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Abstract
The equine ascarids, Parascaris spp., are important nematode parasites of juvenile horses and were historically model organ-
isms in the field of cell biology, leading to many important discoveries, and are used for the study of chromatin diminution. 
In veterinary parasitology, Parascaris spp. are important not only because they can cause clinical disease in young horses but 
also because they are the only ascarid parasites to have developed widespread anthelmintic resistance. Despite this, much of 
the general biology and mechanisms of anthelmintic resistance are poorly understood. This review condenses known basic 
biological information and knowledge on the mechanisms of anthelmintic resistance in Parascaris spp., highlighting the 
importance of foundational research programs. Although two variants of this parasite were recognized based on the number 
of chromosomes in the 1870s and suggested to be two species in 1890, one of these, P. univalens, appears to have been largely 
forgotten in the veterinary scientific literature over the past 100 years. We describe how this omission has had a century-
long effect on nomenclature and data analysis in the field, highlighting the importance of proper specimen identification in 
public repositories. A summary of important basic biology, including life cycle, in vitro maintenance, and immunology, is 
given, and areas of future research for the improvement of knowledge and development of new systems are given. Finally, 
the limited knowledge regarding anthelmintic resistance in Parascaris spp. is summarized, along with caution regarding 
assumptions that resistance mechanisms can be applied across clades.
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Introduction

Helminth parasites have been known to humans for thou-
sands of years. The Egyptian Papyrus Ebers, circa 1550 
BCE, refers to intestinal worms; the Greeks knew about hel-
minths infecting other species; and the Romans also clearly 
described Ascaris parasites, including symptoms of clinical 
disease (Cox 2002). Carl Linnaeus described and named six 
helminths in 1758, including Ascaris lumbricoides, which 
ultimately led to an increasing number of helminths being 
described and formally named (Linnaeus 1758). Ascarids, 
also known as parasitic roundworms, encompass a large 

number of important helminth parasites that have three ante-
rior lips in the superfamily Ascaridoidea, including ascarids 
of poultry, Ascaridia spp. (Dujardin 1845) and Heterakis 
gallinarum (Schrank 1788); fish, Anisakis spp. (Rudolphi 
1809); canids, Toxocara canis (Werner 1782); felids, Toxo-
cara cati (Schrank 1788); felids and canids, Toxascaris 
leonina (Linstow 1909); cattle, Toxocara vitulorum (Goeze 
1782); mustelids and bears, Baylisascaris spp. (Sprent 
1968); pigs, Ascaris suum (Goeze 1782); humans, Ascaris 
lumbricoides (Linnaeus 1758); and equids, Parascaris equo-
rum (Goeze 1782) and Parascaris univalens (Boveri 1887). 
Many of these parasites can cause severe clinical diseases, 
including high mortality in cattle (Borgsteede et al. 1992; 
Gundran and More 1999; Chelladurai et al. 2015); loss of 
appetite and weight, anorexia, depression, and increased 
mortality in chickens (Kaufmann et al. 2011; Thapa et al. 
2015; Sharma et al. 2019); and pneumonitis, dyspnea, and 
coughing in pigs (Yoshihara et al. 1983; Curtis et al. 1987; 
Stewart and Hale 1988; Holland 2013; Mateus et al. 2015), 
all of which can lead to millions of dollars in agricultural 
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economic losses. Globally, an estimated 807 million to 1.2 
billion humans are infected with A. lumbricoides, many of 
them children in impoverished countries, causing retarda-
tion of physical and mental growth, pneumonia, asthma, 
abdominal distension, intestinal obstruction, pancreatitis, 
and death (Bethony et al. 2006). Zoonotic infections can 
also occur with many ascarid parasites. A. suum can com-
plete its life cycle in humans and cause ascariasis (Nejsum 
et al. 2005; Volk and Tormey 2017; Avery et al. 2018); how-
ever, others cannot, leading to a condition known as visceral 
larva migrans caused by aberrant larval migration. Cases 
have been reported with T. cati (Eberhard and Alfano 1998; 
Zibaei et al. 2014), T. canis (Hill et al. 1985; Xinou et al. 
2003; Gakosso et al. 2020), Baylisascaris spp. (Saffra et al. 
2010; Kelly et al. 2012), and Anisakis spp. (Kojima et al. 
2013; Sohn et al. 2015), resulting in various clinical mani-
festations including coughing, rash, myalgia, liver lesions, 
myocarditis, visual impairment, neurological symptoms, and 
death in rare cases.

The equine ascarids, Parascaris spp., are considered 
the most pathogenic parasites infecting juvenile horses 
(Equus caballus, Linnaeus, 1758) globally and can cause 
coughing, nasal discharge, lethargy, poor appetite, diarrhea, 
and colic (Reinemeyer 2009; Nielsen 2016). Fibrotic liver 
lesions (Brown and Clayton 1979), lung lesions, hyper-
pnea, bronchiolitis, and lobular pneumonia (Clayton and 
Duncan 1978; Nicholls et al. 1978) have been reported in 
experimentally infected foals. Poor body condition has been 
associated with Parascaris spp. infection in working equids 
(Getachew et al. 2008, 2010); however, foals under para-
site management programs have not exhibited these signs 
in recent studies (Bellaw et al. 2016; Nielsen et al. 2021). 
Small intestine impaction is one of the largest concerns with 
this parasite, often requiring hospitalization and surgery, and 
can ultimately lead to death (Nielsen 2016; Southwood et al. 
1996; Cribb et al. 2006; Tatz et al. 2012). In 37 published 
cases where surgical intervention was necessary for impac-
tion colic due to Parascaris spp., 31 horses survived until 
discharge, but only 11 survived more than 1 year (Nielsen 
2016). While the cause of death was not confirmed in these 
cases, long-term complications resulting from surgery may 
have contributed to mortality (Santschi et al. 2000; van Loon 
et al. 2020). Losing young horses results in a direct financial 
loss from veterinary care and breeding fees; future losses 
in sales prices, which can be tens of thousands to millions 
of dollars; competitive winnings; and stud fees; as well as 
an emotional loss for the owners and caretakers associated 
with that horse.

There are three available anthelmintic drug classes for 
the treatment of Parascaris spp. infection in horses: macro-
cyclic lactones, benzimidazoles, and tetrahydropyrimidines. 
Traditionally, foals were treated within their first 30 days of 
life, and then at either monthly or bimonthly intervals until 

their first birthday (Drudge and Lyons 1966; Ellingson and 
Coates-Markle 1996; Robert et al. 2015; Nielsen et al. 2018). 
Early reports questioning the efficacy of ivermectin against 
Parascaris spp. (Anderson 1984; Jones 1985) emerged in 
the mid-1980s, shortly after its introduction to the market, 
leading to a defense of the drug claiming that the parasite 
life cycle was misunderstood and errors were made during 
diagnostic fecal egg counts (Boraski 1987). Formal reports 
of ivermectin resistance started in the Netherlands in 2002, 
quickly followed by Canada in 2003 (Boersema et al. 2002; 
Hearn and Peregrine 2003). This was followed by reports 
of macrocyclic lactone resistance encompassing the global 
equine population, and more recently, reports of tetrahydro-
pyrimidine and benzimidazole resistance (Table 1). Current 
recommendations reduce the overall number of anthelmintic 
treatments against Parascaris spp. in foals in an attempt to 
slow down the development of resistance (ESCCAP 2019; 
Nielsen et al. 2019; Rendle et al. 2019).

Reports of anthelmintic resistance in other ascarid spe-
cies of veterinary and medical importance are few and far 
between. Only case reports of resistance are available for 
a few species, including Ascaris lumbricoides (Krücken 
et al. 2017), Ascaridia dissimilis (Yazwinksi et al. 2013; 
Collins et al. 2019), and Heterakis gallinarum (Yazwinksi 
et al. 2013; Collins et al. 2021), but it is clear from the wide-
spread anthelmintic resistance of many important parasitic 
nematodes infecting livestock (Rose et al. 2015; Fleming 
et al. 2006; Sutherland and Leathwick 2011; Kaplan and 
Vidyashankar 2012; von Samson-Himmelstjerna 2012; von 
Samson-Himmelstjerna et al. 2021b), including Parascaris 
spp., that evolution of resistance is a concern. Anthelmintic 
resistance is an emerging concern in companion animals 
(Jimenez Castro et al. 2019; Jimenez Castro et al. 2021), and 
while there have been no reports of resistance in any com-
panion animal ascarid species, frequent monthly treatment 
intervals necessitate robust anthelmintic resistance moni-
toring programs (von Samson-Himmelstjerna et al. 2021b). 
Previous reviews have discussed the need for medical par-
asitology to learn from veterinary parasitology and iden-
tify causes of anthelmintic resistance, modify anthelmin-
tic treatment regimes, and monitor for resistance, in order 
to, at minimum, slow down the development of resistance 
(Beech et al. 2010; Vercruysse et al. 2011; Tinkler 2020; 
von Samson-Himmelstjerna et al. 2021b). This One Health 
approach and warning to reduce treatment efficacy has been 
mentioned for nearly two decades (Geerts et al. 1997; Geerts 
and Gryseels 2000, 2002; Thompson and Roberts 2001), 
yet little has changed, particularly in human public health 
(Tinkler 2020).

Despite widespread anthelmintic resistance in Parascaris 
spp. and the looming specter of resistance in other important 
ascarid species, little research has been conducted attempt-
ing to understand mechanisms of resistance in this species. 
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This review aims to consolidate basic biological information 
about Parascaris spp. and also highlight the importance of 
robust foundational research programs.

A tale of two cryptic species

Equine ascarids have an important place in the history of 
scientific discovery. The German zoologist Johann August 
Ephraim Goeze was the first to name Ascaris equorum in 
1782. In the 1880s, Belgian embryologist Édouard van 
Beneden used the same parasite—now renamed Ascaris meg-
alocephala—as a model species and showed that fertilization 

consisted of the union of haploid gametes to form a diploid 
zygote, contributing greatly to knowledge of both meiosis 
and mitosis (van Beneden 1883; Hamoir 1992). Over the 
course of the following 5 years, at least 27 papers—four by 
van Beneden—were published featuring A. megalocephala 
studying phenomena such as cell division, chromosome 
organization, and chromatin diminution (Boveri 1887, 1888).

Two variants of Parascaris were described and distin-
guished from one another in the late 1800s by counting the 
number of chromosomes present prior to the first cellular 
division, a process known as karyotyping (van Beneden 
1883; Carnoy 1886/1887; Boveri 1887). Ascaris megalo-
cephala univalens was initially described by van Beneden 

Table 1   Publications reporting anthelmintic resistant populations of Parascaris spp., the anthelmintic class investigated, and location by conti-
nent and country

Continent Country Publication Anthelmintic class

Macrocyclic 
lactones

Tetrahydropyrimidines Benzimidazoles

Asia Saudi Arabia Alanazi et al. (2017) X X X
Turkey Cirak et al. (2010) X

Europe Denmark Schougaard and Nielsen (2007) X
Estonia Lassen and Peltola (2014) X
Finland Näreaho et al. (2011) X

Hautala et al. (2019) X
France Laugier et al. (2012) X

Geurden et al. (2013) X
Germany von Samson-Himmelstjerna et al. (2007a, b) X
Iceland Martin et al. (2021b) X
Italy Veronesi et al. (2009) X

Veronesi et al. (2010) X
Poland Studzińska et al. (2020) X
Sweden Lindgren et al. (2008) X

Lind and Christensson (2009) X
Martin et al. (2018) X
Martin et al. (2021a) X

The Netherlands Boersema et al. (2002) X
UK Stoneham and Coles (2006) X

Relf et al. (2014) X
North America Canada Hearn and Peregrine (2003) X

Slocombe et al. (2007) X
USA Craig et al. (2007) X X

Lyons et al. (2008) X X
Lyons et al. (2011) X

Oceania Australia Armstrong et al. (2014) X X X
Beasley et al. (2015) X
Wilkes et al. (2017) X

New Zealand Bishop et al. (2014) X
South America Argentina Cooper et al. (2020) X

Brazil Molento et al. (2008) X
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(van Beneden 1883), and A. meg. bivalens by Jean Baptiste 
Carnoy (1886/1887) during cytological studies, but it was 
not until a few years later that Oskar Hertwig recognized 
them as different species (Hertwig 1890). These species 
received their currently accepted names in 1978: Parascaris 
univalens, which has one chromosome pair, and P. equorum 
which has two pairs of chromosomes (Bullini et al. 1978; 
Goday and Pimpinelli 1986). Hybrids between these two 
species have been described (Bullini et al. 1978; Goday 
and Pimpinelli 1986), although they are sterile (Goday and 
Pimpinelli 1986). Another species with three pairs of chro-
mosomes, P. trivalens, was described in the 1930s but has 
not been described in the literature since (Li 1937; Tchou 
1937).

The Parascaris species only have a slight morphological 
difference in their spicula, with Parascaris univalens hav-
ing a distally truncated spicula and P. equorum having a 
distally rounded spicula (Biocca et al. 1978). Two methods 
have been used in the past to distinguish the two species of 
Parascaris from one another. The first is via karyotyping of 
primordial germ cells prior to the first cell division, which 
is an arduous process that requires collecting either parasites 
with germ cells in the proper stage (Goday and Pimpinelli 
1986) or eggs from feces at the first mitotic division (Nielsen 
et al. 2014; Martin et al. 2018), and the second utilizes elec-
trophoresis of twenty-seven enzyme loci, although this 
method has only been employed for a single study (Bullini 
et al. 1978). Karyotyping is a challenging process because 
it requires either live parasites or eggs that have yet to start 
developing, and due to this, it is rarely performed for para-
sitological studies utilizing equine ascarids.

In the nearly 100 years between Hertwig naming the two 
species and their modern name assignment in 1978, Par-
ascaris univalens and P. equorum were not recognized as 
separate species and were instead recognized as different 
variants of P. equorum (Lin, 1954), which may explain why 
P. equorum was thought to be the only species. This ulti-
mately led to P. equorum being the only species mentioned 
in veterinary textbooks and research for decades, with the 
only recognition of two species occurring in cell biology and 
cytogenetics, highlighting a lack of communication between 
disciplines. The last positive identification of P. equorum 
via karyotyping was in 1986 (Goday and Pimpinelli 1986), 
despite contemporary recognition of two species and an 
increased effort to karyotype specimens. Ultimately, lack of 
consensus on species versus variants and naming them led to 
a decades-long misclassification of specimens that had and 
continues to have far-reaching consequences.

Phylogenetics

The phylum Nematoda (Cobb, 1932) consists of over 22,000 
named species separated into five distinct clades (Blaxter 

et al. 1998; Blaxter and Koutsovoulos 2015). The ascarid 
parasites fall under Clade III, which also includes pinworms, 
filarial nematodes, and parasites of millipedes (Blaxter et al. 
1998). Within the Ascaridoidea superfamily, Parascaris spp. 
belongs to the monophyletic clade of Ascarididae along with 
Baylisascaris spp., Toxoascaris leonina, and Ascaris spp. 
(Nadler 1987; Nadler and Hudspeth 2000; Liu et al. 2016; 
Li et al. 2018). Parasitism in the Ascaridoidea includes pre-
historic host-type switches correlated with global changes in 
sea level (Li et al. 2018), and tissue parasitism within Clade 
III evolved separately at least three different times (Nadler 
et al. 2007). Understanding these evolutionary relationships 
within Clade III and the Ascarididae clade provides impor-
tant context when comparing these parasites to other groups 
within the Nematoda.

Some other well-known and heavily studied species, such 
as the model organism Caenorhabditis elegans (Maupas, 
1900), a free-living nematode, and Haemonchus contortus 
(Rudolphi, 1803), the most pathogenic and economically 
significant nematode parasite of small ruminants and model 
organism for parasitic nematodes, fall under Clade V (Blax-
ter et al. 1998). Anthelmintic resistance is rampant in H. 
contortus, and it has therefore been heavily studied (Kotze 
et al. 2014; Kotze and Prichard 2016), along with substantial 
research on the same topic in C. elegans (Geary and Thomp-
son 2001; Kotze et al. 2014). This means that much of the 
research conducted regarding anthelmintic resistance that 
will be described in subsequent sections has been broadly 
applied to ascarids despite the work being completed in 
organisms belonging to a completely different clade. The 
evolutionary distance between Parascaris spp., C. elegans, 
and H. contortus combined with distinct differences in the 
life cycle and parasitism suggests that direct comparisons 
and broadly applying information from one clade to another 
must be done with caution.

Genetics

Genetic studies opened the door for contemporary recogni-
tion of two distinct Parascaris species, although earlier clas-
sification as variants named Parascaris equorum and Par-
ascaris equorum univalens led to the majority of specimens 
in veterinary parasitology being called Parascaris equorum. 
One study utilizing electrophoresis of enzyme loci showed 
the opposite, with 93.5% of 2238 specimens collected in 
an abattoir identified as P. univalens (Bullini et al. 1978). 
This study, however, was published in Italian and appears 
to have gone unnoticed for several decades. A more recent 
population genetics study compared equine ascarid speci-
mens from Sweden, Norway, Germany, Iceland, Brazil, and 
the USA and found that all of the parasites were genetically 
homogenous (Tydén et al. 2013b). One of the study popula-
tions was later karyotyped and found to consist only of P. 
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univalens (Nielsen et al. 2014). Additional populations in 
the USA (Nielsen et al. 2014), Sweden (Martin et al. 2018), 
Iceland (Martin et al. 2021c), and China (Han et al. 2022) 
were karyotyped and identified as P. univalens, which taken 
together suggests that the main species present in domestic 
horses globally is P. univalens and not P. equorum.

A phylogenetic analysis of Parascaris spp. parasites from 
the mountain zebra (Equus zebra, Linnaeus, 1758), domes-
tic horse, and wild ass (Equus asinus, Gray, 1824) using 
the mitochondrial genes cox1 and nadh1, demonstrated that 
the worms from E. asinus formed a distinct clade compared 
to specimens collected from the other two Equus species 
(Peng et al. 2019). A recent whole-genome study of speci-
mens from horses, donkeys (Equus africanus asinus, Lin-
naeus, 1758), and zebras also indicated distinct clades for 
P. univalens specimens—some of which were confirmed via 
karyotyping—found within horses and those found in zebras 
and donkeys (Han et al. 2022). Another recent study com-
pleted a phylogenetic analysis for a select group of nuclear 
and mitochondrial genes using almost all Parascaris spp. 
Using DNA sequences from GenBank along with karyo-
typed specimens confirmed to be P. univalens, they found a 
small group of sequences, all from parasites collected from 
donkeys on a single farm in China, that formed a cluster (von 
Samson-Himmelstjerna et al. 2021a). Due to the genetic dis-
tance from P. univalens specimens from North America and 
Europe, the specimens in this cluster may represent another 
genotype or species of Parascaris (von Samson-Himmel-
stjerna et al. 2021a). This cluster could represent P. equo-
rum, or even another species such as P. trivalens, which has 
only been described in a couple of studies using parasites 
from Chinese horses (Li 1937; Tchou 1937).

The first Parascaris spp. draft genome was published in 
2017 for P. univalens, followed by a draft genome for P. 
equorum in 2019, both indicating over 14,000 coding genes 
present in the parasites (Wang et al. 2017; International Hel-
minth Genomes Consortium 2019). When considering these 
genomes, however, the Parascaris species conundrum must 
be taken into consideration. The specimen reported to be P. 
equorum and used for the 50 Helminth Genomes Project was 
collected at necropsy from an abattoir, and there is no indi-
cation that karyotyping was performed to positively identify 
the species (International Helminth Genomes Consortium 
2019). The previously described phylogenetic study using 
Parascaris sequences from GenBank along with karyotyped 
specimens indicated that nearly every sequence for the inter-
nal transcribed spacer-1 and spacer-2 and cytochrome oxi-
dase I labeled as P. equorum was clustered within confirmed 
P. univalens specimens, indicating that they are likely all 
from P. univalens (von Samson-Himmelstjerna et al. 2021a). 
This information, combined with the lack of karyotyping, 
previous research suggesting that P. univalens is the pre-
dominant species in domestic horses, and the fact that P. 

equorum has not been identified via karyotyping since 1986 
(Goday and Pimpinelli 1986), suggests that the specimen 
in WormBase ParaSite, as well as many other data deposits 
in GenBank labeled as P. equorum, may be P. univalens 
(Nielsen et al. 2014; International Helminth Genomes Con-
sortium 2019; von Samson-Himmelstjerna et al. 2021a). 
Currently, there are no GenBank deposits verified as P. 
equorum via karyotyping.

Incorrectly identified information in public repositories 
is detrimental to the field and can lead to misinterpretation 
of results. For example, one study comparing Parascaris 
mitochondrial genomes utilized fresh specimens that were 
not karyotyped but assumed to be P. equorum (Gao et al. 
2019). These specimens were then compared to mitochon-
drial genomes from two karyotyped P. univalens isolates 
and one non-karyotyped isolate assumed to be P. equorum. 
The subsequent phylogenetic analysis clustered these four 
specimens into a single clade, and the authors concluded 
that P. equorum and P. univalens may represent the same 
species (Gao et al. 2019). This, however, is inaccurate given 
that no attempt was made to identify the collected speci-
men. Instead, the clustering of the two identified specimens 
strongly suggests that the collected specimen was P. univa-
lens. Correctly identifying species is important not only for 
ensuring accurate research and performing future genome-
wide research studies in a variety of disciplines, including 
the study of anthelmintic resistance, but also for developing 
molecular techniques, such as PCR, to identify Parascaris 
specimens to species (Doyle and Cotton 2019; von Samson-
Himmelstjerna et al. 2021a).

Chromatin diminution

After the first cell division, Parascaris spp. presomitic cells 
go through a process called chromatin diminution where 
chromosomes are fragmented and approximately 85% of 
the germline genome is eliminated, resulting in the creation 
of about 35 smaller chromosomes (Boveri 1887; Goday and 
Pimpinelli 1986; Muller and Tobler 2000; Niedermaier and 
Moritz 2000). The initial discovery of chromatin diminution 
was made with Parascaris spp. in 1887 and was later found 
to occur in other nematodes, including Ascaris suum, A. lum-
bricoides, and Toxocara spp., copepods, ciliates, hagfish, 
lamprey, and rat fish (Boveri 1887; Wang and Davis 2014). 
The P. univalens germline genome has an estimated 2500 
megabases (Mb), whereas the somatic genome has an esti-
mated 250 Mb, indicating a large loss of genetic information 
in an organism with only a single chromosome (Wang et al. 
2017). Comparisons between Parascaris spp. and Ascaris 
spp. indicate that the mechanism for chromatin diminution is 
evolutionarily conserved between the two species and likely 
present in a common ancestor (Bachmann-Waldmann et al. 
2004). Comparative analysis of Parascaris, Ascaris, and 
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Toxocara genomes shows that somewhere between 1000 
and 2000 genes are eliminated, with 35% of those being 
expressed during spermatogenesis, and it is hypothesized 
that this allows for rapid adaptation and evolutionary change 
in the testes without causing deleterious effects because 
those genes are silenced and eliminated (Bachmann-Wald-
mann et al. 2004; Wang et al. 2017; Wang 2021).

Ultimately, the process of chromatic diminution, even 
though it causes a large loss of genetic information, is likely 
evolutionarily advantageous for Parascaris spp in some 
way. It is possible that chromatin diminution helps prevent 
events such as population bottlenecks due to the ability of 
the parasites to undergo rapid evolutionary changes in the 
germ line and may even have played a role in the evolution 
of parasitism (Bachmann-Waldmann et al. 2004). Evidence 
from cytogenetic studies suggests that there are differences 
in chromosome and heterochromatin organization between 
the two species (Goday and Pimpinelli 1984, 1986; Goday 
et al. 1985). It remains to be seen how this process differs 
molecularly and on a whole-genome level between the two 
species, particularly since the last karyotyped P. equorum 
specimen was identified in 1986, 2 years before the method 
for PCR was first published and 6 years before the first-ever 
whole genome sequence was completed (Goday and Pimpi-
nelli 1986; Mullis and Faloona 1987; Fleischmann et al. 
1995). If P. equorum was out-competed by P. univalens due 
to a fitness disadvantage as anthelmintic use became more 
prevalent, understanding chromatin diminution and compar-
ing the two species could be an important key to understand-
ing anthelmintic resistance development in ascarid parasites 
(von Samson-Himmelstjerna et al. 2021a).

Life cycle and immunology

Life cycle

Parascaris spp. are robust, cream-colored nematode para-
sites with a direct life cycle whose adult stages are found 
primarily within the small intestine of equids. Females 
are typically 10–20 cm in length with a diameter of 5 mm, 
whereas their smaller male counterparts are only 10–15 cm 
in length with a 3-mm diameter (Wells 1924; Clayton and 
Duncan 1979a). Males can be distinguished from females 
of a similar size by a curl in the posterior end and a lack of 
visible ovaries through the cuticle (Wells 1924).

Adult Parascaris spp. reproduce sexually in the small 
intestine via genital pores, and females lay their 40–70 μm 
eggs in the small intestinal content, from where they are 
excreted into the environment (Wells 1924). In the pasture, 
the fertilized parasite eggs embryonate and larvae develop 
within the eggs; it is this egg containing a second-stage larva 
that is infective (Wells 1924; Clayton and Duncan 1979a). 

Once ingested by a foal, the eggs hatch in the small intes-
tine, and the larvae penetrate the intestinal wall, where they 
subsequently migrate to the liver within a week of initial 
infection (Clayton and Duncan 1979a). Within 2 weeks after 
the initial infection, the larvae enter the lungs via the pul-
monary circulation, where they emerge from arterioles and 
capillaries. The larvae are coughed up and then swallowed 
by the foal, making their way back to the small intestine 2 to 
3 weeks after initial infection (Clayton and Duncan 1979a). 
At this stage, Parascaris spp. larvae are approximately 
2–4 mm in length and, over the next 4.5 months, will grow 
70–80 × in size as they feed on intestinal content and mature 
into adults (Clayton and Duncan 1979a). While the general 
life cycle of Parascaris spp. has been described, the biologi-
cal reasoning for larval migration is poorly understood. It 
has been suggested that tissue migration may be linked to 
increased body size and faster growth (Read and Skorping 
1995) and may also play a role in immune evasion (Mulcahy 
et al. 2005; Deslyper et al. 2016, 2019). This, however, has 
not been directly studied in Parascaris spp., and no bio-
logical signals that may be required for parasite maturation 
have been identified. Understanding these signals would pro-
vide valuable insight into parasite biology, possible control 
mechanisms, and conditions necessary for in vitro culture 
from egg to adult.

Culturing in vitro

Parasites can be difficult to maintain and grow in vitro 
because of their sometimes-complicated life cycles that are 
reliant on the correct host. This makes research complicated, 
particularly in the case of species whose hosts are either 
unethical to use as research subjects, such as humans, or too 
difficult—whether because of size, expense, or husbandry 
needs—to maintain as a research population. In the case 
of Parascaris spp., equine research herds are expensive 
to maintain, require a large amount of land, and obtain-
ing adult parasites requires euthanasia of healthy foals that 
require eleven months gestation and another approximate 
five months before adult parasites can be harvested. There 
is one research herd known globally that is regularly used 
for this purpose (Lyons et al. 1990), and many specimens 
obtained elsewhere are from abattoirs (Janssen et al. 2013; 
Martin et al. 2020, 2021a; Trailovic et al. 2021) or collected 
opportunistically at diagnostic necropsies (Burk et al. 2014, 
2016; Rakhshandehroo et al. 2016; Malekpour et al. 2019). 
Adult Parascaris spp. can be maintained in vitro for up 
to a week (Janssen et al. 2013; Scare et al. 2019; Martin 
et al. 2021a) but show transcriptional stress responses to 
culture conditions within the first 24 h compared to non-
cultured worms via an increase in differentially expressed 
genes (Martin et al. 2020). Adult Parascaris in general do 
not maintain fitness well in culture, as evidenced by their 
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short survival time and stress responses, compared to their 
Ascaris suum counterparts that are able to be kept alive for 
at least 2 weeks (Islam et al. 2004). Despite these challenges, 
meaningful gene expression data have been obtained from 
current in vitro systems (Janssen et al. 2013; Scare et al. 
2020; Martin et al. 2021a), as well as the development of a 
Parascaris spp. fitness scoring system (Scare et al. 2019).

L2/L3 larvae can be hatched from eggs (Burk et al. 2014; 
Rakhshandehroo et al. 2017; Martin et al. 2021a), which 
does not require sacrificing a horse, although they cannot 
be grown into L4 and L5 larvae or adults. The longevity 
of these larvae in culture is unknown, but they have been 
kept alive for at least 48 h (Martin et al. 2021a) and have 
been used in drug exposure (Rakhshandehroo et al. 2017; 
Martin et al. 2021a) and immunology (Burk et al. 2014, 
2016) studies. Differences in protein transport gene expres-
sion between adults and larvae hatched from eggs in vitro 
(Martin et al. 2021a) must be considered when interpreting 
data and comparing results between life stages, but the larval 
culturing system is a promising path forward in Parascaris 
spp. research because it allows studies to take place without 
sacrificing young horses.

Immunology

With a few exceptions, such as adult horses in tropical 
regions and donkeys (Vercruysse et al. 1986; Getachew et al. 
2008, 2010; Lem et al. 2012), Parascaris spp. are generally 
found in juvenile horses up until the age of 6 to 8 months 
when an age-dependent immunity develops (Clayton and 
Duncan 1979b; Fabiani et al. 2016). Fecal egg shedding and 
worm counts in juvenile horses occur in an age-dependent 
manner, and in older foals, fewer larvae reach the small 
intestine, patent infections are less likely to develop, and 
fecal egg counts are lower (Clayton and Duncan 1979b; 
Donoghue et al. 2015; Fabiani et al. 2016). In a study where 
eight worm-free foals and two yearlings were experimentally 
infected with Parascaris spp., yearlings had a more severe 
respiratory response but maintained their body condition, 
whereas foals had a mild respiratory response and lost body 
condition, suggesting an age-dependent immune response, 
although the sample size was small (Clayton and Duncan 
1978). Increased titers of antibodies to whole worm antigen 
have been shown to correlate with foal age and subsequent 
reduction in parasite prevalence (Bello 1985), and immune 
responses to migrating larvae in the lungs (Nicholls et al. 
1978) and liver (Brown and Clayton 1979) have also been 
illustrated. There are no studies showing direct parasite 
death or fitness loss as a result of equine immune responses, 
and molecular evidence of immune response has yet to be 
demonstrated in horses, despite evidence of an age-depend-
ent response. Understanding the equine immune response to 
Parascaris spp. at an in-depth molecular level would provide 

invaluable information regarding host-parasite dynamics and 
open the door for possible vaccine development.

Helminth excretory–secretory products, including micro-
ribonucleic acids (RNAs) (Sotillo et al. 2020) and extra-
cellular vesicles (Zakeri et al. 2021), are thought to play a 
role in immune evasion, elicit host immune response, and 
may allow for the development of vaccines and/or diagnos-
tic tests (Lightowlers and Rickard 1988). In Ascaris suum, 
extracellular vesicles contain immunomodulatory proteins 
(Hansen et al. 2019), and microRNAs may be important for 
parasite development (Xu et al. 2013). An in vitro analy-
sis of larval Parascaris spp. excretory–secretory products 
identified 19 kDa, 22 kDa, 26 kDa, and 34 kDa products 
that elicited an antibody response in sera of previously 
infected foals (Burk et al. 2014). Mares were shown to have 
antibodies against these products and passed them to foals 
via colostrum during the first suckling (Burk et al. 2016). 
These antibodies are not useful for diagnosis because the 
foals acquire them shortly after birth, and they are likely 
not useful for vaccination because, despite their presence, 
foals still become infected with Parascaris spp. There have 
been no studies to date examining Parascaris spp. extracel-
lular vesicles or microRNAs, and ultimately, more research 
is necessary to determine the nature of equine immunity 
against Parascaris spp.

The biology of resistance

In the early twentieth century, John D. Rockefeller commit-
ted over US$1 million to hookworm control and research, 
and Epsom salts, thymol, carbon tetrachloride, oil of che-
nopodium, tetrachlorethylene, and hexylresorcinol were all 
either used or investigated for use as anthelmintics (Hor-
ton 2003). Continuing into the twentieth century, various 
dyes and synthetic compounds were used to treat helminth 
infections, but many were ineffective, difficult to use, and/or 
toxic, causing a plethora of issues such as deafness, blind-
ness, skin irritation, diarrhea, vomiting, organ damage, and 
death (Faust 1937; Horton 2003). The first safe, modern 
anthelmintics were phenothiazine, introduced in the 1940s, 
and piperazine, introduced in the 1950s. This was followed 
by the major anthelmintics currently used in horses, starting 
in 1961 with benzimidazoles and ending with the introduc-
tion of the macrocyclic lactones in 1981 (Brown et al. 1961; 
Campbell et al. 1983; Laing et al. 2016).

Anthelmintic resistance is rampant in veterinary parasi-
tology (Rose et al. 2015; Fleming et al. 2006; Sutherland 
and Leathwick 2011; Kaplan and Vidyashankar 2012), and 
understanding how it developed in order to slow down the 
progression and preserve current anthelmintics for as long 
as possible, as well as preserve any new anthelmintic for 
as long as possible, is important. Husbandry practices and 
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anthelmintic treatment strategies as methods to slow down 
the development of resistance have been discussed in detail 
elsewhere (Reinemeyer 2009; von Samson-Himmelstjerna 
2012; Matthews 2014; Nielsen 2016; Reinemeyer and 
Nielsen 2017; von Samson-Himmelstjerna et al. 2021b), 
although the effect of these practices is not always appar-
ent. Anthelmintic mechanisms of action as well as mecha-
nisms of resistance in parasitic nematodes have also been 
thoroughly reviewed in the past (Prichard 1994; Kotze et al. 
2014; Whittaker et al. 2017; Kaplan 2020). This section will 
briefly describe drug mechanisms of action and resistance in 
general, with a focus on relevant research conducted using 
Parascaris spp.

Benzimidazoles

Benzimidazole is a heterocyclic aromatic organic compound, 
and various modifications to this structure have resulted in 
the development of anthelmintic drugs (Townsend and Wise 
1990). The first was introduced in 1961, followed by numer-
ous formulations in the 1960s and 1970s (Brown et al. 1961; 
Harder 2002). Benzimidazole is a microtubule inhibitor that 
interacts with the colchicine-binding domain of β-tubulin 
and interrupts polymerization, disrupting vital cellular pro-
cesses and causing parasite death (Friedman and Platzer 
1978; Lacey 1988, 1990). Microtubules are polymers made 
of tubulin dimers consisting of α- and β-tubulin and are 
essential for cellular structure and processes such as intracel-
lular transport and cell division (Lacey 1988, 1990). Benzi-
midazoles developed as anthelmintics have a higher binding 
affinity for nematode β-tubulin than mammalian β-tubulin, 
making them safe for use in horses and other mammalian 
species (Lacey 1988).

Benzimidazole resistance mechanisms are the most well-
studied of the anthelmintic classes because of their rapid 
development in Clade V nematodes, in particular Haemon-
chus contortus, just 3 years after its introduction to the mar-
ket (Drudge et al. 1964; Kotze and Prichard 2016). Benzimi-
dazole resistance is associated with mutations in isotype-1 
and isotype-2 β-tubulin genes that decrease the binding 
affinity of the drug for its target (Lubega and Prichard 1990; 
Lacey and Gill 1994; von Samson-Himmelstjerna et al. 
2007a). There are a few single nucleotide polymorphisms 
(SNPs) that are associated with benzimidazole resistance 
in H. contortus, with phenylalanine to tyrosine substitu-
tion at codon 200 (F200Y) in the isotype-1 β-tubulin gene 
being the most common in wild type parasite populations 
(Kotze and Prichard 2016). Other mutations in isotype-1 
β-tubulin linked to benzimidazole resistance include F167Y 
and E198A, with the former being quite rare and the latter 
conferring the highest level of resistance of the three (Ghisi 
et al. 2007; Kotze et al. 2012). Limited research regarding 
isotype-2 β-tubulin genes has been performed, but some 

resistant populations of H. contortus show loss or decreased 
levels of the gene (Beech et al. 1994; Lubega et al. 1994).

Benzimidazoles are still an effective anthelmintic for 
the treatment of Parascaris spp. infections and resistance 
has only been reported in three studies beginning in 2014 
(Table 1). Due to this limited emerging anthelmintic resist-
ance, only a few studies have examined the resistance-related 
SNPs or transcriptional responses to benzimidazoles in Par-
ascaris spp. Five studies have sequenced Parascaris spp. 
β-tubulin genes, including one using a known benzimida-
zole-resistant isolate, and none found any known resistance-
related SNPs, suggesting a potentially different mechanism 
of resistance in ascarid parasites to this anthelmintic class 
(Tydén et al. 2013a, 2014; Malekpour et al. 2019; Martin 
et al. 2021b; Özben et al. 2022). Interestingly, it has been 
shown that isotype-1 and isotype-2 β-tubulin genes are 
expressed at higher levels in Parascaris spp. eggs, and 
while isotype-1 remains at similar levels of expression in 
larvae and adults, isotype-2 gene expression is very low in 
adults, suggesting differing functions throughout the life 
cycle (Tydén et al. 2016). Additionally, in vitro exposure to 
benzimidazoles significantly increased gene expression of 
isotype-1 β-tubulin genes in one study using eggs (Tydén 
et al. 2016), whereas in vitro studies using adult parasites 
showed either downregulation of isotype-2 β-tubulin (Martin 
et al. 2020) or no differential expression of β-tubulin genes 
(Scare et al. 2020). Previously discussed enzymes aiding 
in the removal of xenobiotic compounds, as well as genes 
related to detoxification, microtubule polymerization, regu-
lation of membrane potential, and muscle contraction were 
also differentially expressed following in vitro exposure to 
benzimidazoles (Martin et al. 2020; Scare et al. 2020).

The β-tubulin genes targeted by benzimidazoles are 
different even within Clade V nematodes (Saunders et al. 
2013), and resistance-related β-tubulin SNPs have a low 
frequency in benzimidazole-resistant equine cyathostomins, 
another Clade V parasite group, suggesting that they may 
not fully describe benzimidazole resistance even within the 
clade (Pape et al. 2003; von Samson-Himmelstjerna et al. 
2003, 2007a; James et al. 2009). Considering these dis-
similarities within Clade V and the lack of identification of 
known resistance-related SNPs in benzimidazole-resistant 
Parascaris spp., it is possible that the mechanism of resist-
ance in Clade III ascarid-type nematodes is different and 
thus using these SNPs for anthelmintic resistance surveil-
lance is inadvisable (Diawara et al. 2009, 2013; Rashwan 
et al. 2017; Zuccherato et al. 2018; Palma et al. 2020).

Tetrahydropyrimidines

The tetrahydropyrimidines include two formulations of pyr-
antel using different salts: pyrantel pamoate and pyrantel 
tartrate. Drugs in this class act as agonists of acetylcholine 
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receptors (AChRs) and cause them to stay open, leading to 
prolonged muscle contraction and paralysis in the parasites 
(Harrow and Gration 1985; Robertson et al. 1994). Nico-
tinic acetylcholine receptors are ligand-gated ion channels 
activated by acetylcholine, a neurotransmitter, and are made 
up of five subunits surrounding a central pore (Beech and 
Neveu, 2015). The AChR repertoire of parasitic nematodes 
is not widely studied, with only a few subtypes having been 
described in nematodes in general, and even fewer when 
the scope is narrowed to Parascaris. Recently, a Parascaris 
ACR-16 receptor subunit was described, and it was found 
that parasitic nematodes have two AChR subunits, ACR-26 
and ACR-27, that are not found in free-living nematodes 
(Courtot et al. 2015; Charvet et al. 2018). In Parascaris spp., 
these two subunits have a higher affinity for pyrantel than 
acetylcholine (Courtot et al. 2015).

Parascaris spp. resistance to pyrantel has only been 
reported in seven studies globally starting in 2007, and thus 
has limited research due to the lack of resistant parasite pop-
ulations (Table 1). There has, however, been one in vitro 
study investigating transcriptional responses in Parascaris 
spp. when exposed to pyrantel, ivermectin, and thiabenda-
zole (Martin et al. 2020). Expression of eight transcripts 
orthologous to AChR was differentially expressed, but with 
no clear pattern between drug classes (Martin et al. 2020). 
Differential expression was also found in genes coding for 
enzymes that aid in the removal of xenobiotic compounds 
including short-chain dehydrogenases/reductases and flavin-
containing monooxygenases, but these enzymes have not 
been characterized in parasitic nematodes and thus more 
research must be completed to understand their possible 
involvement in anthelmintic resistance (Martin et al. 2020).

Macrocyclic lactones

Macrocyclic lactones are a group of drugs derived from 
avermectin produced by Streptomyces avermitilis (Camp-
bell et al. 1983; Kim and Goodfellow 2002) or milbemy-
cins produced by S. hygroscopicus (Takiguchi et al. 1980) 
or S. cyaneogriseus (Carter et al. 1988) and consist of some 
of the most well-known and widely used anthelmintics in 
the world. The avermectin derivatives—particularly iver-
mectin—have had a large impact in both veterinary and 
human medicine and the 2015 Nobel Prize in Physiology or 
Medicine was awarded to William C. Campbell and Satoshi 
Ōmura for its discovery (Nobel Prize 2015). Ivermectin 
was first introduced in 1981, and by the end of the decade, 
it was the best-selling animal health product in the world 
(Laing et al. 2016). Moxidectin, a milbemycin derivative, 
was introduced in the mid-1990s and has a longer half-life 
and higher potency than ivermectin (Lyons et al. 1992; Afzal 
et al. 1997). Macrocyclic lactones irreversibly activate glu-
tamate-gated chloride channels (GluCls) that are present in 

nematode neuron and muscle cells, inhibiting neuronal and 
muscle activity and ultimately causing paralysis and death 
(Wolstenholme 2012; Laing et al. 2016). Within nematodes, 
even those that are within the same clade such as Caeno-
rhabditis elegans and Haemonchus contortus, GluCls are 
highly divergent, making comparisons between species, let 
alone clades, difficult when studying both the mechanism 
of action and development of resistance (Laing et al. 2016).

Macrocyclic lactone resistance was first reported in Hae-
monchus contortus in 1987—just 6 years after ivermectin hit 
the market—and continued to spread globally (Carmichael 
et al. 1987; Van Wyk et al. 1987; Prichard 1994). Despite 
widespread anthelmintic resistance to ivermectin in some 
species of nematode parasites, the mechanism for resistance 
remains poorly understood. Similar to benzimidazole resist-
ance, ivermectin resistance has been studied in H. contortus, 
as well as in Caenorhabditis elegans (reviewed in Lespine 
et al. 2011; Doyle and Cotton 2019), but little research has 
been conducted in ascarid parasites. P-glycoproteins (Pgp) 
are cell membrane efflux proteins that pump foreign sub-
stances out of cells and were first associated with ivermectin 
resistance in parasitic nematodes in the late 1990s (Xu et al. 
1998). Subsequently, they are one of the most widely studied 
putative mechanisms for macrocyclic lactone resistance and 
the only one that has been studied in Parascaris spp. Similar 
to benzimidazole resistance, the bigger picture is complex. 
Macrocyclic lactone resistance is likely multigenic (Choi 
et al. 2017; Khan et al. 2020) and the molecular mechanism 
is not fully understood (Laing et al. 2016; Rezansoff et al. 
2016).

Ten Parascaris spp. Pgps have been identified to date, 
along with their tissue-specific expression levels and some 
evidence for interaction with ivermectin: Pun-Pgp-2, 
Pun-Pgp-3, Pun-Pgp-9, Pun-Pgp-10, Pun-Pgp-11.1, Pun-
Pgp-11.2, Pun-Pgp-12, Pun-Pgp-16.1, Pun-Pgp-16.2, and 
Pun-Pgp-18 (Janssen et al. 2013; Chelladurai and Brewer 
2019; Gerhard et al. 2020; Martin et al. 2021a). Their role 
in anthelmintic resistance, however, is unclear. Transgenic 
expression of P. univalens Pun-Pgp-9 and Pun-Pgp-11 in 
Caenorhabditis elegans decrease susceptibility to ivermectin 
(Janssen et al. 2015), and Pun-Pgp-9 does so in a tissue-
specific manner, with intestinal expression conferring a 
protective effect, and depends on active ingestion via phar-
yngeal pumping (Gerhard et al. 2021). Comparisons between 
ivermectin resistant and susceptible Parascaris spp. popu-
lations revealed the presence of SNPs in Pun-Pgp-11 and 
increased Pun-Pgp-11 mRNA levels correlating to decreased 
macrocyclic lactone susceptibility (Janssen et al. 2013), but 
drug exposure assays showed no change in Pgp expression in 
response to ivermectin exposure (Gerhard et al. 2020; Scare 
et al. 2020; Martin et al. 2021a). Differentially expressed 
genes for enzymes aiding in the removal of xenobiotic com-
pounds and other cellular processes were similar to those 
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previously described for other drugs after ivermectin expo-
sure, with the only exception being the upregulation of a 
gamma-aminobutyric acid subunit (Martin et al. 2020; Scare 
et al. 2020). While these studies suggest some potential can-
didates for ivermectin resistance mechanisms, it is similar 
to the other two previously discussed drug classes in that 
mechanisms for resistance are unclear.

Novel anthelmintics

Several novel anthelmintic candidates have been tested for 
Parascaris spp., many of them involving plant extracts. Wild 
tarragon (Artemisia dracunculus, Linnaeus, 1753), pen-
nyrile (Mentha pulegium, Linnaeus, 1753), Zataria multi-
flora (Boiss), cinnamon (Cinnamomum zeylanicum, Blume), 
pomegranate flower (Punica granatum, Linnaeus, 1753), and 
pepper (Capsicum annuum, Linnaeus, 1753) extracts were 
all lethal to L2/L3 larval Parascaris in vitro (Rakhshan-
dehroo et al. 2016, 2017). Zinc oxide nanoparticles showed 
in vitro anthelmintic efficacy against Parascaris spp., includ-
ing changes to morphological appearance (Morsy et al. 
2019). The monoterpenic phenol isomer carvacrol, iso-
lated from herbs, also showed in vitro anthelmintic activity 
against Parascaris spp. by inhibiting acetylcholine-induced 
currents and stopping muscle contractions, suggesting that it 
is an antagonist of AChRs similar to pyrantel (Trailovic et al. 
2021). The Bacillus thuringiensis (Berliner, 1915) crystal 
protein Cry5B has shown efficacy against Parascaris spp. 
when administered to foals via nasogastric tube, dropping 
fecal egg counts to zero, and is the only in vivo experimental 
drug efficacy study that has been completed recently (Urban 
et al. 2021). While these treatments have shown some effi-
cacy, there is little information regarding the mechanisms 
of action, which will be an essential piece of information 
if they make it to the commercial market in order to help 
prevent the development of resistance.

Conclusions

Anthelmintic resistance mechanisms are poorly understood 
in helminths, particularly ascarid parasites due to Parascaris 
spp. being the only ascarid exhibiting widespread anthelmin-
tic resistance. Limited research suggests that mechanisms of 
resistance in Clade III ascarids may be different from those 
in Clade V members such as strongylid parasites and C. 
elegans, and applying information learned from these Clade 
V nematodes to ascarids must be done cautiously. Continued 
research on resistance mechanisms in ascarid parasites using 
Parascaris spp. is important for the understanding of genetic 
and molecular mechanisms of resistance in order to preserve 
anthelmintics currently used in other ascarid species and 
develop new treatment options for the future.

The recent development of egg-hatching larval culture 
methods for Parascaris spp. makes it a prime candidate for 
research regarding anthelmintic resistance in ascarid-type 
parasites, although in vitro systems have limitations such as 
short Parascaris spp. lifespan, differences in gene expression 
between life stages due to culture conditions, and specimen 
acquisition. Continued improvement of in vitro systems for 
both adults and hatched L2/L3 larvae, particularly increas-
ing lifespan in culture and decreasing stress by optimizing 
culture conditions, would not only increase the quality of 
data collected but also allow for a larger number of studies 
to be completed.

Open access data repositories such as GenBank and 
WormBase Parasite are used by scientists globally for vari-
ous research applications, and it is important that the infor-
mation is updated as necessary. Parascaris spp. is an exam-
ple of the issues that incorrect submissions can cause due to 
mislabeled accessions. Samples must be properly identified 
prior to genetic analysis and submission, as illustrated by the 
confusion between P. univalens and P. equorum. This misla-
beling and lack of identification of species is not only some-
thing that needs to be rectified in date repositories, but also 
serves as a warning regarding proper specimen identification 
and labeling. Additionally, the Parascaris species discrep-
ancy highlights the importance of developing a molecular 
method for Parascaris species identification.
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