
Research Article
Shaped 3D Singular Spectrum Analysis for Quantifying Gene
Expression, with Application to the Early Zebrafish Embryo

Alex Shlemov,1 Nina Golyandina,1 David Holloway,2 and Alexander Spirov3,4

1Faculty of Mathematics and Mechanics, St. Petersburg State University, Universitetsky Pr. 28, St. Peterhof,
St. Petersburg 198504, Russia
2Mathematics Department, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, Canada V5G 3H2
3Computer Science and CEWIT, SUNY Stony Brook, 1500 Stony Brook Road, Stony Brook, NY 11794, USA
4The Sechenov Institute of Evolutionary Physiology & Biochemistry, Torez Pr. 44, St. Petersburg 194223, Russia

Correspondence should be addressed to Alexander Spirov; alexander.spirov@gmail.com

Received 8 February 2015; Accepted 1 May 2015

Academic Editor: Shigehiko Kanaya

Copyright © 2015 Alex Shlemov et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the
development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually
very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic
biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the
processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring
new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer
around a spherical surface.Themethod includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern
extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is
demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development).Themethod
is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D
datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to
data processing and analysis in this growing field.

1. Introduction

Recent advances in microscopy technologies, biological
markers, and automated processing methods are enabling
sustained progress towards the long-standing goal of recon-
structing embryogenesis by integrating cellular behavior
and molecular dynamics [1–4]. New technology, including
photonicmicroscopy approaches (reviewed in [5, 6]) andnew
biological markers (fluorescent proteins, photoactivatable
compounds, and fluorescent nanoparticles such as quantum
dots) [7], is producing quantitative high resolution data
(spatial and temporal) at all levels of organization [8–12].
Reconstruction of a developmental atlas can be considered in
stages, proceeding from an automated reconstruction of a cell
lineage tree in space and time, annotated with quantitative

information for cell shape, and adding on the spatiotemporal
dynamics of gene expression in the cells [2, 4, 5].

There are some impressive examples of progress in this
new research area on several model experimental animals,
where the details of embryo development have been tracked
from the fertilized egg to the several thousand cell embryonic
stages, with cellular level resolution quantitative data (in
which each cell in the embryo is described by its 3D spatial
coordinates, its lineage, and the expression level of the key
genes).

Such large-scale research projects require not only new
high-throughput experimental approaches, but also new
quantitative mathematical and computational approaches for
the processing, analysis, and modeling of such extensive
datasets [10, 12–17].
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For reconstructing the spatiotemporal dynamics of gene
expression, the raw data sets are stacks of confocal micro-
scope scans of early embryos (fixed or live). Data is usually
the intensity of fluorescent markers for either the mRNA or
proteins encoded by the genes of interest. Extracting this
data requires image segmentation to identify the signal for
each cell (or nucleus).This produces text-files with the spatial
coordinates, gene expression levels, and lineage history of
each cell.

A major goal of this processing is to collect reliable
quantitative data for the fitting and verification of modern
computer dynamic and stochastic models of developmental
gene regulation at single cell resolution.

Examples of publicly available high resolution quantita-
tive datasets for several experimental animals include the
roundworm “C. elegans” (Web resource “EPIC” [18]), the fruit
fly “D. melanogaster” (“BID BDTNP” [2, 19]), and the zebra-
fish “D. rerio” (“BioEmergences” [4, 20]). Such data can be
seen as a combination of biological signal, biological noise,
and experimental noise. Use of the fluorescent data requires
a clear separation of these components. For example, deter-
ministic gene regulatory models should be corroborated
solely against the biological trend component; stochastic
models will also include biological noise components.

The data in cellular resolution 3D gene expression atlases
typically has very high noise, with contributions from aspects
such as the intrinsic gene expression noise observed in
prokaryotes and eukaryotes [21–27] and the disorder in
cellular/nuclear positions. New quantitative approaches are
needed to separate the raw expression data into signal and
noise components [28]. While some animals’ embryos have
simpler geometries, being relatively flat with spherical or
ellipsoidal cell layers (like the early Drosophila fly embryo),
many types of embryos have inherently spatially three-
dimensional cell order, adding methodological difficulties
with respect to specimen thickness and optical nontrans-
parency. Such 3D challenges require new experimental and
computational approaches [29, 30].

Different embryo geometries can produce different spa-
tial characteristics on the gene expression data. For instance,
in the early Drosophila embryo the data can be considered
as patterns on an ellipsoidal surface. With an appropriate
two-dimensional convolution (e.g., cylindrical projection)
the data can be studied with 2D image processing techniques
[31].

There are, however, datasets of recent experimental data
which are truly 3D and cannot be properly transformed and
analyzed in 2D. A prime example is expression data from
early zebrafish embryos, where nuclei (cells) are in several
irregular layers on the fish egg. Such data requires techniques
and algorithms for directly processing 3D data. The irregular
distribution of nuclei in layers presents an added challenge,
since most quantitative methods operate on spatially regular
data points.

To this end, this paper introduces a new method for
processing irregular data points scattered in layers in the
vicinity of an ellipsoidal (spheroidal) surface. We present a
nonparametric method, which can address in a nonbiased
way the arbitrary spatial distribution and unknown noise

character of the expression data. In [31] we presented exten-
sions of 2D singular spectrum analysis (2D-SSA) to analyze
2D and surface 3D datasets from Drosophila confocal scans.
These extensions, circular and shaped 2D-SSA, were applied
to gene expression patterns in the thin nuclear layer just
under the surface of the embryo. We demonstrated how
circular and shaped 2D-SSA can decompose the expression
data into identifiable components (trend and noise), as well
as separating signals from different genes.

In this paper, we extend SSA to irregular three-dimen-
sional expression data (3D-SSA). For an initial application of
the approach, we focus on dealing with spatial irregularity,
using real zebrafish data for the spatial coordinates of nuclei
and the spatial gene expression patterns from the “MatchIT”
and “AtlasIT” packages [4] but using artificial functions
(simple math functions and a smooth approximation of an
intensity indicator) for the expression (fluorescence) intensi-
ties.

Figures 1 and 2 illustrate the main steps of the 3D-SSA
approach (see details in Section 3). Figure 1(a) shows simu-
lated intensity data (a two-exponential pattern, with noise)
on experimental data for nuclear positions in the spherical-
cap geometry of the gene expression region. Figure 2 shows
the algorithm steps: depth equalization on the sphere, flat-
tening, interpolation, and reconstruction. Figure 1(b) shows
the resulting pattern reconstruction after application of the
3D-SSA algorithm. Coloring of nuclei corresponds to gene
expression intensities. Mixing of nuclei of different colors
reflects noise. Regular (smooth) color patterns reflect noise
removal.

This paper is structured as follows. Section 2 describes the
semiartificial datasets which were analyzed. The method is
described in Section 3. In Sections 4 and 5 reliability of the
approach is demonstrated on semiartificial data similar to
real observations. Specifically, the first example considers all
nuclei detected in the specimen at the shield stage, in which
nuclei are distributed in a “spherical cap,” and expression
(with noise) is generated for two patterns: (a) the sum of two
exponentials and (b) bell-shaped.

The second example is for expression patterns similar
to those for the nine regulatory genes characterized in [4].
Specifically, the test pattern is limited to nuclei where the ntla
gene is found experimentally (the “MatchIT” package [4]).
This set of nuclei is distributed in an equatorial strip. For
its extraction we build a hull (envelope) of expressed nuclei
(generally not convex since expressing area has complex
shape). “Shaped” 3D-SSA is applied in all of the test cases.
Section 6 contains discussion and conclusions.

2. Data

In a 3D dataset from a zebrafish embryo, each datapoint
corresponds to a nucleus, each represented by an array of
numbers: three spatial coordinates for the nucleus centroid
and the fluorescence intensities (in arbitrary units) of the
labelled genes (usually two genes are labelled per embryo).
Geometrically, the data points are distributed around a 3D
ellipsoid in several irregular layers (see Figures 1, 4(a), 7(a),



BioMed Research International 3

x

y

z

(a) Initial data on a sphere

x
y

z

(b) Results of data reconstruction: the denoised pattern on a
sphere

Figure 1: Zebrafish data [4] and the 3D-SSA approach: original nucleus position data for the spherical-cap gene expression region, with
simulated intensity values (a schematic two-exponential pattern, with noise) represented by the colormap; colors are given in the topographic
scale, where the blue color corresponds to small values, when brown/red colors correspond to large values of intensity.
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(a) Depth equalization on the sphere
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(c) Interpolation to a regular grid

d

𝜓

𝜙

(d) Reconstructed pattern on a regular grid

Figure 2: Processing steps in the 3D-SSA approach.
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and 15(a)). If we approximate the fish egg as an ellipsoid (or
spheroid), then the early fish embryo can be geometrically
described as a thick (multilayer) spherical cap overlaying
the egg, which can be flattened to a disc without substantial
distortions at the margins (biologists refer to the geometry of
these embryonic stages as “dome” or “disc”). The key genes
studied at these early stages tend to form expression patterns
in compact subareas of the spherical cap, such as open-ended
rings and so forth. Preprocessing and SSA procedures can
be focused or confined to these subareas. In other words, we
assume that there is a transformation of a given expression
area to a parallelepiped and that the transformation does not
distort the data drastically. If the expression area is too large
for such a transformation as a whole, then the transformation
can be done as several independent pieces.

3. Method

We have adapted singular spectrum analysis (SSA) [32–34]
to 2D spatial expression data [31] and shown it to be an
efficient and robust means for data decomposition in these
cases. The advantages of SSA, its adaptivity, flexibility with
few parameters, visual control, and no prior specification
of a noise model, make it promising for 3D analysis. A
drawback of SSA its current lack of automation, though see
[35] regarding automation on similar data structures.

SSA-typemethods process data specified on a regular grid
within a parallelepiped.Therefore, application to irregular 3D
data first requires flattening, followed by regularization.

Processing 3D data which is in a layer near an ellipsoidal
surface consists of the following steps:

(i) detection of data location: estimation of the ellipsoid
center and finding the nuclear centroid positions
relative to this, enabling data rotation for simpler,
nondistorting flattening,

(ii) flattening the data and embedding them into a paral-
lelepiped,

(iii) interpolation to a regular grid {𝑖 = 1, . . . , 𝑁1} × {𝑗 =

1, . . . , 𝑁2} × {𝑘 = 1, . . . , 𝑁3} to obtain 𝑓
𝑖𝑗𝑘
,

(iv) application of 3D-SSA, perhaps by the shaped version
to confine the analysis to subareas; 3D-SSA results in a
decomposition of the form:𝑓

𝑖𝑗𝑘
= 𝑠
𝑖𝑗𝑘

+𝑟
𝑖𝑗𝑘
, where 𝑠

𝑖𝑗𝑘

corresponds to the expression pattern or trend,
(v) interpolation of 𝑠

𝑖𝑗𝑘
back to regular nuclei on the par-

allelepiped,
(vi) transformation back to the original (irregular)

embryo coordinates.

This process results in an extracted pattern with residual
noise, on the original geometry. This allows for further study
of the pattern’s form (e.g., comparison with deterministic
dynamic gene regulation models), as well as the model for
the noise (e.g., to detect whether noise is additive or multi-
plicative).

Below, we comment on the steps of the processing scheme
in further detail. For simplicity, we assume data are located
near the surface of a sphere (the case for zebrafish eggs).

3.1. Detection of Data Location. The origin of the coordinate
system is the center of the sphere, estimated as the point
most equidistant from all data points (more formally, we
find a point minimizing the variance of distances between its
position and those of the data points).

Two types of spatial data distributions are considered,
each of which has a specific procedure for reorientation and
flattening.

The first type is for data located near the spherical cap. In
this case, the “𝑧”-axis passes through the center of the sphere
and the middle point of the data; we can rotate the data to
obtain positive “𝑧”-values for all nuclear coordinates.

In the second type, data are located in a strip along the
equator of the sphere. In this case, the “𝑧”-axis is chosen
orthogonal to the equatorial plane and passing through the
center of the sphere.

In both cases, “𝑥”- and “𝑦”-axes are chosen orthogonal
to the “𝑧”-axis and to each other, oriented to maintain the
original axis orientation as much as possible.

3.2. Flattening the Data. Data is embedded into a par-
allelepiped with sides parallel to the axes. The first axis
corresponds to depth in the data layer, with the second and
the third axes corresponding to surface directions. We aim to
keep the proportions of the data as unchanged as possible.

3.2.1. Depth Equalization of Data. We assume that the data
are located in a layer of approximately constant depth on
a spherical surface. Before projection, the data should be
corrected to be within an ideal spherical layer of constant
depth. Suppose that all nuclei are located in an area which
is bounded by two convex surfaces (e.g., in a spherical layer).

The first step of the procedure is to find these surfaces as
convex external and internal hulls (envelopes) applying the
classical “convex hull” method to original data for finding the
external hull and to inverted data to find the interior one.
Then the found exterior and interior hulls are transformed to
spherical surfaces of radii 𝑅 + 𝐷/2 and 𝑅 − 𝐷/2 correspond-
ingly, where the sphere radius 𝑅 is estimated as the median of
distances from the data points to the sphere center, which was
estimated on Section 3.1, and the layer depth 𝐷 is estimated
as the median distance between the hulls.

The procedure can detect a too-thin layer of one nucleus
depth, when 2D-SSA should be used instead of 3D version.
For data which is truly 2D, the 2D-SSA method discussed in
[31, 36, 37] is applied. Otherwise, a newmodified approach is
elaborated here.

3.2.2. Projection. Spherical projections can have different
invariants. For data in spherical caps, we use the equidistant
azimuthal projection [38, Section 25], to maintain distance
from the center point (i.e., latitude) and therefore the original
layer’s linear sizes. After flattening and projection, the data
points (nuclei) will therefore have the following coordinates:
𝜓, 𝜑 are coordinates along orthogonal meridians in the
azimuthal projection and𝑑 represents depth; all aremeasured
in metrical units.
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For data in equatorial strips, we use the equidistant
cylindrical projection [38, Section 12], maintaining distances
of points to the equator (i.e., latitudes) and distances between
points on the equator. This gives the similar coordinates 𝜓,
𝜑, and 𝑑 (latitude, longitude, and depth measured in metrical
units). If an equatorial strip encircles with the whole equator,
we obtain a parallelepiped with circular topology on the
equatorial coordinate and can apply the circular version of
SSA [39].

Note that we obtain new coordinates in approximately the
same units (and the same proportions) as the original data.
This is the main purpose of using equidistant projections,
since proportions can strongly influence the interpolation to
a regular grid.

We use relative coordinates for the flattened data.Thus in
all pictures 𝑑 is reported as a percentage, with 0% at the inner
surface and 100% at the outer surface; 𝜓, 𝜑 are reported as
fractions of the equator length.

3.3. Interpolation of Nuclei to a Regular Grid and Back. Inter-
polation of irregular data to a regular grid is known as a “3D
scattered data interpolation problem” (see [40] for a descrip-
tion and an overview of different approaches).

We use a “triangulated irregular network-based linear
interpolation using Delaunay triangulation” approach, where
the interpolation is constructed by a linear interpolation
of the vertex values from the corresponding triangulation
simplex. Implementation is performed with the help of the
library “CGAL” [41].

Note the nuclei do not necessarily pack the whole par-
allelepiped, and edge effects are a consideration. Therefore,
after interpolation, we obtain the expression data on a subset
of the parallelepiped grid. For cap-shaped data, for example,
the subset is a disc. This subset can be processed with the
shaped version of 3D-SSA.

For back-interpolation to nuclei, the conventional trilin-
ear interpolation is used for pattern reconstruction. Residual
values are calculated as differences between original and
extracted-pattern (trend) expression values.

3.4. Shaped 3D-SSA. Shaped 3D-SSA methods need original
data to be given on a subset of a regular grid (which we call
the initial shape).

A parameter of the method is the shaped 3D window,
which is inscribed in a parallelepiped of sizes 𝐿1 × 𝐿2 × 𝐿3.

It is assumed that the chosen window covers all the points
of the original shape. If not, the uncovered grid points are
removed. For a properwindow shape, the number of removed
points should not be large. If so, another window shape or size
should be chosen.

Shaped 3D-SSA can be considered as a particular case of
shaped SSA (see e.g., [37, 39]). To outline the algorithm, we
do the following.

Algorithm of Shaped 3D-SSA.
(1) We will consider all possible locations of the win-

dow within the original data array and denote their
number as 𝐾. For each location of the window we

unfold the shaped window into a vector of length 𝐿.
The obtained vectors are put together into a so-called
trajectory matrix.
The trajectory matrix X has a certain structure; since
the windows cover the array points several times, a lot
of matrix elements coincide. Such matrices are called
quasi-Hankel [42] and form a linear space. We will
designate this spaceH.
Define the embedding operator T(X):X → H. This
operator is linear, is an injection (if each point of
the initial shaped array is covered by windows), and
therefore is invertible.

(2) Construct the singular value decomposition (SVD) of
the trajectory matrix X: X = ∑

𝑑

𝑖=1 𝜎𝑖𝑈𝑖𝑉
T
𝑖
. The eigen-

vectors 𝑈
𝑖
can be folded to eigenarrays, which have

the same shape as the window has.
(3) Choose a subset 𝐼 ⊂ {1, . . . , 𝑑} and put X

𝐼
= ∑
𝑖∈𝐼

X
𝑖
,

where X
𝑖

= 𝜎
𝑖
𝑈
𝑖
𝑉

T
𝑖
. Conventionally, the choice is

𝐼 = {1, . . . , 𝑟}, 𝑟 < 𝑑, what corresponds to an approx-
imation of X by a low-rank matrix X

𝐼
.

(4) Project the matrix X
𝐼
to the space H and obtain the

reconstructed image (pattern) asX
𝐼
= T−1ΠHX

𝐼
.

Note that, by additivity, X
𝐼

= ∑
𝑖∈𝐼

X
𝑖
, where X

𝑖
=

T−1ΠHX
𝑖
are called elementary components. Therefore the

forms of elementary components can be used for detection of
pattern components.

3.5. Choice of Parameters. Decomposition of gene expression
data on irregular nuclear positions has several parameters: for
interpolation and flattening; and for SSA (the window shape
and size, and the number 𝑟 of components for reconstruc-
tion).

In order to obtain a sufficient number of grid points with
respect to the number of nuclei, steps of the regular grid
should not be too large. The upper bound for the grid points
is limited only by computational costs.

Recommendations for 3D-SSA are similar to that for 2D-
SSA and 1D-SSA given in [33, 34, 37]. Larger windows cor-
respond to more refined decomposition and more accurate
reconstruction if the signal (pattern) has a simple structure
generating a few SVD components. For more complex pat-
terns, medium to small windows are preferable.

Note that window size ismeasuredwith respect to pattern
features and should not depend on interpolation step. There-
fore, window sizes are measured as a percentage of image
sizes, not in the number of grid points. Starting window sizes
can be chosen as approximately 10–20% of the image sizes
in each direction. If the pattern is extracted imprecisely, the
window can be enlarged; if the pattern is mixed with the
residual (noise), the window should be decreased.

Identification of pattern components can be performed
by analyzing the forms of eigenarrays or elementary recon-
structed components (see [37]). Slowly varying patterns can
be constructed readily by accumulation of slowly varying
elementary components. Since it is difficult to perform a
visual analysis of 3D objects, it is preferable to depict slices
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(1D graphs or 2D images), obtained by fixing one or two
coordinates.

Quality of pattern extraction can be checked by means of
residual behaviour. For proper pattern extraction, residuals
should vary around zero. Thus it is recommended to choose
slowly varying elementary components such that the residual
has no part in the pattern.

3.6.Model of Residuals. For understanding biological sources
of noise in gene expression, it is of interest to extract from the
data a model of the noise (functional relation of the leading
moments of gene expressions). We suggest a method for
model detection based on a standard test of heteroscedasticity
of residuals with different normalizations.

For a decomposition of initial data into pattern and noise:
𝑥
𝑖
= 𝑠
𝑖
+ 𝑟
𝑖
, 𝑖 = 1, . . . , 𝑁, where 𝑁 is the number of nuclei

(enumeration by one index instead of three does not affect
the results), assume that noise in nuclei is independent and
consider the model

𝑟
𝑖
= 𝜀
𝑖
⋅
𝑠𝑖


𝛼
, (1)

where E𝜀
𝑖
= 0 and D𝜀

𝑖
= const.

If 𝛼 = 0, the noise is additive (its standard deviation
does not depend on pattern values). If 𝛼 = 1, the noise
is multiplicative (its standard deviation is proportional to
pattern values). The intermediate value 𝛼 = 0.5 corresponds
to Poissonian noise, where noise variance is proportional to
pattern value.

The Park method [43] estimates 𝛼 as the slope of a linear
regression in the model

log 𝑟𝑖
 = log𝜎+𝛼 log 𝑠𝑖

 + ]
𝑖
, (2)

where ]
𝑖
= log|𝜀

𝑖
/𝜎| is a well behaved error term. The Park

method appears to be robust to the distribution of the
residuals. An estimate of 𝛼 in model (2) can be obtained, for
example, by the least-squares method.

3.7. Implementation. We implemented all of the described
methods in R [44] and included them in our BioSSA package.

For construction of convex and nonconvex hulls (the
“alphashape” [45] method is used), the library “qhull” [46]
is used by the wrapping R-packages (alphashape3d [47],
geometry [48]). For 3D spatial interpolation we implemented
a special R-packagewith help of the library “CGAL” [41], since
available R implementations of 3D spatial interpolation have
very poor performance.

For trilinear interpolation the R-package oce [49] is used.
For 3D-SSA, we use the Rssa R-package [50]. This imple-

mentation is highly effective, since it uses the approaches
from [31, 37, 51].

4. Example for Spherical-Cap Nuclear Pattern

Here we work through an application of the 3D-SSA pro-
cedure on the close-to-spherical zebrafish egg. Nuclear coor-
dinates are taken from the default MatchIT [4] example.

The “MatchIT” tool was run with the default dataset and
parameters, producing files with automatically detected
nuclei. Processing is on the file “gsc ntla wt t008 ch01.csv”
containing nuclear coordinates for the cells expressing the gsc
(“goosecoid”) gene at the “late shield” developmental stage.

In this data, nuclei are located in a thick layer on a sphere.
Each nucleus is marked by “1” or “0,” for the gene expressing
or not, respectively. For this data set, gsc-expressing nuclei
(“1”-s) are located within a small spherical cap. We extend
the analyzed area to include all “1”-nuclei, plus a surrounding
ring of nuclei.

We consider two artificial (intensity) expression patterns
for these nuclei and show that shaped 3D-SSA can soundly
extract both types of patterns.The first kind of pattern is two-
exponential, analogous to 2D Drosophila patterns analyzed
in [35]. The second type of pattern approximates the on/off
(“1”/“0”) expression values by a smooth bell-shaped pattern.

We first present results for both examples and explain the
choice of parameters and pattern components. We then show
how the method can be used to estimate the model of noise,
after extracting the pattern. In the considered examples, we
add Gaussian noise to patterns; however, it is not essential,
since the SSA-family ofmethods is stablewith respect to noise
distribution and possible weak dependencies.

4.1. Two-Exponential Expression Pattern. Let us construct the
expression values as

𝑠 (𝜓, 𝜑, 𝑑) = 𝑒
2𝜑+9𝜓+2𝑑

+ 2𝑒−(2𝜑+13𝜓+𝑑), (3)

V (𝜓, 𝜑, 𝑑) = 𝑠 (𝜓, 𝜑, 𝑑) + 𝜀 ⋅ 𝑠 (𝜓, 𝜑, 𝑑) , (4)

where 𝜓, 𝜑 are relative spherical coordinates, 𝑑 is layer depth
(𝑑 ∈ [0, 1]), and 𝜀 is white Gaussian noise with standard devi-
ation 0.35. This pattern, which we call CAP-2EXP, is the
sum of two exponentials plus multiplicative noise. Note that
the pattern depends on three coordinates and therefore it is
varied in three directions. Moderate noise levels here and
in the other considered simulated examples were chosen
for better visual color representation of the results for the
considered patterns.

Inside and outside views of the nuclear hulls are shown
in Figures 3(a)–3(d), where colors correspond to expression
levels, as in Figure 1. It can be seen that the coloring is vari-
egated (nuclei of different color occupy similar positions),
reflecting the presence of noise.

The method described in Section 3 produces the recon-
structed pattern depicted in Figures 3(e) and 3(f). The results
of noise removal can clearly be seen.

For better visual representation, the nuclei themselves can
be depicted; see Figures 4 and 5. As before, the color of a
nucleus reflects the expression level in the same scale as in
Figure 1. The expression pattern can be clearly seen in the
denoised data. Difference between the inside and the outside
views demonstrates pattern dynamic in depth direction.

After pattern extraction, the noisemodel can be estimated
(see Section 3.6). In (3), multiplicative noise with 𝛼 = 1 was
simulated. Applying the Park method provides an estimate
of �̂� = 1.073, recovering the multiplicative character of
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(f) Pattern: an inside views; without shadow

Figure 3: CAP-2EXP: the nuclear hulls, coloring based on original and pattern expression intensities.

x

y

z

(a) Original expression intensities
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(b) Reconstructed pattern

Figure 4: CAP-2EXP: nuclei colored; an outside view.

the generated noise and demonstrating how the process can
distinguish between, for example, additive, Poissonian, and
multiplicative noise in datasets.

4.2. Bell-Shaped Expression Pattern. We now test the shaped
3D-SSA process on a different intensity pattern, using the
same nuclear data, gsc ntla wt t008 ch01.csv. We construct
a bell-shaped intensity pattern (referred to as CAP-BELL) as
an approximation of 0-1 expression indicators in the data,

plus white Gaussian noise with standard deviation 0.25.
The approximation was performed by twofold 3D-SSA
smoothing and therefore it cannot be expressed by an
equation.

Inside and outside views on the nuclear hulls are shown
in Figures 6(a)–6(d), where colors correspond to expression
levels, in the topographic scale described in the caption of
Figure 1. It can be seen that the coloring is variegated, signi-
fying the presence of noise.
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Figure 5: CAP-2EXP: nuclei colored; an inside view.
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(d) Original: an inside view; without shadow
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(e) Pattern: an outside view; without shadow
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(f) Pattern: an inside views; without shadow

Figure 6: CAP-BELL: the nuclear hulls, coloring based on original and pattern expression intensities.

The method described in Section 3 produces the pattern
depicted in Figures 6(e) and 6(f); it can be seen that the 3D-
SSA procedure has removed the original noise.

For better visual representation, the nuclei themselves can
be depicted; see Figure 7. As before, the color of a nucleus
reflects the expression level in the topographic scale described
in Figure 1. The pattern (trend) can clearly be seen in the
denoised data.

Estimating the noise model by the Park method returns
an �̂� = 0.005. �̂� close to zero indicates additive noise; the
process has recovered the simulated Gaussian white noise.

4.3. The Chosen Parameters. After flattening, as described in
Section 3.2, a parallelepiped with length 𝑙 ≈ 1030, width 𝑤 ≈

885, and depth𝑑 ≈ 50. Since the shape of the flattened nuclear
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Figure 7: CAP-BELL: nuclei colored; an inside view.

Eigenvectors

1 (96.71%) [0.0048, 0.006] 2 (0.67%) [−0.013, 0.0079] 3 (0.05%) [−0.013, 0.021]

4 (0.04%) [−0.015, 0.016] 5 (0.04%) [−0.01, 0.016] 6 (0.03%) [−0.014, 0.012]

Figure 8: CAP-2EXP: 2D slices of 3D eigenarrays at 𝑑 = 𝐿3/2.

cloud is similar to a spherical cap, the equidistant azimuthal
projection was applied.

The stepsize was chosen the same in all directions to
obtain 106 grid points.

For the shaped 3D-SSA algorithm described in
Section 3.4, the ellipsoid window was inscribed in a parallel-
epiped of size 𝐿1 × 𝐿2 × 𝐿3, where the 𝐿

𝑖
are equal to 40%

of the original image sizes. The total number of nuclei

in the data file is 3595, while the chosen window covers
approximately 160 nuclei on average. The number of nuclei
covered by all positions of the chosen window is 3306; that
is, a few side nuclei were not considered.

To identify pattern components, let us examine 2D slices
of 3D eigenarrays and elementary reconstructed components.
For example, for the CAP-2EXP data (Section 4.1), Figure 8
shows slices of the six leading eigenarrays at a depth value of
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Reconstructions

Original [1.7, 11] F1 [3.5, 5.8] F2 [−0.24, 2.4] F3 [−0.49, 1.7]

F4 [−0.5, 0.77] F5 [−0.13, 0.31] F6 [−0.11, 0.19] Residuals [−3.7, 5]

Figure 9: CAP-2EXP: elementary component reconstructions, slices.

𝐿3/2.The first two ellipsoidal eigenarrays are smooth and the
third one has some oscillations.Therefore, we choose the first
two components for pattern reconstruction.

The six leading elementary components, which are gener-
ated by the six eigenarrays depicted in Figure 8, together with
the original and residual 2D slices are shown in Figure 9.

Figure 9 confirms the choice of the two leading compo-
nents (i.e., 𝑟 = 2) as corresponding to the pattern.

The pattern is reconstructed from the leading eigenarrays
on the regular grid points, then interpolated back to flattened
(irregular) nuclei, and then transformed to the original
nuclear positions on the zebrafish egg.

A similar choice of pattern components can be made for
the CAP-BELL data. Here, there are 𝑟 = 3 smooth pattern
components, not surprising due to the more complex form of
the pattern.

The reconstruction result is quite robust to the window
choice. For example, the pattern reconstruction is approxi-
mately the same if we choose a window size of 35% instead of
40% of the original size. However, formore complex patterns,
smaller window sizes are preferable; see discussion regarding
the choice of window in [34] (1D case) and [31] (2D case).

4.4. Check of Proper Pattern Extraction. Inspection of the
reconstructed images clearly demonstrates the noise removal
for both test patterns. However, this does not prove that

we have reconstructed the whole pattern. We now show, on
the CAP-2EXP example, that the pattern reconstruction is
complete.

Let us consider 2D slices of the reconstructed values on
the regular grid of flattened nuclei fixing the depth. The
vertical axis will represent expression values (color mapped
in, e.g., Figure 3) and the horizontal axes correspond to 𝜙, 𝜓
nuclear or grid-point positional coordinates.

Since the nuclei may not be located exactly on the slice,
we consider nuclei from the layer plus-minus 10% to each
side. The extracted pattern on the nuclear slice is depicted
by a solid surface, with nuclear expression values shown as
individual dots; see Figure 10(a). In Figure 10(b), the residuals
are obtained by subtraction of the pattern from the nuclear
values.The even scatter of the residuals around the zero “𝑥𝑦”-
plane indicates a good fit of the reconstruction to the data.

For a more refined analysis, we can construct 1D slices.
For example, fixing the depth at 82.5% and the width (𝜑)
at 50%, we consider the two-exponential pattern for nuclei
from a thin layer of (±10% around this depth and width).The
extracted pattern on the nuclear slice is depicted by a solid
line. Figure 11 confirms the quality of the reconstruction, with
the residuals between the data and the reconstruction evenly
spaced around the zero plane. Note that, for estimation of the
noisemodel, the choice of 1, 2, 3, or 4 leading components has
little effect on the results.
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Figure 10: CAP-2EXP pattern: 2D slice with expression values, depth 𝑑 = 82.5%; (a) the surface depicts the reconstructed pattern (in the
regular grid points), the points show expression values in individual nuclei from a ±10% layer; (b) nuclear residuals from the reconstruction
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Figure 11: CAP-2EXP pattern: 1D slice at 82.5% depth (𝑑) and 50%width (𝜑). (a) Pattern on the grid (curve) and original values on the nuclei
(points). (b) Residuals between the reconstruction and the nuclear data values.

4.5. Graphical Analysis of Residual Model. To check the
correctness of the model determined by the Park method, we
can do a visual inspection of plots of the residuals divided by
the trend in a degree �̃� on the vertical against the trend on the
horizontal. In such plots, the normalized residuals 𝑟(�̃�)

𝑖
will be

most evenly distributed around 𝑦 = 0 (homoscedastic) for �̃�-
values closest to real 𝛼.

Figure 12 shows such plots for �̃� = 0, 0.5, 1. Figure 12(c)
shows the most homoscedastic residuals (also note that the
moving median of the absolute residual values, magenta, is
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Figure 12: CAP-2EXP pattern, normalized residuals. (a) Test for the additive (�̃� = 0) noise model. (b) Test for Poissonian noise (�̃� = 0.5).
(c) Test for multiplicative noise (�̃� = 1). The homoscedasticity of the residuals on (c) indicates that the noise is multiplicative, confirming the
noise model used in simulated generation of the data (3).

the most horizontal): this indicates that 1 is the best estimate
for 𝛼 in this case, as expected for the multiplicative noise
model in the CAP-2EXP simulated data (3).

5. Example for Equatorial Strip
Nuclear Pattern

In this section, we analyze a qualitatively different expression
pattern at a different stage of zebrafish development. We use
the file 120618a Localn0t1.emb from the “AtlasIT” tool [4],
labelled for the ntla gene, 6.3 hours after fertilization. Expres-
sion is labelled in binary, as above. These data belong not to

a particular embryo, but to a common 3D template in the
atlas. Either individual embryos or common templates can be
used, since we are using experimental nuclear positions, not
intensities.

The nuclei cover a half-sphere, but the gene-expressing
nuclei (those labelled “1”) are located in a narrow strip near
the equator. Equatorial strips can be nonconvex and of vary-
ing width; hence we needmore sophisticated processing than
above.

As before, we will start with pattern extraction and then
explain the specifics of the procedure and the parameter
values.
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Figure 13: STRIP-2EXP pattern (3), nuclear hull, coloring based on the original simulated data; outside view, with shadow.
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Figure 14: STRIP-2EXP: colored nuclear hull; outside views; without shadow.

5.1. Two-Exponential Expression Pattern. We model the pat-
tern of gene expression along the strip (STRIP-2EXP) as

V (𝑥, 𝑦, 𝑧) = 𝑒
(𝑦−50)/250

+ 6𝑒(50−𝑦)/500 + 𝜀, (5)
where 𝜀 is white Gaussian noise with standard deviation 0.25.

Outside views on the nuclei hull are shown in Figures
13 and 14(a), with colors representing expression levels in
the scale defined in Figure 1. Color variegation indicates the
presence of noise; also note that the data area is not convex.

The method described in Section 3 produces the pattern
depicted in Figure 14(b). The noise removal can clearly be
seen. The area of the reconstructed pattern is visibly smaller
than the original one, since the ellipsoidal window can not
reach narrow parts of the original area.

Figures 15(a) and 15(b) compare the reconstruction pat-
tern to the original expression data, plotted on separate
nuclei.

5.2. Parameter Selection and Result Validation. After the
flattening procedure described in Section 3.2, we apply the
method “alphashape” [45] with a parameter equal to 5000
for construction of a nonconvex hull. The bounding box has
length 𝑙 ≈ 450, width 𝑤 ≈ 85, and depth 𝑑 ≈ 30. For the
nuclear cloud in a strip near the equator, we applied the
equidistant cylindrical projection.

As in Section 4, equal step size in all directions was used
to obtain 106 grid points.

For the shaped 3D-SSA algorithm described in
Section 3.4, the ellipsoid window was inscribed in a
parallelepiped of size 𝐿1 × 𝐿2 × 𝐿3, where the 𝐿

𝑖
are 35% of

the original image sizes. The total number of nuclei is equal
to 492; the chosen window covers approximately 19 nuclei on
average. The number of nuclei covered by all positions of the
chosen window is 360; that is, one quarter of the nuclei were
not considered.
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Figure 15: STRIP-2EXP: colored nuclei; outside views; without shadow.

As in Section 4, analysis of elementary components helps
to detect the pattern (trend) components. 1D slices (Figure 16)
confirm that the pattern is described by the two smooth
leading components, while the third and fourth components
can reasonably be assigned to the residuals.

Due to the small number of nuclei in the equatorial strips,
we do not estimate the noise model.

6. Discussion and Conclusions

What is the biological impact of extracting denoised (and
regularized) data for 3D gene expression? In particular, what
can be learned from 3D noise filtering and noise analysis?

6.1. Gene ExpressionVariability andNoise. Aswith 1D expres-
sion data (profiles) and 2D data (expression surfaces) [26, 31,
35, 52], 3D expression data demonstrates pattern variability
from embryo to embryo, as well as expression noise between
neighboring nuclei in the same embryo.

Gene Expression Variability.As observed by Castro-González
and colleagues [4], 3D gene expression volumes can vary sig-
nificantly from embryo to embryo at the same developmental
stage.This canmanifest as additional rows of cells around the
core gene-expressing domain ([4, Figure S16]).

Gene Expression Noise. Within-embryo expression noises
(differences between neighboring nuclei) are observable both
in qualitative and quantitative representations of the gene
expression data [4]. Figure 17 shows qualitative-type noise
in the mixing of expressing (green) and nonexpressing (red)
nuclei along a pattern boundary.

Binary (on/off) data allows us to observe some degree
of noise, but only as “ruggedness” at the expression domain
boundary. With quantitative data, such as in Figure S10
from [4], noise between neighboring nuclei can be observed
throughout the expression domain.

6.2. Prospects for GRN Modeling. The work in [4] studied
9 genes which are components of the axial mesendoderm
gene regulatory network (GRN) proposed by Chan et al.
[53]. In particular, [53] proposed that a subset of 3 of these
genes (Foxh1, sox32, and gsc) forms the regulatorymechanism
for territorial exclusion during endomesoderm specification:
the common activator Foxh1 activates both the endoderm
transcription factor sox32 and the mesoderm transcription
factor gsc, and sox32 then turns off expression of the meso-
derm activator (gsc) in endoderm-lineage cells [53].

The next step in a systems biology approach would be to
develop a mathematical model for such a GRN motif which
could generate the proper gene expression patterns in the
biological tissue geometries. As we have shown in our test
cases, the 3D-SSA approach described here can extract such
expression patterns from complex biological geometries. In
addition, correspondence between the mathematical model
and the expression data can be made at an intermediate stage
of the procedure, for example, on the flattened regular grid,
which may be much easier than operating in the original
coordinates.

6.3. Prospects to Analyze 3D Expression Noise. Mathematical
formulations of GRNs are most commonly developed as
deterministic models, and, as discussed above, 3D-SSA can
provide clear pattern trends for matching and developing
such models. Increasingly, as a next step, models are also
being formulated for gene expression noise, such stochastic
modelling can, by treating the variation as well as the mean
of the expression, serve to greatly reduce the potential model
dynamics and parameters, as well as to characterize how
biophysical mechanisms modulate noise (e.g., [27]). SSA is
well-established and has been used effectively for extracting
and analyzing noise from expression data in 1D (subsection
below) and 2D (below) for a number of years. This has
allowed for estimations of the model of noise (𝛼 values), as
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Figure 16: STRIP-2EXP: 1D slices for 50% depth (𝑑) and width (𝜓), signal reconstructed by 1 (a), 2 (b), 3 (c), and 4 (d) components.

well as providing data against which to test stochastic model
output (e.g., [26]).

Extraction of 1D Expression Profiles and Noise. While 1D
expression data (spatial profiles) have been publicly available
for more than a decade (“FlyEx” [54] and “BID BDTNP”
[2, 19] Web resources), few publications have been devoted
to decomposition of the data into biological trend and noise
components. Wu and coauthors [55], extracted the “Bicoid”
(Bcd) transcription factor noise to compare to stochastic
simulations but relied on parameterizing the Bcd profile
as an exponential. However, a nonparametric SSA-related
approach showed a much closer fit for the sum of two

exponentials [35]. SSA was also used to show that Bcd noise
follows an additive model for the considered dataset [36],
while the multiplicative model was correct for the hb factor
noise [26]. On the Drosophila gene hb, SSA showed that a
major component of the total biological noise was “texture
noise,” from the precellular compartmentalization of the
embryo [52].

2D Expression Surfaces and Expression Noise.There have been
less studies on expression data in 2D (expression surfaces).
He and coauthors [56] studied nucleus-to-nucleus Bcd dif-
ferences and found a signal-dependent rise in variability for
lower Bcd intensities ([56, Figure S1]). Both cited publications
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Figure 17:The distribution of nuclei (red and green dots) in a shield stage early zebrafish embryo, with green dots corresponding to the nuclei
expressing gene ntla. Higher magnification in the insert shows mixing of green and red (ntla off) nuclei along the boundary of the expression
domain.

on the Bcd noise [55, 56] used 2D data, that is, stripes
from the confocal images with several hundred nuclei, and
those stripes do have not only a length, but a width too.
Further analysis of the inherently 2D data as 1D, ignoring the
width, can introduce substantial and unavoidable source of
noise and bias conclusions on the biological noise. However,
application of nonparametric 2D-SSA directly to 2D data
takes into account a spatial distribution of expression inten-
sities and therefore diminishes a possible bias. In particular,
on both live and fixed marker techniques for Bcd, 2D-
SSA indicated a signal-independence of the noise [36]. This
suggests that Bcd, one of the most studied developmental
genes, deserves further analytical study.

3D Expression Signals and Expression Noise.The groundwork
laid in the 1D and 2D applications of SSA indicates that the
present extension to 3D can be an effective way to process
data from expression data in complex geometries.

For developmental patterning in geometries which are
truly 3D, such as the zebrafish embryo, or which become 3D
(as with Drosophila after gastrulation), 3D-SSA is promising
for extracting trends and noise from expression data. It
could, for example, serve as a critical tool for developing a
data-driven model for the Foxh1, sox32, and gsc motif, both
deterministic and stochastic.

In conclusion, our work with 3D-SSA resolves several
problems in the study of 3D gene expression. These are (i)
representation of the data in a geometrically “flattened” form
suitable for further analysis; (ii) interpolation of the data to
a regular grid; (iii) decomposition of the data into signal
and noise; and (iv) addressing some of the issues (slicing)

for visualizing and evaluating results with four-dimensional
data (3D + gene expression intensity). We present 3D-SSA
as an adaptable and powerful technique for processing and
analyzing the growing amount of gene expression data from
truly 3D developmental events. Since there is an extension
of 3D-SSA to 4D-SSA and even for general nD-SSA, the
SSA family of methods is potentially able to analyze data of
different spatial and temporal nature.
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