures.

Standard Protocol * ULD Protocol Crosstabulation Chi-Square Tests Symmetric Measures

Segment

Count % within Standard

ULD
Total

ULD
Total

Pearson Chi-Square Fisher’s Exact Test Nominal Cramer’s V

1 0 1 0 Value df Asymptotic
Significance (2-sided)

Exact Significance
(2-sided)

Approximate
Significance Value

01 RUL anterior segment Standard
1 20 0 20 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 22 22 0.0% 100.0% 100.0%

02 RUL apical segment Standard
1 20 0 20 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 22 22 0.0% 100.0% 100.0%

03 RUL posterior segment Standard
1 19 0 19 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 23 23 0.0% 100.0% 100.0%

04 RML apical segment Standard
1 22 0 22 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 20 20 0.0% 100.0% 100.0%

05 RML basal segment Standard
1 22 0 22 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 20 20 0.0% 100.0% 100.0%

06 RLL lateral basal segment Standard
1 21 0 21 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 21 21 0.0% 100.0% 100.0%

07 RLL anterior basal segment Standard
1 18 0 18 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 24 24 0.0% 100.0% 100.0%

08 RLL medial basal segment Standard
1 20 0 20 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 22 22 0.0% 100.0% 100.0%

09 RLL posterior basal segment Standard
1 26 0 26 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 16 16 0.0% 100.0% 100.0%

10 RLL superior segment Standard
1 19 0 19 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 23 23 0.0% 100.0% 100.0%

11 LUL anterior segment Standard
1 13 0 13 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 29 29 0.0% 100.0% 100.0%

12 LUL anterior apical segment Standard
1 13 0 13 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 29 29 0.0% 100.0% 100.0%

13 LUL apical posterior segment Standard
1 16 2 18 88.9% 11.1% 100.0%

34.462 1 0.000 0.000 0.000
0.906

0 0 24 24 0.0% 100.0% 100.0% (95% CI 0.751–1.000)

14 LUL apical lingula segment Standard
1 12 0 12 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 30 30 0.0% 100.0% 100.0%

15 LUL basal lingula segment Standard
1 12 0 12 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 30 30 0.0% 100.0% 100.0%

16 LLL lateral segment Standard
1 16 0 16 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 26 26 0.0% 100.0% 100.0%
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Table A1. Cont.

Standard Protocol * ULD Protocol Crosstabulation Chi-Square Tests Symmetric Measures

Segment

Count % within Standard

ULD
Total

ULD
Total

Pearson Chi-Square Fisher’s Exact Test Nominal Cramer’s V

1 0 1 0 Value df Asymptotic
Significance (2-sided)

Exact Significance
(2-sided)

Approximate
Significance Value

17 LLL anteromedial segment Standard
1 15 0 15 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 27 27 0.0% 100.0% 100.0%

18 LLL posteromedial segment Standard
1 21 1 22 95.5% 4.5% 100.0%

38.182 1 0.000 0.000 0.000
0.953

0 0 20 20 0.0% 100.0% 100.0% (95% CI 0.904–1.000)

19 LLL posterolateral segment Standard
1 21 1 22 95.5% 4.5% 100.0%

38.182 1 0.000 0.000 0.000
0.953

0 0 20 20 0.0% 100.0% 100.0% (95% CI 0.898–1.000)

20 LLL superior segment Standard
1 9 0 9 100.0% 0.0% 100.0%

42.000 1 0.000 0.000 0.000 1.0000 0 33 33 0.0% 100.0% 100.0%
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