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ABSTRACT

To form secondary structure, nucleic acids (NAs)
must overcome electrostatic strand–strand repul-
sion, which is moderated by the surrounding atmo-
sphere of screening ions. The free energy of NA fold-
ing therefore depends on the interactions of this ion
atmosphere with both the folded and unfolded states.
We quantify such interactions using the preferential
ion interaction coefficient or ion excess: the number
of ions present near the NA in excess of the bulk
concentration. The ion excess of the folded, double-
helical state has been extensively studied; however,
much less is known about the salt-dependent ion
excess of the unfolded, single-stranded state. We
measure this quantity using three complementary
approaches: a direct approach of Donnan equilib-
rium dialysis read out by atomic emission spec-
troscopy and two indirect approaches involving ei-
ther single-molecule force spectroscopy or exist-
ing thermal denaturation data. The results of these
three approaches, each involving an independent ex-
perimental technique, are in good agreement. Even
though the single-stranded NAs are flexible polymers
that are expected to adopt random-coil configura-
tions, we find that their ion atmosphere is quanti-
tatively described by rod-like models that neglect
large-scale conformational freedom, an effect that we
explain in terms of the competition between the rele-
vant structural and electrostatic length scales.

INTRODUCTION

The formation of secondary structure through Watson–
Crick base pairing is essential to the structure and function
of RNA and DNA in both biology (e.g. RNA ribozymes (1)
and riboswitches (2)) and biotechnology (e.g. DNA origami
(3)). Both species of nucleic acid (NA) are strongly nega-

tively charged, and so in forming double-stranded helices
they must overcome significant electrostatic (ES) repulsion.
This is accomplished through screening of the ES potential
by counterions specifically bound to the NA structure (as in
the case of chelated divalent ions) or loosely associated in an
ion atmosphere (4). To fully account for the ES free energy
of secondary structure formation, we require a quantitative
description of the association of ions with both the folded,
helical state and the unfolded, single-stranded state.

A number of studies have probed the stoichiometry of
ion association with double-stranded DNA (5–10). For salt
species with high mean ion activity coefficients (e.g. NaCl),
these results can be modelled by solutions to the non-linear
Poisson–Boltzmann (NLPB) equation (10). Much less is
known about the interaction of ions with unfolded, single-
stranded NAs (ssNAs): some early papers (11–13) have
reported changes in counterion activity as a DNA helix
is thermally or chemically denatured and, more recently,
anomalous small-angle X-ray scattering (ASAXS) results
have quantified the ion atmosphere of a single-stranded
DNA oligonucleotide at one particular concentration of
RbCl salt (14).

Here, we rigorously measure the stoichiometry of ion
association with single-stranded DNA and RNA using
three independent, complementary techniques: the first a
direct equilibrium dialysis experiment, the other two indi-
rect thermodynamic cycle analyses using the known double-
stranded results in combination with either single-molecule
magnetic tweezer experiments or existing thermal denatu-
ration data. The salt-dependent results that we obtain by
all three methods are in good agreement. We then identify
the relevant physical parameters underlying the observed
behaviour by comparing the results to models of the ion at-
mosphere incorporating varying amounts of structural and
conformational detail.

Quantifying the ion atmosphere

The various NA conformational states are related through
the thermodynamic cycle depicted in Figure 1, where the
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Figure 1. Thermodynamic cycle diagram for mechanical unfolding of an
NA hairpin. The helix state refers to the intact hairpin, the stretch state
to the hairpin after being mechanically unfolded by an applied force and
the coil state to the unfolded hairpin in the absence of force. Each state
is characterized by a salt-dependent preferential cation interaction coeffi-
cient (ion excess), �i, and each transition is associated with a change in ion
excess, ��i − j.

helix state refers to the double-stranded NAs (dsNAs) and
the coil state refers to the flexible ssNAs. The stoichiome-
try of cation interactions with each state is quantified using
the preferential cation interaction coefficient �, defined in
terms of either molal or molar units: (4,15)

�molal = lim
m0→0

(
∂m+
∂m0

)
μ+

, (1)

�molar = lim
c0→0

(
∂c+
∂c0

)
μ+

, (2)

where the subscript �+ denotes constant ion chemical po-
tential and m+ (c+) and m0 (c0) denote the molal (molar)
concentrations of the cation species and the NA, respec-
tively. In the dilute NA limit, � can be interpreted as the
ion excess: the number of ions present in the vicinity of
the NA beyond the number that would be expected due to
the bulk concentration alone. There is a subtlety in distin-
guishing between the molal and molar concentration units
of Equations (1) and (2) (10,16). Concentrations measured
in molal units (i.e. constant solvent volume) are most easily
interpreted and give simple high- and low-salt limiting be-
haviours that derive from the electrostatics of the system,
as discussed below. However, the dialysis experiments we
present in this paper naturally report molar concentrations
(i.e. constant total solution volume). In these units, �molar

includes both a positive contribution due to the excess ions
surrounding the NA and a negative contribution due to the
ions excluded from the NA’s occupied volume. Since this
molar excluded volume (EV) effect obscures, at high-salt
concentration, the ES effects we aim to study, we will re-
port raw, molar data, but will also use EV-corrected, molal
results when comparing with electrostatics-derived theoret-
ical models. In both cases, these ion excesses will be normal-
ized on a per-nucleotide basis, denoted �̄.

The negative charge of an NA is neutralized by a com-
bination of two effects: a positive cation excess and a neg-
ative anion excess (i.e. cation association and anion exclu-
sion). To understand the dependence of the ion excess on the
bulk salt concentration, c, it is useful to identify high- and
low-salt limiting behaviours. When working in molal units,

these limits can be straightforwardly evaluated in terms of
solution electrostatics. The low-salt limit is derived based on
Manning counterion condensation theory and the Poisson–
Boltzmann equation (17,18). In terms of the Manning pa-
rameter � = lB/b, where lB is the Bjerrum length and b is
the charge spacing along the NA helical axis, this theory
predicts that

lim
c→0

�̄molal =
{

1/2 + ξ/4 ξ < 1
1 − 1/(4ξ ) ξ > 1 . (3)

Based on the charge densities of the NAs under consid-
eration (19), Equation (3) predicts �̄molal → 0.94 for ds-
DNA, 0.75 for ssDNA, 0.96 for dsRNA and 0.79 for ss-
RNA, assuming a thin-cylinder geometry. Since the EV ef-
fect is unimportant at low-salt concentration, these limit-
ing results are also expected to hold when working in molar
units. In the high-salt limit, strong screening reduces the ES
potential to the Debye–Hückel (linear Poisson–Boltzmann)
limit (20) and �̄molal → 0.5 (21). In other words, the poten-
tial is sufficiently weak that it acts equally and oppositely
between all charge pairs and the macromolecule’s charge is
equally offset by association of cations and exclusion of an-
ions. When working in molar units––that is to say, in our
experiments––this limit is washed out by volume-excluded
ions, which increase linearly in number with increasing salt,
leading to a linear decrease in �molar (see Supplementary
Figure S8) (10,22). At the intermediate salt concentrations
of biological interest, � interpolates between these two lim-
its. As Olmsted et al. have shown, however, this interpola-
tion need not be monotonic, such as in the case of short
oligonucleotides (23).

MATERIALS AND METHODS

Dialysis/atomic emission spectroscopy (D-AES)

We measured the ion excess of 50-mer homopolymeric
oligonucleotides (Integrated DNA Technologies) of thymi-
dine (DNA) and uridine (RNA), which do not form sec-
ondary structure or exhibit appreciable base stacking inter-
actions (24,25). NA solutions (100 �l, 0.07–0.7 mM) were
dialyzed against a 200 ml bulk reservoir of buffer contain-
ing 1 mM MOPS, adjusted to pH 7 with NaOH, and the
desired concentration of NaCl. A dialysis membrane with
a 6–8 kDa molecular weight cutoff was used (D-Tube Dia-
lyzer Mini, EMD Millipore). After 5 h of stirring, samples
were taken of both the NA and bulk solutions and diluted
with pure water to concentrations in the range of sensitivity
of the AES spectrometer.

The Na+ ion excess per nucleotide, �̄C, is determined
from the molar concentrations of sodium in the NA solu-
tion, csample

Na , and in the bulk, cbulk
Na , and from the concentra-

tion of nucleotides, csample
P : (7)

�̄molar
C = csample

Na − cbulk
Na

csample
P

. (4)

The various concentrations were measured using induc-
tively coupled plasma atomic emission spectroscopy (AES)
(iCAP 6300, Thermo Scientific) calibrated using standard
solutions of sodium and phosphorus (Fluka). The details
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of the calibration are given in the Supplementary Data. To
keep the measurement uncertainty in the �C results reason-
ably small, it is necessary to increase the sample NA concen-
tration as the bulk salt concentration is increased. Compar-
ison of data obtained at different NA concentrations shows
no concentration dependence; nonetheless, we were care-
ful always to stay well below the solution overlap concen-
tration: approximately 3.5 mM at low cbulk

Na , based on salt-
dependent persistence lengths from the FRET experiments
of Chen et al. (26). Because we noticed a correlation be-
tween samples from separate dialysis runs read out in the
same AES batch, we use the number of such batches, and
not the total number of samples, in computing the reported
standard errors of the mean. Each reported D-AES datum
represents the results of at least three dialysis experiments,
each read out by AES at least twice.

NLPB calculations

We used NLPB calculations to estimate the ion excess of
the helix state, �H, using model A-form or B-form he-
lices for RNA or DNA, respectively. These same helices
with one strand removed were used as naive models of the
ssNAs. Calculations were carried out using the Adaptive
Poisson–Boltzmann Solver (27) over a range of NaCl con-
centrations. Structural models were obtained from the Nu-
cleic Acid Builder (28) and charges were assigned using
the PDB2PQR package (29,30). The detailed parameters
used are given in the Supplementary Data. Although we
use atomically resolved structural models here, Shkel and
Record have demonstrated that comparable results can be
obtained for NA thermodynamic properties using cylindri-
cal models (31). Ion excess values were obtained in both mo-
lal (7) and molar (10,16) units by appropriate integration of
the resulting ion densities.

Single-molecule magnetic tweezers studies

The change in ion excess, ��H − S, as an RNA hairpin is
mechanically unfolded was determined by measuring the
salt-dependent unfolding force using magnetic tweezers (32)
and then applying a thermodynamic argument (33–37). The
molecular construct (Figure 2A, Supplementary Figure S2)
consisted of a 25 base pair RNA hairpin closed by a hex-
aethylene glycol (HEG) loop (Integrated DNA Technolo-
gies), separated from the glass surface of the flow cell by
an 828 base pair double-stranded DNA spacer and from
the magnetic bead by dT20 single-stranded DNA. The un-
charged HEG loop was used instead of an RNA loop to
isolate the ES effects of the helix from those of the loop.
Experiments were carried out in 10 mM MOPS buffer, ad-
justed to pH 7.5, and in various concentrations of NaCl de-
termined by weight. Control experiments were performed
to show that the �� results are insensitive to the nature of
the hairpin-closing loop and to the cationic versus anionic
nature of the buffer (4) (except at very low salt, c < 25 mM).
The results of these control experiments, and a more de-
tailed description of the molecular construct, are given in
the Supplementary Data.

The thermodynamic argument used to extract ��H − S is
summarized below and fully explained elsewhere (34). We

begin with a thermodynamic identity connecting changes in
the relevant free energy for magnetic tweezers experiments,
the grand canonical (Landau) potential of mean extension,
d�, and changes in the experimental parameters X (molec-
ular extension), f (applied force), �i (excess of a particular
species of ion) and �i (chemical potential of that ion in bulk
solution):

d� = −Xd f −
∑

species

�i dμi . (5)

In an experiment, f and � are directly controlled and X is
measured; therefore, Equation (5) can be used to derive sev-
eral relations to extract ��, the change in ion excess be-
tween conformational states, from the experimental data
(34). In this paper, we report results using one of these meth-
ods, a generalized Clausius–Clapeyron relation, although
we show in Supplementary Figure S6 that the results of the
other methods are in agreement. This Clausius–Clapeyron
relation is given by

�� = �X
2kBTα

(
∂ fc

∂ ln c

)
, (6)

where �X is the change in extension between the folded
and unfolded states, fc is the equilibrium unfolding force of
the hairpin, c is the bulk molar salt concentration and � is
the concentration-dependent activity correction factor tab-
ulated in the supporting information of Dittmore et al. (33).

The salt-dependent values of fc are extracted from two-
state folding/unfolding trajectories as shown in Figure 2B.
For each trace, collected at a particular c and constant f,
a histogram is made and the equilibrium constant calcu-
lated as a ratio of occupancy times: K = Tfolded/Tunfolded.
For each salt concentration, ln K is plotted versus f and fit
with a two-state Boltzmann model to obtain fc. The deriva-
tive (∂fc/∂ln c) in Equation (6) is evaluated separately for
the fc data of each trial, yielding ��H − S.

RESULTS

Coil ion excess measured by D-AES

We measured the ion excess of the unfolded coil state, �molar
C ,

directly using dialysis and atomic emission spectroscopy
(D-AES). This method relies on the phenomenon of Gibbs–
Donnan equilibrium (38), in which the NA solution is
placed in grand canonical equilibrium, across a membrane,
with a salt reservoir. Attractive interactions with cations, re-
pulsive interactions with anions and EV effects all lead to
perturbations in the molar ion concentrations in the sample
compartment compared with the reservoir. These perturba-
tions, which we measure by AES, yield �molar

C through Equa-
tion (4). In these experiments we used 50 nucleotide NA
homopolymers that do not exhibit appreciable secondary
structure formation or base stacking (24,25). D-AES results
for �̄molar

C of both dT50 DNA and rU50 RNA are shown in
Figure 3. There is known to be a length dependence to the
NA ion excess (23,39); as such, the results we present can
only be extrapolated to NAs of other lengths through ap-
propriate correction.
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Figure 2. Single-molecule magnetic tweezers experiment to measure the the change in ion excess, ��̄H−S, when an RNA hairpin is mechanically unfolded.
(A) Diagram of the molecular construct. (B) Sample trace showing hopping between two conformational states, corresponding to two molecular extensions,
X, and extraction of the corresponding equilibrium constant, K. The unfolding force, fc, is then obtained from a plot of ln K versus applied force. (C) Plot
of fc as a function of bulk NaCl concentration for the RNA hairpin. (D) ��̄H−S for an RNA hairpin (points) and previously reported (33) values for a
DNA hairpin (open circles) using the generalized Clausius–Clapeyron method. Error bars reflect standard errors of the mean.

Figure 3. Values of �̄molar
C (i.e. including both ES and EV effects) for (A)

DNA and (B) RNA, determined directly by D-AES (solid points) and in-
directly by thermodynamic cycle analysis using NLPB calculations and ei-
ther single-molecule experiments (33,35,42) (open diamonds) or melting
experiments (49) (line/shaded region). Also plotted is the DNA ASAXS
result of Meisburger et al. (14) in RbCl (star).
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Figure 4. Structural model of dsDNA (A) and naive model of ssDNA (B)
used in NLPB calculations, each having 50 nucleotides. Equivalent models
for RNA were also used. (C) Ion excess of dsDNA (thick solid line) and
dsRNA (thin solid line) in molar units, calculated by numerical evaluation
of the NLPB equation as a function of bulk salt concentration. The use of
NLPB to estimate �̄H is validated by comparison with the experimental
results of Gebala et al. (10) (squares). Similar NLPB results for models of
the ssNA structure neglecting any conformational freedom are plotted for
DNA (thick dashed line) and RNA (thin dashed line).

NLPB calculations

We obtain �H, the ion excess of the folded, helical state, us-
ing numerical solutions to the NLPB equation on model
A-form (RNA) and B-form (DNA, Figure 4A) double he-
lices under various bulk salt concentrations. In using the
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canonical double-helix geometries, we assume that the he-
lices do not undergo significant conformational fluctuations
over time or significant conformational changes between
salt concentrations. Molecular dynamics simulations of ds-
DNA, which show no clear trend in various structural pa-
rameters with salt (40), support this assumption. In us-
ing the Poisson–Boltzmann equation, we assume that ion–
ion effects are sufficiently weak that the ion density can be
treated as a continuous mean field, which is well established
in the case of monovalent ions (41). Agreement with exper-
imental data further validates both assumptions. Figure 4C
shows the results of our NLPB calculations, in molar units,
for dsDNA and dsRNA as solid lines; co-plotted are the re-
sults of DNA buffer equilibration/AES studies that show
reasonable agreement with the NLPB (10). That there is
some disagreement, especially at high-salt, could arise from
the non-ideal solution behaviour of NaCl; Gebala et al. have
shown that NLPB calculations best reproduce experimental
ion counting data for ion species with the highest mean ion
activity coefficients (10). We use the average extent of this
disagreement as an estimate of the NLPB error.

The dashed lines in Figure 4C show results of similar
NLPB calculations for simple models of the ssNAs (i.e. the
dsNA models with one strand removed, Figure 4B). We do
not expect such models to truly capture the physics of the
single-stranded system, as the flexible ssNAs exist in a con-
formational ensemble that is unsampled by these models.
Shkel and Record have successfully used such modelling to
explain some ssDNA properties (31). These naive models
give a handle on certain local aspects of the problem: the
effects of close co-localization of strands and of the charge
spacing along the backbone. We see the first effect by com-
paring the dsNA and ssNA curves in Figure 4C: for a par-
ticular species and at a particular salt concentration, the ion
excess of the ssNA is slightly lower than that of the dsNA
(∼3–6% for DNA, 3–10% for RNA). This reduction is ex-
pected based on the reduced charge density of the single-
stranded state, which puts the system closer to the Debye–
Hückel limit. We see the second effect, that of the charge
spacing along the backbone, by comparing the DNA and
RNA curves. Because DNA has a greater charge spacing
along the sugar-phosphate backbone than RNA (0.70 nm
versus 0.59 nm) (19), it has a smaller local charge density
and is thus also closer to this limit.

Single-molecule measurement of ��H − S

We use single-molecule magnetic tweezer experiments (32)
to measure the mechanical force needed to unfold an RNA
helix as a function of bulk salt concentration. The experi-
mental geometry is sketched in Figure 2A and the method
used to determine the equilibrium unfolding force, fc, is il-
lustrated in Figure 2B. We then apply a thermodynamic re-
lation (34) to these fc(c) data to extract the change in ion
excess associated with this unfolding, ��H − S.

Figure 2C plots the equilibrium unfolding force, fc, for
the RNA helix. We see that fc increases linearly with ln c
over low-to-moderate salt concentrations and flattens off
as c approaches 1 M. Equation (6) is applied to these data
to obtain ��̄H−S, which is non-constant across most of the
salt range studied (Figure 2D); similar results for DNA (33)

are co-plotted. In both cases ions are released when the
NA helix unfolds and, at sufficiently high salt, the num-
ber released decreases with increasing ln c. This is consistent
with a screening length argument. At high salt the Debye
length becomes short enough that all charges on the macro-
molecule are electrostatically isolated; thus, the differences
in charge arrangement between the helix and stretch states
become unimportant and the difference in ion excess be-
tween the states, ��̄H−S, goes to zero.

Completing the thermodynamic cycle

Starting from the �H results of Figure 4C, an indirect mea-
surement of �C can be reached using either of two routes
through the thermodynamic scheme of Figure 1: via single-
molecule stretching experiments, in which

�C = �H + ��H−S + ��S−C, (7)

or via oligonucleotide melting studies, in which

�C = �H + ��H−C. (8)

Results can be obtained in either molar or molal units by
using �H values integrated in the appropriate way from the
NLPB calculations.

Evaluation of the mechanical stretching method (Equa-
tion (7)) requires �H and ��H − S, obtained as discussed
above, and also ��S − C, the change in the ion excess as the
stretched state is relaxed to a random coil without refolding.
Prior studies have reported ��S − C data for homopolymers
of DNA (35) and RNA (42) that do not form secondary
structure. These homopolymers were on the order of 1000
nucleotides in length, and may exhibit length-dependent ef-
fects when compared with the 50-mers we use in the present
studies. An exact correction for such effects is not known to
us, but would have only a minor effect: ��S − C contributes
only a few percent to the value of �C. Also, whereas the
previously reported ��S − C values were obtained by fitting
the data with a surface having a particular functional form,
analyzing the data in a way that does not depend on the
choice of model function leads us to conclude that, within
uncertainty, ��S − C is salt-independent. As such, we arrive
at per-nucleotide ��̄S−C values of 0.027 ± 0.003 for RNA
and 0.043 ± 0.005 for DNA. Using these results, we can then
evaluate Equation (7) to obtain the first indirect evaluation
of �̄C, which is plotted in molar units alongside the D-AES
results in Figure 3.

Alternatively, we can complete the thermodynamic cycle
using Equation (8), which relies on the NLPB results for
�H and also on ��H − C data from oligonucleotide melting
experiments (43–48). We are unaware of suitable data for
RNA melting, so we confine our analysis by this method to
DNA. Owczarzy et al. (49) have reported melting tempera-
tures for DNA oligonucleotides as a function of length, base
composition and salt concentration. We analysed all of the
25 base pair data in their dataset using

��H−C = 1
2αβ

N − 2
N

dTm

d ln c
, (9)

which follows from Olmsted et al. (23), where Tm is the du-
plex melting temperature, N is the number of base pairs
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and β = RT2
m/�Ho is a compound constant measured by

calorimetry of NA conformational transitions and having
a value of � = 55 ± 10% (50). Performing this analysis,
the details of which are given in the Supplementary Data,
gives ��H − C over [NaCl] = 69-1025 mM. We extrapolate
to lower salt concentrations by assuming constant ��H − C,
an assumption that is supported by other melting experi-
ments (50). Finally, we evaluate Equation (8) to obtain the
second indirect measure of �̄C, which is also plotted, in mo-
lar units, in Figure 3A.

DISCUSSION

Despite being based on different experimental techniques,
the various methods discussed above agree on a consistent
trend in the salt dependence of the ion excess of random-
coil, single-stranded DNA and RNA (Figure 3). The lin-
ear decrease in molar ion excess at high salt (see plot with
linear axes, Supplementary Figure S8) is due to EV effects;
ES effects, which are of greatest interest to understanding
NA–ion interactions, manifest as perturbations to this be-
haviour. We can isolate the ES effects by correcting the data
into molal units. This is done, for the thermodynamic cy-
cle measurements, by using the molal values of �H from the
NLPB and, for the D-AES measurements, by adding an EV
correction. This correction is obtained by multiplying the
EV of the NA––estimated from the structural model of Fig-
ure 4B incorporating a Stern layer––by the bulk salt concen-
tration. Such EV-corrected, molal data are plotted in Figure
5, where we now see that the data lie, roughly, between the
expected low-salt Manning (�̄ → 0.75–0.79, assuming thin-
cylinder geometry) and high-salt Debye–Hückel (�̄ → 0.5)
limits. Below, we explore electrostatics models to quantita-
tively reproduce the �molal

C (c) curves between these limits.

Uniform mean-field model

Because the ssNAs are so flexible and exist in an ensem-
ble of random-coil conformations, we hypothesized that the
chain would act as a uniform charge distribution, with the
charge density given by the average over all configurations.
In a simple model of this picture, we treat the system as con-
sisting of two compartments in Gibbs–Donnan equilibrium
with each other: one a bulk reservoir and the other a region
of uniform charge density, � . This charged region represents
the NA coil, ignoring any effects that may arise from the
shape of the NA or the discreteness of its charge. Following
the derivation given in the Supplementary Data, we solve
for the per-nucleotide cation excess of this model of the coil
state:

�̄C = 1
2

−
√

1
4

+
(

ce
ρ

)2

− ce
ρ

, (10)

where c is the salt concentration in the bulk, e is the fun-
damental charge and � is the absolute value of the uniform
volume charge density.

It is possible to connect this model to physical NA coils
via the charge density parameter. If we treat the NA coil as
a sphere, with charge Q and radius R, then ρ = Q

(4/3)π R3 or,

Figure 5. Comparison of uniform mean-field model (open squares), naive
NLPB calculations (solid line) and charged rod model (dashed line) to D-
AES (points) and single-molecule (open diamonds) data for (A) DNA and
(B) RNA. Shown are values of �̄molal

C ; i.e. corrected for the EV effect to
emphasize electrostatics.

using the definition of the radius of gyration, Rg,

ρ = Q

4
3

( 5
3

) 3
2 π R3

g

. (11)

Salt-dependent Rg values for dT50 have been measured us-
ing small-angle X-ray scattering by Sim et al. (51); we are
not aware of similar measurements for RNA. We can insert
these Rg values into Equation (11) and, in turn, into Equa-
tion (10) to obtain semi-theoretical predictions of �̄C based
on the uniform mean-field (UMF) model and the experi-
mental Rg values. These predictions are co-plotted with the
molal data in Figure 5A.

This simple, UMF model exhibits �̄C → 0.5 high-salt
limiting behaviour (Supplementary Figure S10); however,
its quantitative agreement with the experimental data is
poor. Our hypothesis of dominant conformational flexibil-
ity, leading the system to behave as if it is uniformly charged,
is thus not borne out. We require an alternative model, in-
cluding some non-uniformity in the charge distribution, to
explain the data.
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Non-uniform mean-field models

Because all of our experiments are carried out in the pres-
ence of added salt, ES interactions will be appreciable only
on length scales shorter than the Debye screening length,
�−1. The conformational flexibility that is central to the
UMF model occurs only on long length scales compared
with �−1. As such, we now hypothesize that it is the short-
length-scale (i.e. sub-Debye-length) charge distribution of
the system, which is rod-like, that dominates the interac-
tions with the ion atmosphere.

One way to account for the local charge distribution in
the ssNA coil is through the single-stranded NLPB calcu-
lations of Figure 4C, which are based on a naive structural
model (Figure 4B) that does not sample the available con-
formations of the chain but does account for the discrete-
ness of the source charge and its spacing along the back-
bone. Because this naive model is based on the canoni-
cal double-helical structure, it incorporates some degree of
base-stacking, not present in the random-coil dT50 or rU50,
that may introduce error into the modelling. Figure 5 com-
pares these NLPB results with the molal DNA and RNA
data, showing good agreement across the full range of salt
concentration in both cases.

An alternative, structurally simpler model lacking dis-
crete charges is that of Landy et al. (52), in which the NA
is treated as a charged rod with radius a. In the low ionic
strength, excess salt limit, this model predicts that the cation
excess of the negatively charged rod is given by

�̄ ≈ ξ − 1/2
2ξ

[
1 −

(
K0(κa)
K1(κa)

)2
]

+ 1
2
, (12)

where � is the Manning parameter (17) (� = 1 for ssDNA,
� = 1.19 for ssRNA), �−1 is the Debye length and the Ki
are the modified Bessel functions of the second kind; this
equation is valid for � ≥ 1. For the ssNAs, the choice of a
is non-obvious. Here, for both RNA and DNA, we set a =
0.24 nm: the distance of closest approach of Na+ ions to the
backbone phosphates in molecular dynamics simulations of
dsRNA (53). As shown in Figure 5, the charged rod model
also agrees with the data except at the very lowest salt con-
centrations.

That both the single-stranded NLPB and charged rod
models agree with the EV-corrected �̄molal

C data indicates
that the monovalent ion excess of ssNAs is insensitive to
their large-length-scale conformation. Rather, it is the spac-
ing of the charges along the strand that dominates. This ef-
fect is seen by comparing the �̄C results for RNA (0.59 nm
spacing along sugar-phosphate backbone) and DNA (0.70
nm spacing) in Figures 3 and 5. That the ion excess is in-
sensitive to the conformation of the NA is consistent with
the small magnitude of ��̄S−C, the change in ion excess be-
tween two states that differ, primarily, in their conformation
(i.e. extended versus coiled). It is also consistent with our
hypothesis that, due to ES screening on length scales larger
than the Debye length, the interactions between the ion at-
mosphere and the NA are dominated by the rod-like charge
distribution on short length scales.

CONCLUSION

We have presented new D-AES measurements of the ab-
solute number of ions associated with unfolded DNA and
RNA oligonucleotides, single-molecule measurements of
the change in number of ions associated with an RNA hair-
pin as it is mechanically unfolded and NLPB calculations of
the absolute number of ions associated with double-helical
and single-stranded DNA and RNA. Using these results,
along with existing data on a number of NA systems, we
have obtained three different measurements of the mono-
valent ion atmosphere, �C, of unfolded, single-stranded
DNA and two different measurements of unfolded RNA.
We have also reported measurements of the change in ion
excess as an unfolded NA folds to form secondary struc-
ture. These ��H-C results, which show non-trivial salt de-
pendence (Supplementary Figure S7), contribute to under-
standing the free energy change associated with secondary
structure formation.

We interpret the observed salt-dependent �C behaviour
as an interpolation between two limiting regimes: a low-salt
limit described by Manning counterion condensation the-
ory and a high-salt, Debye–Hückel limit in which the charge
is equally offset by cation association and anion depletion.
The detailed behaviour at intermediate salt concentrations
depends on the strandedness and charge spacing of the NA,
but does not depend appreciably on its large-scale confor-
mation, presumedly due to the short-range nature of the
screened electrostatics. This indicates that, when consider-
ing free energies of ion interactions in the context of NA
structure formation, much of the molecular complexity on
large length scales can likely be ignored.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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