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Abstract: Lactate was recently found to mediate histone lysine lactylation and facilitate polarization
of M1 macrophages, indicating its role in metabolic regulation of gene expression. During somatic
cell reprogramming, lactate promotes histone lactylation of pluripotency genes and improves repro-
gramming efficiency. However, the function of lactate in cell fate control in embryonic stem cells
(ESCs) remains elusive. In this study, we revealed that lactate supplementation activated germline
genes in mouse ESCs. Lactate also induced global upregulation of cleavage embryo genes, such as
members of the Zscan4 gene family. Further exploration demonstrated that lactate stimulated H3K18
lactylation accumulation on germline and cleavage embryo genes, which in turn promoted transcrip-
tional elongation. Our findings indicated that lactate supplementation expanded the transcriptional
network in mouse ESCs.
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1. Introduction

Embryonic stem cells (ESCs), derived from inner cell mass of blastocysts, possess
an unlimited capacity for proliferation, self-renewal, and multipotent differentiation [1],
offering biologists a valuable experimental system to uncover the regulatory mechanism of
pluripotency maintenance and differentiation during development. Furthermore, in vitro
cultured ESCs occasionally overcome epigenetic barriers and transiently reach totipo-
tent status with two-cell-like transcriptome and chromatin features [2–4]. Hence, in vitro
cultured ESCs are also widely used to explore cell fate transition from pluripotency to
totipotency [5–7].

Cellular metabolism is the most fundamental biological process satisfying energy
demands to keep cells alive, and discrepancies in metabolism patterns reflect distinct cell
status [8,9]. Progressing beyond crucial roles in energy homeostasis, the last decade has
witnessed significant advances in our understanding of metabolic regulation of epigenetic
modifications, gene expression, and cell fate change [10–12]. Like most rapidly dividing
cells, pluripotent stem cells sustain high glycolysis to feed both cellular demands for build-
ing blocks such as nucleotides, phospholipids, and amino acids and energy needs [10,13].
Still, discrepant metabolic profiles associate with distinct pluripotent states, and cells re-
program their metabolic pattern during cell fate transition [14–16]. Since the discovery
of acetyl-CoA as the substrate of histone acetyltransferases (HATs) to regulate histone
acetylation in mammalian cells [17,18], increasing numbers of metabolic intermediates
have been found to play pivotal roles in epigenetic modification. S-adenosylmethionine
(SAM), a key intermediate of the one-carbon cycle, is the methyl donor for histone and DNA
methylation reactions [8,19]. Deprivation of SAM causes downregulation of H3K4me3 and
differentiation in ESCs [20,21]. α-ketoglutarate (αKG), an intermediate of the TCA cycle, is
a required cofactor for both histone and DNA demethylase [10,13]. In ESCs, αKG promotes
DNA and histone demethylation, activates the pluripotent gene, and maintains the pluripo-
tent state [22,23]. Although an increasing number of metabolic intermediates have been
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found to play a regulatory role in epigenetic regulation of cell fate, the causal relationship
between metabolic reprogramming and cell fate shift requires further investigation.

Lactate is an end product of glycolysis that is reused for gluconeogenesis in the liver.
In tumor cells, the lactate produced by glycolysis facilitates the formation of an acidic
tumor microenvironment, which reinforces cancer invasion and suppresses antitumor
immunity [24,25]. Recent studies have identified a novel function for lactate whereby it
is utilized for histone lysine lactylation to promote the transition from inflammatory to
reparative macrophages and activate homeostatic gene expression, maintaining immune
homeostasis [26,27]. Discovery of lactoyl-CoA (lactyl-CoA) in mammalian cells indicated
that lactoyl-CoA generated by glucose metabolism was a possible biochemical link between
lactate and histone lactylation in vivo [24,28]. A cell-free, recombinant chromatin-templated
histone modification and transcription assay demonstrated that lactoyl-CoA activated tran-
scription in a p53-dependent, p300-mediated manner [27], and deprivation of p300 reduced
histone lactylation both in vitro and in vivo [27,29], indicating p300 as a potential histone
lactyltransferase [24,30]. Moreover, lactate was found to play roles in lung fibrosis, cell
differentiation and reprogramming, and lactylation of nonhistone proteins [24]. As an
important metabolic intermediate, the role of lactate and lactate-induced histone lactylation
in pluripotency maintenance and differentiation is still unclear. In this study, we uncov-
ered the function of lactate and lactate-induced histone lactylation in cell fate control in
mouse ESCs.

2. Materials and Methods
2.1. Cell Culture

The mouse ESC line AB2.2 was cultured on mouse embryonic fibroblast (MEF) feeder
cells with ES cell medium supplemented with 15% fetal bovine serum (Hyclone, Logan,
UT, USA, cat. no. SH30396.03), 1000 U/mL leukemia inhibitory factor (LIF, Millipore,
Burlington, MA, USA, cat. no. ESG1107), 3 µM CHIR99021 (LC Laboratories, Woburn,
MA, USA, cat. no. C-6556), and 1 µM PD0325901 (LC Laboratories, cat. no. P-9688). Fifty
millimolar lactate (Sangon Biotech, Shanghai, China, cat. no. A604046) was added and
maintained for 24 h before experimental procedures. Cells were cultured in a humidified
chamber at 37 ◦C with 5% CO2. For culture of mouse ESC lines, the medium was refreshed
daily, and cells were routinely passaged every 2 days.

2.2. Western Blot

Cells were lysed on ice with gentle stirring for 10 min in 0.5 mL of TBE buffer con-
taining 0.5% Triton X-100 (Biosharp, Anhui, China. cat. no. BS084) (v/v) and 2 mM
phenylmethylsulfonyl fluoride (PMSF)(Solarbio, Beijing, China. cat. no. P0100). The lysates
were centrifuged at 6500× g for 10 min at 4 ◦C to remove the supernatant. Retained nuclei
were washed twice using TEB and centrifuged as before. The nuclei were then resuspended
in 0.2 N HCl at 4 ◦C overnight. Samples were centrifuged at 6500× g for 15 min at 4 ◦C
to remove the nuclei debris the next day. Samples were subjected to Western blot analy-
sis with the appropriate antibodies (anti-H4K8la, cat. no. PTM-1415; anti-H4K12la, cat.
no. PTM-1411RM; and anti-H3K18la, cat. no. PTM-1406RM. PTM BIO, Hangzhou, China)
after neutralizing HCl with 2M NaOH at 1/5 of the volume of the supernatant.

2.3. RNA Isolation and Quantitative RT-PCR (qRT-PCR)

Total RNA was extracted using a TRI reagent (Sigma, St. Louis, MO, USA, cat.
no. T9424) following the manufacturer’s procedure. The purity and concentration of RNA
samples were determined with a Nanodrop ND-2000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). A reverse-transcriptional reaction was performed with a
Hifair III 1st Strand cDNA Synthesis Kit (Yeasen, Shanghai, China. cat. no. 11139ES60)
according to the manufacturer’s procedure. qRT-PCR was performed with SYBR green
master mix (Yeasen, cat. no. 11203ES08) on a StepOnePlus™ Real-Time PCR System
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with Tower (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
instructions. For primer sequences, see Table S1.

2.4. ChIP-Seq

ChIP-seq was performed using a Hyperactive In-Situ ChIP Library Prep Kit for Illu-
mina (pG-Tn5) (Vazyme, Nanjing, China, cat. no. TD901) according to the manufacturer’s
procedure with the appropriate antibodies (anti-H3K18la, PTM-1406RM, and PTM BIO;
anti-H3K4me3, 9727, and CST, Danvers, MA, USA; and anti-PolII, 39097, and active motif,
Carlsbad, CA, USA).

2.5. RNA-Seq Dataset Analysis

Raw reads were processed with cutadapt v1.16 (https://cutadapt.readthedocs.io,
accessed on 24 September 2021) to remove adapters and perform quality trimming with
default parameters. Trimmed reads were mapped to the mouse genome (GENCODE
release M23) using STAR (v2.5.1b) with default settings. Reads were counted in exons of
the mouse genome (GENCODE release M23) using the STAR-quantMode GeneCounts
setting. Differential expression of genes for all pairwise comparisons was assessed by
DESeq2 v1.24.0 with internal normalization of reads to correct for library size and RNA
composition bias. Differentially regulated genes in the DESeq2 analysis were defined as
those that were more than two-fold increased or decreased with an adjusted p-value < 0.05.
RSEM was used to calculate the FPKM value for each gene. Gene ontology was performed
using Metascape (https://metascape.org, accessed on 12 October 2021) [31]. For GO term
IDs, see Tables S2 and S3. The enrichment bubble dot and heatmap were plotted on a
website (http://www.bioinformatics.com.cn, accessed on 12 October 2021).

2.6. ChIP-Seq Dataset Analysis

Raw reads were processed with cutadapt v1.8.1 to remove adapters and perform
quality trimming. Trimmed reads were mapped to the UCSC mm10 assembly using
Bowtie2 with default parameters. Deeptools was used for normalization to draw a read
density plot and heatmap from bigwig files for visualization of ChIP-seq data.

2.7. Microarray Dataset Analysis

Microarray datasets (GSE45181) were analyzed using GEO2R, an interactive web tool.
Datasets GSM1098610, GSM1098612, and GSM1098614 were used as a control group, and
datasets GSM1098611, GSM1098613, and GSM1098615 were used as a treatment group
(Max knockdown).

2.8. Statistical Analysis

The two-tailed Student’s t-test and Wilcoxon rank sum test were used to calculate
p values. Statistically significant values for p < 0.05, p < 0.01, and p < 0.001 are indicated by
single, double, and triple asterisks, respectively.

3. Results
3.1. Lactate Supplementation Stimulated H3K18 Lactylation in Mouse ESCs

It was reported that exogenous lactate stimulates lactylation of histone lysine residues
in cells [27]. Hence, we added 50 mM lactate to ES culture media to enhance histone
lactylation. As expected, lactate supplementation significantly improved lactylation of
H3K18 (H3K18la) after 24 h treatment. We found that H4K8la and H4K18la modifications
were slightly weakened upon lactate supplementation, probably due to crosstalk among
different histone lactylation modifications (Figure 1A). To reveal the effect of lactate sup-
plementation on cell pluripotency, we examined the expression of pluripotent genes. The
expression of pluripotent genes, such as Oct4, Nanog, and Sox2, was not affected upon
lactate supplementation (Figure 1B). These results indicated that lactate supplementation
strengthened H3K18la without affecting pluripotent cell identity of mouse ESCs. We further

https://cutadapt.readthedocs.io
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performed a ChIP-seq assay to illustrate the distribution of H3K18la in mouse ESCs, and
examined the H3K18la signals at gene loci with different expression levels (only genes with
FPKM >1 were analyzed) by RNA-seq. Interestingly, we noticed that genes expressed at
higher levels had more a enriched H3K18la signal along the whole gene bodies compared
to genes expressed at lower levels (Figure 1C). This result supported a positive correlation
between H3K18la intensity and transcript abundance and indicated that many genes may
be upregulated by lactate supplementation.
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regulated genes (|log2 fold-change| > 1, adjusted p-value < 0.05) and 145 downregulated 
genes (|log2 fold-change| < 1, adjusted p-value < 0.05) upon lactate supplementation (Fig-
ure 2A,B). Gene ontology analysis identified that there was enrichment in the downregu-
lated genes of the response to virus, the CAMKK–AMPK signaling cascade, and the reg-
ulation of nervous system development. Remarkably, we noticed significant enrichment 
of the germline gene population in upregulated genes indicated by GO terms including 
‘meiotic DNA double-strand break formation’ and ‘DNA methylation involved in gamete 

Figure 1. Lactate supplementation enhanced lactylation of H3K18 in mouse ESCs. (A) Western
blotting of H3K18la, H4K8la, and H4K18la (left) and corresponding statistical analysis (right). Data
are presented as means ± SD (n = 3, 4); *** p < 0.001; * p < 0.05; ns p > 0.05. Student’s t-test was used to
calculate p-values. Histone H3 was used as the internal control. (B) qRT-PCR analysis of pluripotent
genes in control and lactate-supplemented mouse ESCs. Data are presented as means ± SD (n = 3);
ns, p > 0.05. Student’s t-test was used to calculate p-values. Actb gene was used as the internal control.
(C) Average H3K18la enrichment along gene bodies and 3 kilobases (kb) upstream/downstream of
gene bodies of the first third (high), the second third (mid), the posterior third (low), and all genes in
WT ESC, sorted by FPKM (upper panel). Only genes with FPKM >1 were analyzed. Corresponding
heatmap showing H3K18la enrichment along gene bodies and 3 kilobases (kb) upstream/downstream
of gene bodies (lower panel).

3.2. Lactate Supplementation Activated Germline Genes in mESCs

To study the potential influence of lactate supplementation on cell identity, we per-
formed RNA-seq to uncover changes in the transcriptome. In general, there were 160 up-
regulated genes (|log2 fold-change| > 1, adjusted p-value < 0.05) and 145 downregulated
genes (|log2 fold-change| < 1, adjusted p-value < 0.05) upon lactate supplementation
(Figure 2A,B). Gene ontology analysis identified that there was enrichment in the down-
regulated genes of the response to virus, the CAMKK–AMPK signaling cascade, and the
regulation of nervous system development. Remarkably, we noticed significant enrichment
of the germline gene population in upregulated genes indicated by GO terms including
‘meiotic DNA double-strand break formation’ and ‘DNA methylation involved in gamete
generation’ (Figure 2C). Correspondingly, the heatmap of RNA-seq data showed upreg-
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ulation of a bulk of typical germline genes such as Dazl, Ddx4, Mael, Dmrt1, and Taf7l
(Figure 2D). Upregulation of germline genes was also confirmed by qRT-PCR (Figure 2E).
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Figure 2. Lactate supplementation activated germline genes in mouse ESCs. (A) Scatter plot compar-
ing transcripts between control and lactate-supplemented mouse ESCs. Gene expression changes
with |log2 fold-change| > 1 in lactate supplemented mouse ESCs are highlighted with red (upreg-
ulation) or blue (downregulation), respectively. (B) Heatmap of misregulated genes upon lactate
supplementation. (C) Gene ontology analysis of enriched terms of up- and downregulated genes.
(D) Heatmap of representative upregulated germline genes. (E) qRT-PCR analysis of germline genes
in control and lactate-supplemented mouse ESCs. Data are presented as means ± SD (n = 3), * p < 0.05.
Student’s t-test was used to calculate p-values. Actb was used as the internal control.

3.3. Lactate Supplementation Induced Cleavage Embryo Genes in Mouse ESCs

In addition to germline genes, we also observed a significant upregulation of Zscan4
family genes (Figure 3A), a set of zygotic genome activation (ZGA) marker genes expressed
specifically in two-cell mouse embryos and six to eight cell human embryos [32,33]. To fur-
ther uncover the global expression change of ZGA genes, we reanalyzed the RNA-seq
dataset to obtain upregulated genes in MERVL+Zscan4+ ESCs relative to MERVL–Zscan4–

ESCs (|log2 fold-change| > 1, adjusted p-value < 0.05) for further analysis (Figure S1) [34].
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A globally increased abundance of upregulated genes in MERVL+Zscan4+ ESCs was also
observed in lactate-supplemented ESCs (Figure 3B,C). Upregulation of ZGA genes, such
as Zscan4, Zfp352, Tcstv3, and Sp110, was verified by qRT-PCR (Figure 3D). However, the
expression of Dux was not changed (Figure 3E), a key regulatory factor that activates hun-
dreds of ZGA genes and retroviral elements [35]. These results correspond to a previous
discovery that lactate raised the ratio of two-cell-like ESCs [14].
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Figure 3. Lactate supplementation promoted expression of ZGA genes in mouse ESCs. (A) A heatmap
of expression of Zscan4 family genes. (B) Global expression comparison of upregulated genes in
MERVL+Zscan4+ ESCs between control and lactate-supplemented mouse ESCs. The Wilcoxon rank
sum test was used to calculate p-values. ** p < 0.01. (C) Heatmap of representative upregulated ZGA
genes. qRT-PCR analysis of ZGA genes (D) and Dux gene (E) in control and lactate-supplemented
mouse ESCs. Data are presented as means ± SD (n = 3); * p < 0.05; ns p >0.05. Student’s t-test was
used to calculate p values. Actb was used as the internal control.

3.4. Sequential Activation of Germline and ZGA Genes in Mouse ESCs

To study the correlation between the expression of germline and ZGA genes, we
analyzed the public transcriptome data in which ZGA and germline genes were activated.
Zscan4c was reported to be a key activator of cleavage embryo genes in ESCs, so we ana-
lyzed RNA-seq data of mouse ESCs in which Zscan4c was overexpressed [36]. Expression of
exogenous Zscan4c was almost 16 times higher than that of endogenous Zscan4c (Figure 4A).
Activation of ZGA genes, such as Zscan4 family genes, Zfp352, and Dux, was observed after
Zscan4c overexpression (Figure 4B), while activation of germline genes was not observed
(Figure 4C). For transcriptional regulation of germ-cell-specific genes in mouse ESCs, Max
was reported to be the key repressor by RNA interference screen, whose knockdown in
ESCs resulted in a global upregulation of germ-cell-specific genes [37]. Therefore, we ana-
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lyzed the microarray data in which Max was knocked down to activate germline genes in
mouse ESCs [37]. Successful suppression of Max was confirmed (Figure 4D), and significant
upregulation of germline genes, such as Ddx4, Dazl, and Mov10l1, was also observed upon
Max knockdown (Figure 4E). In addition, we found a global upregulation of ZGA genes,
such as Zscan4 family genes, Tcstv1, and Zfp352 (Figure 4F). These results suggested that
germline gene activation stimulated ZGA genes in ESCs, while ZGA gene activation had
little impact on germline gene expression.
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(GSE120998) for Zscan4c overexpression (A); ZGA gene expression change (B); germline gene expression
change (C). (D–F) Analysis of public microarray data (GSE45181) for Max downregulation (D); germline
gene expression change (E); ZGA gene expression change (F).

3.5. Lactate Supplementation Facilitated Transcriptional Elongation through Enhanced
Histone Lactylation

To gain further mechanistic insights into regulation of germline and ZGA genes,
we deciphered the occupancy landscape of H3K18la, H3K4me3, and RNA polymerase
II (PolII) upon lactate supplementation. We found that there was remarkably increased
deposition of H3K18la at the transcription start site (TSS), as well as a slightly increased
accumulation at the gene body of upregulated genes (Figure 5A). Consistently, the intensity
of H3K4me3, a marker of an active promoter, also increased at the TSS of upregulated genes
(Figure 5B). Although no discrepant PolII localization around the TSS of upregulated genes
was observed after lactate supplementation, increased PolII occupancy at the gene body
was detected (Figure 5C). Our results indicated that lactate supplementation reinforced
histone lactylation at the promoter and gene body and facilitated transcriptional elongation
of target genes.
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Figure 5. Lactate supplementation facilitated transcriptional elongation through enhanced histone
lactylation. (A–C) Read density plot of H3K18la (A), H3K4me3 (B), and RNA PolII (C) signals at
gene bodies and promoters of upregulated genes (upper panel), and corresponding heatmap at
gene bodies and promoters (3 kb flanking TSSs) of upregulated genes (lower panel). (D) Schematic
diagram of the mechanism by which lactate promotes expression of germline/ZGA genes.
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4. Discussion

In this study, we identified that lactate supplementation facilitated the expression of
germline and ZGA genes through transcriptional elongation orchestration. In addition
to recruitment and assembly of preinitiation complex (PIC), promoter-proximal pausing
and release are other key steps in transcription regulation by PolII. While negative elon-
gation factor (NELF) and DRB-sensitivity-inducing factor (DSIF) stabilize the paused Pol
II, positive transcription elongation factor-b (P-TEFb) drives release of paused Pol II to
begin productive elongation [38,39]. ELL is a component of the super elongation complex
(SEC), which interacts directly with P-TEFb to promote elongation. p300 acetylates ELL
and increases its stability [40]. Interestingly, p300 also acetylates both promoter-paused
polymerase and gene-body-occupied polymerase, promoting PolII release and elongation
efficiency [41]. Moreover, acetylation of promoter histone H3K18/K27 mediated by p300
stimulates the release of paused PolII and the recruitment of the super elongation complex
(SEC), promoting productive elongation [42]. In this study, we observed accumulated
PolII among the gene body but not on the promoter upon lactate supplementation. We
suggest that H3K18la recruited transcription coactivators, possibly p300, and promoted
transcription elongation. Additionally, we suggest that histone lactylation might facilitate
PolII elongation by loosening nucleosome–DNA interaction and forming a platform for
coactivators binding. There is a high distribution similarity between histone acetylation and
lactylation among the genome [27]. Possible crosstalk between acetylation and lactylation
warrants further study.

Eight to twelve percent of couples are infertile worldwide [43], and gametogenesis
failure is one of the main causes. Therefore, establishment of an in vitro system for efficient
generation of functional gametes is a promising approach for infertility treatment. Stem cells
(SCs) including ESCs and iPSCs, possessing the ability to differentiate into all cell types, are
valuable cell origins for in vitro differentiation toward germ cells. Though several methods
and techniques have been identified to induce SCs’ differentiation into early germ cells,
oocyte-like cells (OLCs), and male gametes [44–47], the efficiency is quite low. In our study,
we discovered that lactate supplementation activates the expression of germline genes
involved in DNA methylation and meiotic division in mESCs. We also found upregulation
of a wealth of genes regulating piRNA metabolism, such as Piwil2, Mael, and Mov10l1.
These results suggested that lactate supplementation facilitates differentiation of mouse
ESCs toward germ cells. Whether and how lactate improves differentiation efficiency
toward gametes warrants further study.

In ESCs, transient Zscan4 expression upregulated homologous recombination genes
and facilitated telomere elongation by homologous recombination [48], improving the
developmental potency of ES cells and restoring the differentiation potential of long-term
cultured ES cells [3]. Knockdown of Zscan4 led to telomere shortening, genomic instability,
and aneuploidy [48]. In addition, histone hyperacetylation and DNA demethylation
were observed during transient Zscan4 expression [49]. Mechanism studies indicated that
ZSCAN4 recruited TET2 through its SCAN domain to target locus and promoted DNA
demethylation [50] while promoting degradation of UHRF1 and DNMT1 to suppress DNA
methylation [51]. In this study, we observed a significant upregulation of the Zscan4 gene
family and a global upregulation of ZGA genes upon lactate supplementation, and this may
trigger other downstream events. Lactate is one of the major energy sources of cleavage
embryos and promotes embryonic development to the morula stage [12,52]. Therefore,
lactate may also regulate preimplantation development by activating ZGA and promoting
telomere elongation and global DNA demethylation in early embryos.

5. Conclusions

In summary, we discovered for the first time that lactate supplementation activates
the expression of germline and ZGA genes in mouse ESCs, especially the expression of
germline genes and members of the Zscan4 gene family. We propose that lactate stimulates
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H3K18la accumulation at germline and ZGA genes, which recruit cofactors to facilitate
transcriptional elongation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells11030548/s1, Figure S1: Global expression comparison of upregulated
genes between MERVL+Zscan4+ ESCs and MERVL-Zscan4- ESCs; Table S1: Primer sequences;
Table S2: GO-Up regulated genes; Table S3: GO-Down regulated genes.
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