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Abstract 
Objectives: This study aimed to develop an approach to enhance the model precision by artificial images.

Materials and Methods: Given an epidemiological study designed to predict 1 response using f features with M samples, each feature was 
converted into a pixel with certain value. Permutated these pixels into F orders, resulting in F distinct artificial image sample sets. Based on the 
experience of image recognition techniques, appropriate training images results in higher precision model. In the preliminary experiment, a 
binary response was predicted by 76 features, the sample set included 223 patients and 1776 healthy controls.
Results: We randomly selected 10 000 artificial sample sets to train the model. Models’ performance (area under the receiver operating 
characteristic curve values) depicted a bell-shaped distribution.
Conclusion: The model construction strategy developed in the research has potential to capture feature order related information and enhance 
model predictability.

Lay Summary 
We aimed to demonstrate a novel method to investigate the effect of feature structure on model predictability with epidemiological data. The 
concept was inspired from image identification. Pixels in digital images are used as features when training the identification model. The quality 
of a given digital image will be damaged when pixels’ position and their values changed arbitrarily, which obstructs the model training and mod-
el’s precision. We assume the structure-related relationship exists in epidemiological data. Given a certain dataset, features are transformed to 
pixel values for generating artificial images. To explore the effect of feature structure, orders of pixels are randomly permutated and the model 
is trained using pixel-permutated artificial image sample sets. In the preliminary experiment, one binary response was designed to be predicted 
by 76 features. We randomly selected 10 000 artificial image sample sets to train the model. Models’ performance (area under the receiver 
operating characteristic curve values) depicted a bell-shaped distribution. Namely, the performance of each model’s predictability was studied 
and the feature structure information had a strong impact on model performance. Our novel model construction strategy has potential to cap-
ture feature order related information and enhance model predictability.
Key words: artificial image; image identification; prediction model; machine learning; neural network. 

Introduction
Linear models are considered as cornerstone in epidemiological 
studies. They are widely used for estimating associations 
between factors and disease,1 and for predicting the incidence 
or existence of disease.2 These models encompass a range of 
techniques within generalized linear regression, such as linear 
regression, logistic regression, and Cox regression. Previous 
studies reported the limitations in linear models such as explain-
ing nonlinear association, complexed interactions, etc. Nonlin-
ear models were adopted to solve those problems.3,4 For 
example, nonlinear models represented by artificial neural net-
works have been introduced into epidemiological research.5,6

To enhance the model accuracy, previous research imple-
mented the following solutions: (1) Increasing the number of 

features and expanding the sample size. (2) Optimizing the 
parameters in an attempt to achieve maximum accuracy.7 (3) 
Comparing various machine learning methods to identify the 
one that yields the highest performance. For instance, 
employing nonlinear models (eg, neural networks, support 
vector machines, etc.) to address the weaknesses in linear 
equations caused by multicollinearity among features,4,8

unsophisticated variable selection,9 and to extract more com-
plex information.

Inspired from image recognition techniques, good feature 
structure is the key point for model training. Taking handwrit-
ten digit recognition as an example (Figures S1 and S2 in 
Appendix 1), the digital picture is composed of pixels (Figure 
S1-a), where the pixel values range from 0 to 255 (Figure S1-b), 
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corresponding to the color change from black to white (Figure 
S1-a). Each pixel is used as a feature for image recognition 
model training (Figure S1-b). If the order of the pixels is 
changed arbitrarily (Figure S1-c), handwritten digits cannot be 
correctly recognized.

This research investigated the effect of feature structure on 
model predictability with epidemiological data, which was 
less explored in this field. To introduce the feature structure, 
we generated artificial images with each pixel representing a 
feature. To explore the effect of feature structure, we ran-
domly permutated the order of pixels and used pixel- 
permutated image sample sets to train the model. The model 
used in this study is neural networks which is an artificial 
intelligence-based computer analysis, designed to extract 
“certain information” from digitalized images. The perform-
ance of each model predictability was studied and the result 
showed the feature structure information had a strong impact 
on model performance.

On the other hand, previous studies on neural networks 
have demonstrated the exceptional accuracy achieved 
through image identification based on deep-learning techni-
ques, often surpassing 98%.10,11 Therefore, the method dis-
cussed in this research has potential to develop a novel 
method for achieving higher precision predictions using arti-
ficial images and image identification technology.

Methods
Generating the artificial image
The process of generating artificial images involved 2 key 
aspects: variable pixelization and pixel sequencing.

Variable pixelization
In a grayscale image, pixels are represented conventionally by 
an 8-bit integer giving a range of possible values from 0 to 
255. This is how an image stored in computer. While data 
collected from an epidemiology study is not conventionally 
arranged. Hence, to apply image recognition techniques, vari-
ables must be rearranged between 0 and 255, as the way of 
pixel is represented.

For each feature in a given epidemiological study, we 
applied the rescale function P to normalize the feature’s value 
within the range of 0 to 255. This transformation ensured 
that each feature could be accurately represented in the artifi-
cial images. 

P Xnð Þ ¼
Xn � minðXnÞ

maxðXnÞ � minðXnÞ

� �

� 255 þ 0:5
� �

;

n ¼ 1; . . . ; f 

where Xn represents the value of feature n of a certain sam-
ple, minðXnÞ corresponds to the minimum of Xn within the 
sample set, and maxðXnÞ corresponds the maximum of Xn 

within the sample set. f is the number of features. For 
instance, in an epidemiological study that included 5 samples; 
one of the features was their age: 20, 30, 40, 50, and 60 
years. The age values were rescaled to 0, 64, 128, 191, and 
255 gray-level. This pixelization process was crucial for 
ensuring that the artificial images accurately represented the 
underlying features.

Pixel sequencing
Given a certain epidemiology study with f features trans-
formed to f pixels, there exist f! possible pixel orders. To sim-
plify our study design, we opted to organize pixels into a 
square array, without considering rotation (90�, 180�, or 
270�) or flips (vertical, horizontal, or diagonal) of images. 
Consequently, the possibility of images being given f features 
is F, where F is equal to 1/8 f!. Figure 1 shows an example of 
an artificial image of a certain sample with a certain pixel 
order.

Dataset expansion
To study the effect of feature structure on model predictabil-
ity, we generated artificial images for each sample by using 
variable pixelization and randomly permutated the order of 
pixels to create distinct sample sets.

The original dataset, denoted as Soriginal, was obtained 
from an epidemiological study encompassing M samples and 
f features with a certain feature order. As previously 
described, f features can generate F different orders. Hence, 
the Soriginal dataset was expanded to F types of distinct data-
sets, represented by S1, S2. . ., SF (Figure 2). These expanded 
datasets, referred to as “candidate datasets”.

Data processing
Each of the F candidate datasets underwent an identical data 
processing procedure. Initially, we randomly divided each 
candidate dataset into training, validation, and test sets in a 
70:10:20 ratio. To ensure balanced training, we applied the 
Synthetic Minority Oversampling Technique to the training 
set.12 The model was trained using an image identification 
technique on the training and validation sets. Specifically, the 
model training process took place within the training set, 

Figure 1. Given the feature information of a certain sample i, generating an artificial image by sequencing pixels in a square array—assuming the number 
of features is 100. pn;i ; n ¼ 1; . . . ; 100 represents the pixel value of feature n for sample i calculated by function P.
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with continuous validation to assess learning effectiveness. 
The training concluded once the loss function's value, eval-
uated on the validation set, ceased to increase, which indi-
cated optimal model development. The model was then 
applied to the test set to assess its performance, and the 
results were recorded (Figure S2 in Appendix 1).

The model that achieved the highest performance was 
deemed the optimal prediction model. Consequently, this candi-
date dataset containing artificial images generated from a cer-
tain feature order, was considered the optimal dataset for model 
construction. These artificial images effectively captured the 
intricate relationship between the features and the response.

Preliminary experiment
In this section, we describe the process of model construction 
with the method introduced in previous sections. A preliminary 
experiment was carried out to explore the effectiveness of the 
method.

The model, namely the schizophrenia classifier was trained 
by using a sample set from online survey data collected by an 
internet research agency’s pooled panel (Rakuten Insight, Inc., 
incorporated �2.3 million panelists by 2022).13 The sample set 
comprised 223 patients with schizophrenia and 1776 healthy 
controls aged 20-75 years. For each sample, the following infor-
mation was extracted from the survey: the existence of schizo-
phrenia which corresponds to the response and 76 features, 
including demographic, health-related backgrounds, physical 
comorbidities, psychiatric comorbidities, and social comorbid-
ities. The details of the study participants and variable defini-
tions have been published elsewhere (Appendix 1).14

The models were trained using artificial neural network. We 
conducted another study using this machine learning technique 
based on the same dataset; therefore, we applied the same model 
structure to the current experiment.15 The model was structured 
with 5 hidden layers (neurons per each layer: 128-64-32-16-8), 
HeNormal weight initializer, ReLU activation function in the hid-
den layers, sigmoid activation in the output layer, a learning rate 
of 0.01, and early stopping when 5 consecutive updates were 
<0.001.15 Model performance was assessed using the area under 
the receiver operating characteristic curve (AUC).15 The follow-
ing AUC thresholds were used to categorize model discrimination 
quality: 0.5¼no discrimination; 0.5-0.7¼ poor discrimination; 
0.7-0.8¼ acceptable discrimination; 0.8-0.9¼ excellent discrimi-
nation; and >0.9¼ outstanding discrimination. Given the exten-
sive permutations of feature orders (namely, 1/8 � 76!), we 
experimented with 10 000 randomly selected candidate datasets 
to explore the impact of different feature orders on model per-
formance. Statistical analyses were performed using Python 3.8 
(Python Software Foundation, http://www.python.org), with the 
Jupyter Notebook (Jupyter, http://www.jupyter.org/) serving as 
the computational environment.

Results
Based on our preliminary experiment, Figure 3 illustrates the 
distribution of AUC scores across 10 000 experiments. The 
majority of models yielded an AUC score of approximately 
0.88, indicating excellent discrimination. However, some mod-
els achieved AUC scores between 0.5 and 0.7, and even fewer 
attained scores exceeding 0.93, demonstrating outstanding dis-
crimination (Figure 3).

Discussion
This study introduces the novel concept of an artificial image, 
representing a departure from traditional epidemiological 
research methods. The novelty of this approach lies in its 
transformation of features into pixels to reconstruct images 
in reverse, enabling the application of techniques from 
diverse fields to classical epidemiological research.

In our preliminary experiment, we observed that the accu-
racy of the trained models varied depending on the positions 
of the features within the artificial image. Models exhibiting 
high accuracy correspond to a small number of datasets. This 
finding indirectly supports our hypothesis regarding the exis-
tence of optimal artificial images.

The core of our method revolves around increasing the num-
ber of dimensions. By doing so, our approach becomes a power-
ful tool for exploring and explaining complex non-linear 
information. We hypothesize that the linear equation structure 
commonly used in generalized linear models may lead to the loss 
of essential information among features.16,17 Moreover, linear 
equations often describe the relationship between the feature and 
the response as a monotonic increase or decrease which may 
oversimplify the intricate nature of the data. The construction of 
artificial images may provide a new perspective for model inter-
pretation. For instance, we can potentially explain feature impor-
tance and feature interactions through their spatial locations 
within the artificial image: Features situated centrally may be con-
sidered more “important” than those on the periphery, and adja-
cent features may indicate closer interactions (Figure S3 in 
Appendix 1).

Despite the strengths of our innovative method, several chal-
lenges must be addressed for full implementation. First, the 
method demands significant computational power, which could 
potentially be mitigated with advancements in quantum com-
puting. Second, in the preliminary experiment, the dataset 
lacked an adequate number of features. Therefore, it is 

Figure 2. Dataset expansion. Soriginal: the original sample set with M 
samples and f features in a certain order. Sn, n¼1,2, . . ., F: generated 
samples sets with distinct feature order.

Figure 3. The distribution of AUC scores from the 10 000 experiments. 
Abbreviation: AUC, the area under the receiver operating characteristic 
curve.
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insufficient to rely on more mature image-recognition technolo-
gies such as convolutional neural networks for model training. 
We anticipate the introduction of at least 400 features in future 
experiments. Third, the relationship between features and 
response cannot be overlooked. Even the most advanced meth-
ods may struggle to construct a high-precision prediction model 
when faced with either no relation or a weak relation between 
the features and the response. Fourth, there is another limitation 
during the procedure of data splitting. In this work, data was 
randomly split to training, validation, and test set at the 
70:10:20 ratio. This might cause bias in the results, especially 
when the response following a skewed distribution. These are 
important considerations for the continued development and 
application of our approach.

Conclusion
In this study, we introduced a novel concept and provided 
evidence of its potential for developing a novel predictive 
method using artificial images and image identification. The 
model construction strategy has potential to capture feature 
order related information and enhance model predictability.
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