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The advances of large-scale genomics studies have enabled compilation of cell type-specific, genome-wide DNA functional
elements at high resolution. With the growing volume of functional annotation data and sequencing variants, existing var-
iant annotation algorithms lack the efficiency and scalability to process big genomic data, particularly when annotating
whole-genome sequencing variants against a huge database with billions of genomic features. Here, we develop VarNote
to rapidly annotate genome-scale variants in large and complex functional annotation resources. Equipped with a novel in-
dex system and a parallel random-sweep searching algorithm, VarNote shows substantial performance improvements (two
to three orders of magnitude) over existing algorithms at different scales. It supports both region-based and allele-specific
annotations and introduces advanced functions for the flexible extraction of annotations. By integrating massive base-wise
and context-dependent annotations in the VarNote framework, we introduce three efficient and accurate pipelines to pri-
oritize the causal regulatory variants for common diseases, Mendelian disorders, and cancers.

[Supplemental material is available for this article.]

Variant annotation is a common procedure in human genome
studies for interpreting the biological function and disease rele-
vance of given genetic variants or somatic mutations (MacArthur
et al. 2014). It greatly aids prioritization analysis regarding certain
genetic hypotheses and facilitates functional follow-up on selected
variants. As the growing volume of large-scale genome sequencing
of human populations, such as the UK Biobank study (Bycroft et al.
2018), the National Heart, Lung, and Blood Institute’s Trans-
Omics for Precision Medicine (TOPMed) program (Brody et al.
2017), and functional genomics data, such as The Encyclopedia
of DNA FElements (ENCODE) Project (The ENCODE Project
Consortium 2012; Davis et al. 2018) and the International
Human Epigenome Consortium (IHEC) project (Bujold et al.
2016), efficient interpretation of genome variants is profoundly af-
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fected by the unprecedented scale of genomic features and the re-
sources used for their annotation. For example, a widely used
metric for mutation deleteriousness, Combined Annotation
Dependent Depletion (CADD) (Kircher et al. 2014), integrates
more than 100 annotations for all 8.6 billion possible substitutions
and 48 million short indels in the human reference genome, and it
is archived in a compressed file of >300 GB. Based on the whole
CADD annotation database, it may take 5-100 h to finish a person-
al genome annotation (around 5 million single-nucleotide vari-
ants [SNVs] and indels) using present state-of-the-art variant
annotation tools. Another resource, CistromeDB (Zheng et al.
2019), aggregates 360 million genomic intervals for more than
6000 human tissue-/cell type-specific epigenomic profiles; such
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cumulative region-based annotations will ultimately pose a chal-
lenge to the efficient interpretation of noncoding regulatory vari-
ants. Therefore, the development of fast, scalable, and versatile
annotation retrieval strategies is crucial for the broad use of big ge-
nomic features in genetic study and precision medicine.

To retrieve relevant information from annotation databases,
computational methods need first to identify annotation records
that overlap query variants and then extract specified annotation
fields. Such processing is usually done by sequential chromosome
sweeping between query variants and the annotation database—
using such as BEDTools (Quinlan and Hall 2010), BEDOPS
(Neph et al. 2012), ANNOVAR (Wang et al. 2010), and BCFtools
(Li 2011a)—or independent random access from a whole annota-
tion database using an index, such as the UCSC binning algorithm
(Kent et al. 2002), Tabix (Li 2011b) and VEP (McLaren et al. 2016).
The vcfanno annotator implements a parallel chrom-sweep algo-
rithm based on a Tabix index and enables streaming query within
defined chunks (Pedersen et al. 2016). Recently, GIGGLE intro-
duced a temporal indexing scheme for the fast identification of
shared genomic loci between query features and thousands of ge-
nome interval files (Layer et al. 2018). Despite their achievements,
no algorithm can properly adapt to query variants and annotation
databases with different data scales and levels of feature distribu-
tion. This unresolved bottleneck can be attributed to the high
burden of disk reads from massive annotation records, which sig-
nificantly hamper the running speed and scalability of existing
tools. In addition, few tools have been developed to efficiently
accommodate genome-scale queries and accurately prioritize
disease-causal variants by leveraging large-scale functional geno-
mics data.

Here, we present a novel index system and an ultrafast parallel
intersection algorithm, called VarNote, to process variant annota-
tions and genomic features at scale. VarNote fits different levels of
data distribution and reduces the runtime of common variant an-
notation tasks by more than two to three orders of magnitude. It
supports both region-based and allele-specific annotations for dif-
ferent file formats and introduces many advanced functions to im-
prove its flexibility in use. To facilitate efficient and accurate
prioritization of disease-causal regulatory variants for clinicians
and biologists in different medical genetics fields, we also develop
three online VarNote applications: (1) causal regulatory variants
prioritization from GWAS results of common diseases; (2) patho-
genic regulatory variants prioritization from genome sequencing
of rare inherited diseases; and (3) driver regulatory variants priori-
tization from personal genome profile of cancers.

Results

VarNote index system and random-sweep algorithm

Functional genomics studies constantly produce unprecedentedly
large amounts of data at genome-wide scale, which enables com-
prehensive annotation of genetic variants. A Tabix index together
with an associated bgzip file is currently one of the most widely
used storage formats for genomic annotation. Tabix combined
the binning index and linear index to quickly retrieve features
overlapping specified regions, but it was optimized for single inde-
pendent queries. For tasks that involve the query of each of the
whole-genome sequencing (WGS) variants over a huge annotation
database (e.g., CADD contains more than 100 annotations for each
of 8.6 billion possible substitutions), tools relying on a Tabix index
need to repetitively decompress gzip blocks and parse chromo-

some positions from original annotation records, thus introducing
many redundant operations that can be reduced by more efficient
means.

To maximally reduce time-consuming disk reads, we devel-
oped a novel index system for annotation databases. Given a
bgzip-compressed annotation database, we created a positioning
file that only keeps query-dependent information and an
index file that allows fast retrieval of genomic position (Fig. 1A;
Supplemental Fig. S1). Briefly, we first tailored the annotation
metadata of each record in the original compressed block (OB)
and used a reduced virtual block (ROB) that only stores block
summary information together with chromosome position infor-
mation for each record (Supplemental Fig. S2A). To further com-
press the record position information, we introduced an 8-bit
“RecordFlag” to dynamically determine the exact storage volume
of the chromosome position and block offset for sequential records
(Fig. 1B). These strategies reduce the size of the original annotation
database by a factor of approximately 100. For instance, the algo-
rithm can convert 344 GB of CADD annotations for all possible
SNVs into a 6-GB VarNote positioning file. Building on this posi-
tioning file with lossless compression of query-dependent infor-
mation, we created a linear index that merely contains summary
information of each ROB (SROB) (Supplemental Figs. S2B, S3),
which ensures memory-efficient sweeping of chromosome posi-
tions. Taken together, our VarNote index system will significantly
minimize disk reads during annotation and provide infrastructure
for the fast retrieval of large numbers of query intervals (for details,
see Methods).

By leveraging the VarNote index system, we also combined
random-access and chromosome-sweep strategies to implement a
unified and efficient searching approach for sorted query inter-
vals/variants, called the random-sweep algorithm (Fig. 1C). Specif-
ically, the algorithm first loads the VarNote small index and
sequentially sweeps SROBs to locate intersected ROBs. Selected
ROBs are random accessed from the VarNote positioning file
through block summary information, while unassociated ROBs
are directly skipped. As position information for each annotation
record is bit-encoded within consecutive ROBs, decoding ROB con-
tent and applying the chromosome-sweep algorithm can identify
all annotation record hits (Supplemental Fig. S4; Methods).

The gained speed and scalability of VarNote were attained for
the following reasons. First, the intersection between query inter-
vals and annotation records mostly relies on the VarNote position-
ing file instead of the original annotation database. The only step
associated with the original annotation database is the extraction
of annotation fields for final record hits using random access,
hence excessive disk reads can be largely saved. Second, random-
sweep searching is a coherent process in which the combination
of a global linked list and a file pointer ensure straightforward in-
tersections without returns; meanwhile, the algorithm can jump
over unrelated data blocks. This strategy enables VarNote to be
scalable to large data sets and still be efficient for small inputs, es-
pecially for sparse and unbalanced queries. Third, there is no repet-
itive decomposition of the same gzip blocks during the annotation
process, thus further accelerating annotation searches.

Comparison of VarNote with existing tools for interval-level
annotations

Genomic features intersection is a common part of many bioinfor-
matics analyses such as variant annotation, yet existing tools rely
strongly on the data scales and feature distributions of the query
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Figure 1. The key components of VarNote. (A) Architecture of VarNote index system. Bgzip-compressed annotation database (.bgz file) will be first con-
verted to VarNote positioning file (.vanno file). The system tailors and encodes information of each original compressed block in the annotation database
(OB) to generate a reduced virtual block that only keeps query-dependent information (ROB). The bgzip-compressed VarNote positioning file contains
concatenated compressed block that stores ROB bytes. Then, summary information of the reduced virtual block (SROB) is linearly indexed to generate
VarNote index file (.vi file). (B) Bit encoding of record position information. The system uses an 8-bit “RecordFlag” to encode position information of an-
notation record in corresponding OB. The first bit represents a sign of annotation record start; the second through fourth bits encode storage size of be-
ginning (Beg) offset from the previous record; the fifth and sixth bits encode storage size of distance between End and Beg for current record; the seventh
bit is the direction sign of the block offset; the eighth bit indicates the storage size of the block offset to average. (C) Workflow of random sweep. The al-
gorithm accepts two dummy query intervals in the same chromosome (query 1 starts from 120 and ends in 150; query 2 starts from 255 and ends in 260)
and efficiently executes the annotation intersection across a corresponding chromosome by leveraging the VarNote index system and original annotation
database. The query 1 is first stream-compared with position information of each SROB in the VarNote index file (.vi file) to determine intersected ROBs
(query 1 overlaps with ROB2 and ROB3). The algorithm directly skips unrelated ROBs and quickly locates the intersected ROBs using random access
(ROBT is completely skipped in the following searching). Because ROB only contains query-dependent information of annotation records, VarNote can
sweep the ROB more efficiently with saved disk reads (query 1 intersects an annotation record in the ROB2, and intersects another annotation record
in the ROB3). Once all intersected annotation records within a ROB are identified, the algorithm can instantly seek full annotation information of record
hits from the corresponding OB (only needs to seek two records in the OB2 and OB3 of annotation database for query 1). Similarly, VarNote skips over
ROB4 and ROBS5, only sweeps across ROB6, and finally seeks an annotation record at OB6 for query 2.

variants and annotation databases across the whole chromosome. used annotation databases were also prepared, including function-
To comprehensively evaluate VarNote in comparison with exist- al prediction of all potential nonsynonymous single-nucleotide
ing interval-level annotation tools, we first established a set of variants from dbNSFP (Liu et al. 2016b), aggregated ChIP-seq
benchmark data sets encompassing various data scales and feature peak calling results of human transcription factors from Cistro-
distributions (Supplemental Table S1). Six query variant data sets meDB (Cistrome_TF) (Zheng et al. 2019), deleteriousness scores
were generated from a genome-wide genotyping chip (A375_ of all possible SNVs from CADD (CADD_score), and 114 related an-
chip), targeted sequencing (NA12878_Amp), whole-exome notations (CADD_anno). These annotation databases represent

sequencing (WES) (NA12878_WES, A375_SM), whole-genome se- distinct distributions of interspersed (AbNSFP), overlapped (Cistro-
quencing (WGS) (NA12878_WGS), and all known variants in The me_TF), or tandem (CADD_score or CADD_anno) genomic fea-
1000 Genomes Project phase3 (1000G_p3); they ranged from tures, respectively, which could serve as comprehensive
highly unbalanced and sparse queries to highly balanced and benchmarks to evaluate the performance of VarNote and exiting
dense queries (Fig. 2A; Supplemental Fig. S5). Several commonly algorithms (Fig. 2B; Supplemental Fig. S6).

Genome Research 1791
www.genome.org


http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.267997.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.267997.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.267997.120/-/DC1

Huang et al.

A B D E
[ R———| 2.1e-06 . 1500
¥ 75 0.00023 .
000015 ' 1000
6.5¢—07
a 0.00046 °
"é 2.1e-07 s 500
=3 1 bad
2 50 5
122 =
< b3 .
El & .
A 2 .
B 1000G_p3 2 .
% . .
o0 = NAI2878_WGS 25 i A _
] NAI12878_WES S a : !
f‘ 9 NA12878_Amp 0 é ﬁ ﬁ [
1125 W A375_SM S S 3t R © o e NS S NS ° R o
o™ 0P o™ N OV o™ o $O_ OP 2.y RN
1 . A375_chip BT IO GO o PRt ORI @
\ dbNSFP
| ! - F G _
«5“\\ Cistrome_TF Il R 2125 o
N\ CADD _anno I ] >=500X { W % 100! - +
5 [200X, 500X) | £8 '
8 [100X, 200X) { m— 55 75 -
< [50X, 100X) | Emm— £ 2 59
S < N
2 [10X, 50X) | E—— 20 i
5 [IX, 10X) | —— 2 25 -
=
= o
0 10 20 30 40 50 S TS JPS T
Number of runtime comparison 9_90“’?,?,9%0‘?“ \10\00 qfﬁa‘\\l’&‘\\\

C VarNote
_10%(Seconds)

VarNote
3 ‘ID%(Sgc\onds)

BEDTools -~~~ e - vefanno BEDTools .-~

BEDOPé\

Cistrome TF dbNSFP

"~ _vefanno

BCFtools VEP

VarNote
3 ‘Iﬂ‘i(Sgc\onds)

BEDTools_- -~ - - _vcfanno

B NAI2878 Amp
[ NA12878 WES

;l,:'GlGGLE [ NA12878 WGS

BCFtools VEP
CADD _score

Figure 2. Comparison of VarNote with existing tools for interval-level annotations. (A4) The genomic distribution of six query variant data sets across
Chromosome 1 of the human reference genome, including variant call result of The 1000 Genomes Project phase3 (1000G_p3), variant call result of
10x Genomics Chromium whole-genome sequencing for NA12878 (NA12878_WGS), variant call result of Nextera Rapid Capture Exome and
Expanded Exome whole-exome sequencing for NA12878 (NA12878_WES), variant call result of lon AmpliSeq Exome capture sequencing data for
NA12878 (NA12878_Amp), genotype calling result of Affymetrix Genome-Wide Human SNP Array 6.0 data for A375 cell line (A375_chip), and somatic
mutation call result of whole-exome sequencing data for A375 cell line (A375_SM). These data sets span the highly unbalanced and sparse queries to the
highly balanced and dense queries. (B) The genomic distribution of three annotation databases across Chromosome 1 of the human reference genome,
including functional prediction and annotation of all potential nonsynonymous SNVs (dbNSFP), Cistrome aggregated ChlP-seq peak calling result of hu-
man transcription factors (Cistrome_TF), CADD deleteriousness score, and related annotation of all possible SNVs (CADD_anno). (C) The runtime com-
parisons among VarNote, BEDTools, BEDOPS, BCFtools, VEP, vcfanno, and GIGGLE for sequencing variants at different scales and commonly used
annotation databases. (D) The runtime distribution of 24 combinatory tests for each algorithm. (E) The speed ratio of VarNote compared with other meth-
ods for each of 24 tests. (F) The number of runtime comparisons between VarNote and other methods within corresponding speed ratio intervals. (G) The

runtime ratio distribution for processing long annotation database CADD_anno over short annotation database CADD_score.

Using the aforementioned six query data sets and four anno-
tation databases, we constructed 24 combinatory tests for the fol-
lowing evaluations. We compared the performance of VarNote
with five state-of-the-art bioinformatics tools for intersecting ge-
nomic features. These commonly used, representative tools can
achieve interval-level overlap annotation based on distinct algo-
rithms, including BEDTools, BEDOPS, BCFtools, VEP, GIGGLE,
and vcfanno (Supplemental Table S2). Overall, VarNote runs
more quickly than the previous methods and outperforms them
in almost all combinatory tests in which the benchmark data
sets hold various data scales and feature distributions (Supplemen-
tal Fig. S7). Specifically, VarNote shows significantly extended scal-
ability and is well-adapted to increasing query intervals and
annotation databases (Fig. 2C). In contrast, the runtime of ran-

dom-access-derived methods, like VEP and GIGGLE, tightly corre-
lates with the data scale of queries, reaching hours when
annotating a WGS data set. The chromosome-sweep-derived
methods (BEDTools, BEDOPS, and BCFtools) show low efficiency
when annotating targeted sequencing and WES data, especially
when the annotation database is huge. Although vcfanno intro-
duces random access into the chromosome-sweep algorithm, its
moderate performance largely depends on the feature distribu-
tions of the query and annotation database (Fig. 2C).

In addition to excellent scalability, VarNote shows ultrafast
genomic feature intersection, being between 123 and 1514 times
quicker than the other methods for the 24 benchmarks
(Supplemental Fig. S7; Supplemental Table S3). VarNote finishes
half of the tests within 100 sec, whereas the median runtimes of
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other tools are ~1000-4000 sec for all the designed tests. The dis-
tribution of VarNote’s runtimes significantly deviate from those
of the other methods (Mann-Whitney U test) (Fig. 2D). VarNote
runs more quickly than the other tools in 135 out of 144
(93.75%) comparisons but is slightly inferior in some evaluations
involving a small annotation database and huge query. However,
the second best tool, BEDOPS, only wins 69.44% of comparisons,
revealing that VarNote can adapt to the full range of data scales
and feature distributions while maintaining stably superior perfor-
mance (Supplemental Fig. S8). Among the preceding runtimes,
65.98%, 32.64%, and 18.06% of VarNote’s were more than 10,
50, and 100 times quicker, respectively, than those of the other al-
gorithms, representing a powerful improvement (Fig. 2E,F). In ad-
dition, VarNote and GIGGLE have similar runtimes when
processing the short annotation database CADD_score and the
long annotation database CADD_anno, whereas the other tools
show ~10 times longer runtimes, which implies that unnecessary
disk reads can be largely saved by using an auxiliary positioning
file (Fig. 2G).

Fast and parallelizable variant-level annotations

Efficient and accurate extraction of genomic features from annota-
tion databases facilitates variant interpretation, particularly for the
increasingly high volumes of DNA sequencing data gathered in the
precision medicine era. However, current variant-level annotation
tools coupled with different intersection algorithms either can
barely process WGS variants or show limited efficiency for huge
annotation databases. The majority of intersection algorithms do
not support multithreading, which leads current variant annota-
tion tools to implement split-and-join parallelization only by
Tabix index and random access. To investigate the ability of Var-
Note for all-around variant-level annotations and multithreading
tasks, we selected three variant call results as query data sets (target-
ed sequencing, WES, and WGS) and extracted designed feature
fields across three genome-wide annotation databases: dbNSFP,
gnomAD (Karczewski et al. 2020), and CADD_anno. We also com-
pared VarNote’s performance against three frequently adopted
and high-powered variant annotation methods, VEP, BCFtools,
and vcfanno, which present relatively strong performance using
random access, chromosome sweep, and mixed strategies, respec-
tively (Supplemental Table $4).

Generally, with a single thread, VarNote outperforms the oth-
er tools, running between ~5 and 500 times more quickly in all the
benchmarks. It takes <2 min to annotate NA12878_Amp targeted
sequencing variants with any of the prepared annotation databas-
es, whereas the other tools need up to hours for a large annotation
database such as CADD_anno. In addition, VarNote completes
common annotation tasks for WES data within 7 min. For exam-
ple, it only takes 20 sec to annotate NA12878_WES variants by ex-
tracting dbNSFP nonsynonymous SNVs functional prediction
scores, whereas the other tools require ~500-1700 sec. Moreover,
to annotate WGS data containing several million variants,
VarNote performs the most time-consuming CADD_anno task
within 35 min using a single thread. In contrast, BCFtools,
vcfanno, and VEP require 6, 27, and 90 h to execute the same
job, respectively, making them unsuitable for personal genome ap-
plications (Fig. 3A).

We assessed multithreading performance by having selected
tools perform the same evaluations using two to eight threads.
Using more than four threads, VarNote can reduce the runtime
of WGS annotation tasks to ~10 min and lower the runtime

of WES annotation tasks to nearly 1 min. When annotating target-
ed sequencing variants, it is more than 1000 times faster than
chromosome-sweep-derived methods like BCFtools because of its
restriction of parallelization (Fig. 3A). For the most time-con-
suming WGS annotation tasks, the speedup ratio curves of
VarNote are generally sublinear and show better parallelization ef-
ficiency than other methods (Fig. 3B,C), further indicating that
VarNote’s index system can significantly eliminate input/output
(I/0) bottlenecks for large-scale variant annotations. Because
BCFtools only supports multithreading for output compression,
increasing the number of cores barely improved the runtime.

Advanced functions of VarNote for versatile genomic feature
intersection and variant annotation

We designed several advanced features to improve the usability of
VarNote in complex annotation tasks (Fig. 4). First, because most
existing annotation databases are indexed by Tabix, VarNote also
provides a random-sweep searching based on the Tabix index
(Supplemental Fig. S9). By performing the same tests for variant-
level annotation, we found that VarNote’s Tabix mode still outper-
formed other tools, particularly when multithreading was applied
(Supplemental Fig. S10). This implies that VarNote can faithfully
process existing annotation resources without reindexing them.
However, for large-scale and frequently used annotation data sets
such as CADD, gnomAD, and dbNSFP, we strongly suggest using
VarNote’s index system to gain speed. By introducing extra file
pointers, VarNote is able to support random sweep at multiple an-
notation databases. This is crucial to personal genome annotation
tasks involving annotation resources spanning different contexts
and biological domains, such as allele frequency, conservation,
and functional prediction scores. In addition, VarNote allows re-
mote annotation via FTP/HTTP, especially for big data sets that
are time-consuming to download. Owing to the VarNote position-
ing file that only keeps query-dependent information, such re-
mote queries differ from Tabix in having significantly reduced
network data transmission load and allowing multithreading.
Finally, VarNote also supports quick counting of the number of in-
tersected features only based on the VarNote positioning file,
which will be most efficient and suitable to prioritize context-de-
pendent annotations through their relevance to the set of query
variants, such as to identify the causal tissues/cell types for ge-
nome-wide association study (GWAS) variants (Huang et al.
2018) or to colocalize ChIP-seq binding events with particular
transcription factors (Kanduri et al. 2019).

To extend its flexibility, VarNote allows users to describe spec-
ified operations in a configuration file to process customizable fea-
tures with complex data structures (Fig. 4). For example, compared
with existing tools that usually require uniformly formatted anno-
tations such as BED (0-based) or VCF (1-based) files, VarNote can
extract annotation fields from any indexed tab-delimited annota-
tion files. This could save time in format transformation and
additional disk space for large annotation databases, such as
CADD and dbNSFP. When multiple annotation databases are
available, VarNote allows feature extraction using both interval-
level overlap and variant-level exact matching. It also has an anno-
tation mode supporting allele-specific variant annotation for SNV/
indel and region-specific annotation for structure variations.
Selected fields of intersected outputs can be extracted and filled
to the same line of the input query according to the annotation
configuration file. To facilitate the integration of VarNote into
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Figure 3. Comparison of VarNote with existing tools for variant-level annotations. (A) The runtime comparisons of variant annotation using multithread-
ing. Three variant call results as query data sets (NA12878_Amp, NA12878_WES, and NA12878_WGS) and three genome-wide annotation databases
(dbNSFP, gnomAD, and CADD_anno) were used. (B) The parallelization efficiency comparisons for variant annotation task of NA12878_WGS querying
on gnomAD. (C) The parallelization efficiency comparisons for variant annotation task of NA12878_WGS querying on CADD_anno.

advanced genomic programs, we also provide an application pro-
gramming interface for developers.

Applications of VarNote to genome-scale prioritization
of functional and pathogenic regulatory variants

GWASs have identified many genetic variants associated with
hundreds of medical traits and diseases, and most of these associ-
ations are suggested to be mediated by context-specific regulatory
codes in the noncoding human genome (Li et al. 2016). For
Mendelian diseases and cancer, WGS technologies are frequently
incorporated into the exploration of noncoding pathogenic vari-
ants from patients’ entire genomes (Castel et al. 2018). However,
very few computational tools have been developed to efficiently
manipulate such genome-scale data and accurately prioritize the
true disease-causal regulatory variants. To show the applicability
and efficiency of VarNote for identifying functional and patho-
genic regulatory variants at genome-scale, we integrated base-
wise variant annotations and several state-of-the-art regulatory
variant prediction methods to develop three online computational
pipelines (http://mulinlab.org/varnote/application.html): (1) dis-

ease-causal regulatory variants prioritization for GWAS results;
(2) pathogenic regulatory variants prioritization for rare inherited
diseases; and (3) driver regulatory variants prioritization for can-
cers (Fig. 5A).

Efficient and accurate prioritization of GWAS causal regulatory variants
by integrating VarNote and tissue-/ cell type—specific epigenomes

Although statistical fine-mapping of GWAS summary data pro-
vides a valid avenue to identify causal variants, it usually fails to
narrow down the likely causal variants with extremely high link-
age disequilibrium (LD) in each credible set and cannot evaluate
context-dependent effects for regulatory variants in the noncod-
ing genome (Schaid et al. 2018; Wang et al. 2020). Recently, several
tissue-/cell type-specific regulatory variant prediction methods
have been developed based on large-scale epigenomic features
(Rojano et al. 2019), but no computational tool can leverage these
methods to prioritize the potential causal regulatory variants from
GWAS signals. By incorporating 127 Roadmap tissue-/cell type—
specific epigenomic features, 1000 Genomes LD information,
and five recent context-dependent regulatory variant prediction
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models—cepip (Li et al. 2017b), GenoSkyline-Plus (Lu et al. 2017),
FUN-LDA (Backenroth et al. 2018), GenoNet (He et al. 2018), and
FitCons2 (Gulko and Siepel 2019)—we implemented a compre-
hensive and fast pipeline, called VarNote-REG, to accurately prior-
itize GWAS casual regulatory variants based on the VarNote
variant annotation framework. Simplistically, given GWAS lead-
ing signals and a selected trait-matched tissue/cell type, VarNote-
REG will first identify all associated variants in the defined LD
block and extract epigenomic features for them. To prioritize the
context-dependent regulatory potential for variants in each LD
block, VarNote-REG introduces a combined rank score based on
five state-of-the-art prediction scores (Methods).

VarNote-REG can complete prioritization jobs for common
GWAS results, such as 161 fine-mapped loci for coronary artery dis-
ease (van der Harst and Verweij 2018) and 154 fine-mapped loci for
inflammatory bowel disease (Huang et al. 2017a), within 2 min.
We benchmarked the performance of VarNote-REG using PICS
GWAS fine-mapped variants for 21 autoimmune diseases (Farh
et al. 2015). We first filtered out LD blocks either associated with
autoimmune diseases possibly driven by nonregulatory effects or
containing limited highly linked (LD R? > 0.8) noncausal variants.
For the remaining GWAS signals, we tested whether the variants
with high PICS causal probability could be ranked above other
highly linked variants in the matched tissue/cell type and com-
pared the performances of various prediction methods
(Methods). Using predication scores from 16 ENCODE cell types,
we found that the ranking of causal variants within each causal

LD block varied with both the cell type and the prediction method.
The causal variants were generally higher ranking in the E116 lym-
phoblastoid cell line than in other cell types (Supplemental Fig.
S$11), indicating that selection of relevant cell types matching au-
toimmune disease may improve the prioritization of true causal
regulatory variants. By selecting E116 lymphoblastoid-specific pre-
diction and partitioning the fine-mapped causal variants into
three separate groups, we also observed that variants in the >0.3
PICS probability group obtained higher ranks than those with
low PICS probability. Particularly, our combined rank score
showed better discriminatory ability than each separate method,
that is, comparing the >0.3 PICS probability group with the
[0.05 0.3) and <0.05 PICS probability groups (Fig. 5B). These results
suggest that VarNote-REG could efficiently and accurately priori-
tize disease-causal regulatory variants.

Fast and whole-genome prioritization of pathogenic regulatory variants
for rare inherited diseases

Rare noncoding variants can cause inherited disorders by affecting
the function of regulatory elements, and recent genetic studies of
Mendelian disease have applied WGS to identify pathogenic regu-
latory variants (Weedon et al. 2014; Marshall et al. 2020). Several
computational methods have also been developed to prioritize
the pathogenesis/deleteriousness of regulatory variants (Smedley
et al. 2016). However, accurate identification of disease-causal reg-
ulatory variants from family-based WGS data requires time-
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Figure 5. The applied pipelines and performance evaluations of VarNote for disease-causal variant prioritization. (A) The function summary of three de-
signed pipelines based on VarNote framework. (B) The box plot of rank ratio for each PICS causal variant among different PICS probability intervals; the rank
ratio is measured by the rank of observed variant/total number of investigated variants (including extended highly linked variant in LD) in each GWAS sig-
nal. (C) The box plot of rank ratio for each spike-in pathogenic variant using simulated WGS variants; the rank ratio is measured by the rank of pathogenic
variant/total number of qualified variants after filtrations in each simulated individual genome, tested by one-tailed Mann-Whitney U test. (D) The box plot
of rank ratio for each spike-in somatic eQTL mutation using simulated cancer genome profiles; the rank ratio is measured by the rank of somatic eQTL mu-
tation/total number of qualified mutations after filtrations in each simulated cancer genome, tested by one-tailed Mann-Whitney U test.

consuming filtrations of genome-scale annotations as well as inte-
gration of pathogenic regulatory variant predictions. By introduc-
ing several unique filtration strategies and integrating base-wise
pathogenic prediction scores, we developed a fast and accurate
pipeline, VarNote-PAT, for geneticists and clinicians to prioritize
likely pathogenic regulatory variants based on WGS data. Given
a VCF file and matching pedigree file, VarNote-PAT can narrow
down the candidate variants based on different filtrations, includ-
ing variant quality, allele frequency, genetic inheritance mode,
variant consequence, and tissue-/cell type-specific epigenomic
features. In addition, VarNote-PAT combines seven recent predic-
tion methods to improve the prioritization of pathogenic regulato-
ry variants (Methods).

Building on the VarNote framework, VarNote-PAT can finish
a complete prioritization task on trio-based WGS data (~5 million
variants) within 60 min, whereas an existing online program,
Genomiser (Smedley et al. 2016), can only deal with 100,000 var-
iants in each run. To evaluate the performance of pathogenic var-
iant prioritization, we first curated 18 pathogenic regulatory
variants of rare inherited diseases that have been experimentally
validated by different functional assays (Supplemental Table S5).
We then simulated WGS data of 503 subjects by spiking each val-

idated pathogenic variant into individual genomes from The 1000
Genomes Project EUR population (Methods). By filtering and scor-
ing WGS variants for each simulated genome with the VarNote-
PAT pipeline, we found that the ranks of spike-in pathogenic var-
iants averaged in the top 6.5%. Compared with existing prediction
scores, such as ReMM (Smedley et al. 2016) and CADD, we ob-
served that the validated pathogenic variants were ranked signifi-
cantly higher using our combined scores (Mann-Whitney U test)
(Fig. 5C). These evaluations show that VarNote-PAT can greatly
improve the speed and accuracy of discovering WGS-based rare
pathogenic regulatory variants.

Filtration and prioritization of regulatory somatic mutations in personal
cancer genomes using VarNote

Recurrent somatic mutations in the noncoding regulatory region
have been revealed as cancer drivers (Yang and Adli 2019).
However, no computational pipeline has been specifically de-
signed to screen and prioritize cancer driver regulatory mutations
for a given individual cancer genome profile. Here, we encapsulat-
ed VarNote and several annotation databases to develop an online
pipeline, called VarNote-CAN, for regulatory somatic mutation
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prioritization. VarNote-CAN first filters germline variants and
nonrecurrent mutations and then annotates recurrent somatic
mutations using tissue-/cell type-specific epigenomic features. It
uses our cancer driver regulatory mutation prediction model,
regBase-CAN (Zhang et al. 2019), to prioritize the remaining
candidate mutations. We benchmarked the performance of
VarNote-CAN using 1950 simulated personal cancer genomes
based on 158 highly recurrent mutations in the somatic eQTL in-
tervals identified by a large-scale pan-cancer whole-genome analy-
sis (PCAWG Transcriptome Core Group et al. 2020) (Methods).
Compared with existing prediction scores for cancer regulatory
mutations, such as FunSeq2 (Fu et al. 2014) and CScape (Rogers
etal. 2017), the overall rank of somatic eQTL SNVs in all cancer ge-
nomes was higher using regBase-CAN (Mann-Whitney U test) (Fig.
5D), indicating the applicability of VarNote-CAN to whole cancer
genome analysis.

Discussion

Large-scale genomic sequencing together with constantly evolv-
ing biotechnologies in functional genomics have posed great chal-
lenges to the efficient annotation of variant functions as well as
interpreting their causal links with diseases (Starita et al. 2017).
An immediate challenge is the development of rapid computation-
al methods that scale to the WGS variants and the vast amount of
functional annotations across the entire genome. To address these
efficiency and scalability issues, we have implemented a new index
schema to tailor annotation databases. Building on this, a fast ran-
dom-sweep search algorithm was designed with coherent support
for multithreading. In contrast to previous strategies that merely
operate original annotation databases or repetitively decompress
gzip blocks, VarNote greatly saves excessive disk reads and signifi-
cantly enhances scalability, thereby achieving rapid annotation
for large-scale genomic features. The efficiency and scalability of
VarNote make it potentially broadly applicable to large-scale geno-
mic feature annotations. To further extend the convenience of hu-
man variant annotations for clinicians and biologists without the
experience of command line operation, we designed three web
tools that allow users to upload well-formatted variant lists (VCF,
BED, or tab-delimited) and prioritize disease-causal regulatory var-
iants in different scenarios. Using GWAS fine-mapped variants and
simulated individual genomes, we have shown the excellent us-
ability of the designed pipelines and demonstrated the efficient
diagnosis potential afforded by VarNote’s index system and ultra-
fast search algorithm.

Existing interval intersection and variant annotation algo-
rithms either cannot scale to large data sets (e.g., random-access-
derived methods) or lack efficiency on small and moderate queries
(e.g., chromosome-sweep-derived methods). Although tools such
as vcfanno use the Tabix index to implement streaming queries
for sorted inputs, they usually introduce many repetitive block de-
compositions and unnecessary disk accesses. To the best of our
knowledge, VarNote is the first tool that can adapt well to query
variants and annotation databases with different levels of data
scales and feature distributions. From highly unbalanced queries
(e.g., variants from targeted sequencing) to extremely balanced
1000G variants, VarNote, in comparison to other existing meth-
ods, consistently shows superior performance to extract the target
fields from large-scale annotations. Nevertheless, there are some
rare worst-case situations in which the runtime of VarNote could
slightly fall behind those of other methods; these include cases
with genome features in both the query and annotation database

being largely similar or the annotation database being small while
the query is very large. Our previous tests show that VarNote works
best when the query variants are moderate (like WES and WGS
data) and the database is huge (like CADD with full annotations),
which involves using exactly the same short slabs as both random-
access-derived methods and chromosome-sweep-derived meth-
ods. Because all of the benchmarks in this study were performed
on SAS hard drives, the bottleneck of disk I/O could be reached
when using a large number of threads, particularly for those tools
equipped with faster searching algorithms. We suggest using SSD
hard drives for large-scale annotation tasks, which will not only re-
duce random access time but also allow better parallelization effi-
ciency during annotation.

Many other sophisticated computational tools could be used
to annotate variants in genetic and genomic studies, for example,
ANNOVAR (Wang et al. 2010), SnpEff (Cingolani et al. 2012),
KGGSeq (Li et al. 2017a), WGSA (Liu et al. 2016a), Bystro (Kotlar
et al. 2018), AlList (Feng et al. 2019), and Oncotator (Ramos
et al. 2015). Because current variant annotation methods usually
adopt similar intersection and feature extraction algorithms, or
barely support customized operations, we only considered repre-
sentative and relatively efficient ones in our completely fair bench-
marks. Unlike many gene-based and filter-oriented annotation
tools, VarNote concentrates on region-based and allele-specific an-
notation tasks for which many exiting methods substantially lack
scalability (such as running out of memory or extremely long run-
ning times) when dealing with large-scale genomic features. In
conjunction with accurate gene-based and filter-oriented annota-
tion tools, VarNote will significantly accelerate personal genome
interpretation in the precision medicine era.

Methods

The VarNote index strategy

The VarNote index comprises two main constructing steps, includ-
ing generations of VarNote positioning file and VarNote index file.
VarNote accepts a position-sorted (first by sequence name and
then by leftmost coordinate) and block-compressed gzip (bgzip)
annotation database and converts it to a new bgzip file that only
keeps query-dependent information (Supplemental Fig. S1). To
maximally reduce the file size and significantly save the disk ac-
cesses, VarNote transforms each original compressed block (OB)
into a reduced virtual block (ROB). Specifically, for each OB that
contains at most 2'° bytes, block summary information together
with position information (including chromosome position and
file block position) of each record are calculated and encoded to
constitute ROB. The block summary information includes a
unique 64-bit OB address (defined by bgzip), position information
of first record, and average block offset of all records in the current
OB. The position information of each record involves a record flag
sign, position offset, and block offset to average. To further com-
press the position information of each record, an 8-bit “Record-
Flag” is used to dynamically determine the exact storage volume
of chromosome position offset and block offset for different re-
cords. Thus, this bit encoding strategy enables the algorithm to
store consecutive base-wise chromosome positions with only
2 bytes, significantly lessening the overall storage space of ROB.
In most situations, VarNote can transform each 2'® bytes OB
into ~2°-2'° bytes ROB, which achieves an approximately 100
times size reduction of original annotation database. Finally, a
bgzip byte stream of sequential ROBs is used to generate the Var-
Note positioning file (Supplemental Fig. S2A). To facilitate the
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efficient identification of associated ROBs intersecting with que-
ries, VarNote creates the linear index file that contains summary
information of each ROB (SROB). The SROB includes a unique
64-bit address of ROB start in the VarNote positioning file, initial
beginning position of the current ROB, as well as spanning length
of all records in the current ROB (Supplemental Figs. S2B, S3). The
combination of the VarNote positioning file and the VarNote in-
dex file achieves fast retrieval of large numbers of query intervals.

Random-sweep searching algorithm

VarNote intellectively leverages random-access and chromosome
sweep for efficient interval intersection. The same as an annota-
tion database, query intervals/variants should be sorted first by
sequence name and then by leftmost coordinate. The algorithm
will first load the VarNote index and then sequentially sweep
SROBs, by streaming comparison of the position information be-
tween query and each ROB, to find the first intersected ROB for
initial query interval. The intersected ROB is random accessed
from the VarNote positioning file through the 64-bit address of
ROB start. Then the VarNote chromosome-sweep algorithm is
used to decode ROB content and identify record hits. It uses a
global linked list to cache position information of intersected re-
cords to make sure the sweeping is unreturned. In detail, VarNote
will cache intersected records after finishing the sweeping proce-
dure of a query interval, and then it checks whether there are any
overlaps in the global linked list before it sweeps the following
annotation records when the next query comes. To ensure mem-
ory-efficient searching, VarNote removes those records that no
longer intersect with the following query intervals from the glob-
al linked list. In addition, VarNote uses file pointers to keep and
synchronize chromosome position, and therefore makes sure the
sweeping process continues. Also, the query interval may span
multiple ROBs, therefore the sweeping will continue in the fol-
lowing ROBs until the end position of the query interval is less
than the beginning position of the next ROB. Once the sweeping
is finished for query intervals and the next ROB does not overlap
with it, VarNote will directly seek and parse the annotation infor-
mation of record hits from the corresponding OB in the annota-
tion database (Supplemental Fig. S4). The VarNote random-sweep
algorithm iteratively executes the above processes for all query in-
tervals in a scalable manner. It also ensures that associated ROBs
and OBs are decompressed only once, that is, using Intel
Genomics Kernel Library (Guilford et al. 2017) for speeding up,
during the whole job, which significantly save the most time-
consuming disk access and block decompression (see the pseudo-
code of the random-sweep searching algorithm in Supplemental
Table S6).

Random-sweep searching on Tabix index

To facilitate querying when only the Tabix index is available, we
also implemented a random-sweep searching algorithm based on
Tabix binning and linear indexes. Generally, each chromosome
is partitioned into segments spanning 128-kb intervals, and query
intervals belonging to separate segments will be grouped together
for subsequent searching. First, for each query interval group, we
used the Tabix algorithm to identify and merge associated bins,
then assemble corresponding bgzip blocks. Second, the aforemen-
tioned chromosome-sweep algorithm is used to intersect annota-
tion records across assembled blocks, where nonconsecutive or
unassociated blocks can be randomly accessed or skipped
(Supplemental Fig. S9). Iteratively, the algorithm finishes all of
the query interval groups.

Parallelization and remote access

Owing to the inherent attribute of the VarNote random-sweep al-
gorithm, we can easily implement a parallel version of VarNote us-
ing a MapReduce programming idea. More specifically, input
query file is equally partitioned to N subsets (N is a given number
of threads), and for each subset VarNote independently executes
random-sweep searching against annotation databases. To ensure
a sorted output, VarNote merges the annotation result of all query
subsets by the original order. In addition, using network streaming
connection, VarNote supports remote access when huge annota-
tion databases locate in the remote FTP/HTTP site.

Benchmark data set and environment

To comprehensively evaluate the performance of VarNote at differ-
ent scales of the query variant and annotation database, we down-
loaded and compiled commonly used data sets from several public
repositories. For the query data set, variant calling results of the
NA12878 genome for AmpliSeq targeted sequencing, whole-
exome sequencing (WES), and whole-genome sequencing (WGS)
were downloaded from GIAB FTP (Zook et al. 2016). Variant calling
result of The 1000 Genomes Project phase3 (1000G) was down-
loaded from EBI FTP (The 1000 Genomes Project Consortium
2015). Somatic mutation calling and germline variant genotyping
results of A375 cancer cell line were downloaded from GDSC
(Torio et al. 2016). For annotation databases, we downloaded files
from gnomAD (known whole-genome variant allele frequency),
dbNSFP (functional prediction and annotation of all potential
nonsynonymous single-nucleotide variants), CADD (deleterious-
ness score and related annotation of all possible single-nucleotide
variants), and Cistrome Human_TF (aggregated ChIP-seq peak
calling result of human transcription factors). For a data set with
separate chromosome or assay files, we merged them into one an-
notation database (see details in Supplemental Table S1). All tests
in this study were performed on a server with Intel Xeon 2.60
GHz E5-2690 v4 CPU and RAIDS mode on eight 7200 RPM SAS
hard drives.

Evaluation for interval-level annotations

We compared the performance of VarNote intersection function
with several well-performed tools in each algorithm category,
including BEDTools, BEDOPS, BCFtools, VEP, vcfanno, and
GIGGLE. Using prepared VCF inputs (AmpliSeq, WES and WGS,
1000G) and BED databases (dbNSFP, Cistrome Human_TF, and
CADD with or without related annotations) at different data sizes,
we tested the runtime and scalability of each software for interval-
level annotations. Because BEDTools, BEDOPS, BCFtools, and
GIGGLE do not support multiple threads execution, all interval-
level comparisons were based on single thread mode (see details
in Supplemental Table S2). For VEP, the actual runtime of the inter-
section was calculated by subtracting the runtime of the gene-based
annotation.

Evaluation for variant-level annotations

We evaluated the performance for VarNote and three representa-
tive variant annotation tools (BCFtools, VEP, and vcfanno), which
use unique search algorithms, respectively. Three VCF queries
(NA12878 AmpliSeq, WES, and WGS) were used to test the al-
lele-specific annotations against one VCF database (gnomAD)
and two BED databases (AbNSFP and CADD with full annotations).
Besides, we also inspected the performance of these programs at
multiple threads (see details in Supplemental Table S4).
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Implementation of the VarNote-REG pipeline

Genotype data of different populations were retrieved from The
1000 Genomes Project phase 3 release, and LD was estimated by a
correlation method. Consolidated and imputed epigenomes from
127 human tissues/cell lines were downloaded from the web portal
of the NIH Roadmap Epigenomics project (Roadmap Epigenomics
Consortium et al. 2015), which includes ChIP-seq narrow peaks for
eight histone modifications (H3K4mel, H3K4me2, H3K4me3,
H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H3K9me3)
and DNase-seq peaks. Jannovar (Jager et al. 2014) was used to
map variant consequences. Five tissue-/cell type-specific regulato-
ry variants prediction methods—cepip (Li et al. 2017b),
GenoSkyline-Plus (Lu et al. 2017), FUN-LDA (Backenroth et al.
2018), GenoNet (He et al. 2018), and FitCons2 (Gulko and Siepel
2019)—were used to prioritize likely causal variants in each
GWAS signal. For each candidate variant in its LD block, the ranks
of prediction scores were combined by calculating rank product. By
encapsulating VarNote programming interfaces, the VarNote-REG
pipeline introduces three main steps to prioritize regulatory variant
in each input GWAS signal: (1) variant normalization and LD
expansion; (2) tissue-/cell type-specific epigenomic features anno-
tation; and (3) tissue-/cell type-specific regulatory potential prior-
itization. The online VarNote-REG pipeline and visualization is
available at http://mulinlab.org/varnote/application. html#REG.

Evaluation of VarNote-REG for tissue-/ cell type-specific
regulatory variant prioritization

Candidate causal variants for 21 autoimmune diseases were down-
loaded from a PICS GWAS fine-mapping study (Farh et al. 2015).
We first used Jannovar to annotate the variant consequence and
excluded the signals (leading variant-associated LD block) in
which the causal variant with the largest PICS probability having
protein-coding or splicing-altering consequences. For each leading
variant-associated GWAS signal, we extended the linked variants
in this signal (R%>0.8) and treated them as noncausal variants.
We removed the GWAS signal once the extended noncausal vari-
ants are insufficient (less than five variants). We used VarNote to
retrieve tissue-/cell type-specific regulatory variant prediction
scores on 16 ENCODE cell types for five existing methods and cal-
culated combined scores by rank product. We then tested whether
the causal variants could be ranked higher than highly linked non-
causal variants in different tissues/cell types and compared the per-
formance among used prediction methods.

Implementation of the VarNote-PAT pipeline

Allele frequency information for different populations were down-
loaded from The 1000 Genomes Project phase 3 release and
gnomAD v2.1 (Karczewski et al. 2020). Four genetic inheritance
modes were supported in VarNote-PAT, including autosomal dom-
inant/recessive and X-linked dominant/recessive inheritances.
Variant filtration strategies were similar to our previous WES plat-
form wKGGSeq (Lietal. 2015). We specially introduced tissue/cell-
type-specific epigenomic feature annotation and filtration using
127 Roadmap epigenomic profiles. We combined the prediction
scores of seven methods—CADD v1.4 (Kircher et al. 2014),
ReMM (Smedley et al. 2016), Figen (Ionita-Laza et al. 2016),
GenoCanyon (Lu et al. 2015), FATHMM_MKL (Shihab et al.
2015), FATHMM-XF (Rogers et al. 2018), and LINSIGHT (Huang
et al. 2017b)—for evaluating pathogenic noncoding variant by a
rank product method. Overall, the VarNote-PAT pipeline incorpo-
rated four main steps to rank pathogenic regulatory variant from
WGS variants: (1) filtration on allele frequency; (2) filtration on ge-
netic inheritance mode; (3) filtration on variant consequences and

epigenomic features; and (4) pathogenicity prioritization. The on-
line VarNote-PAT pipeline and visualization is available at http://
mulinlab.org/varnote/application.htmI#PAT.

Evaluation of VarNote-PAT for rare pathogenic variant
prioritization

Known rare pathogenic regulatory variants (minor allele frequency
in EUR<0.001) were collected from ClinVar (Landrum et al. 2020),
Genomiser (Smedley et al. 2016), RegBase (Zhang et al. 2019),
NCBoost (Caron et al. 2019), and CDTS (di Iulio et al. 2018). We
used Jannovar to annotate the variant consequence and excluded
the variants with protein-coding or splicing-altering attributes.
Because some of these pathogenic variants were not confirmed
by functional study, we manually inspected which pathogenic var-
iants were validated by functional experiments (such as luciferase
reporter assay of promoter/enhancer, electrophoretic mobility
shift assay, chromatin conformation capture assay, etc.) from the
original publication and other literature. We simulated WGS re-
sults of pathogenic variant carrier by spiking each validated variant
into each individual genome (503 individuals in EUR population
from The 1000 Genomes Project) according to dominant disease
inheritance mode. We then tested whether the spike-in pathogen-
ic variants could be top-ranked in the simulated individual ge-
nomes (filtering criteria: allele frequency: less than 0.001 in EUR;
variant consequence: protein-coding and splicing-altering exclud-
ed; genome region: 10 kb upstream and downstream from the gene
promoter) and compared the performance among our combined
strategy and existing methods of pathogenic regulatory variant
prediction.

Implementation of the VarNote-CAN pipeline

The used variant annotations for allele frequency and tissue/cell-
type-specific epigenomic features are the same as those in the
VarNote-PAT pipeline. Noncoding somatic mutations and their re-
currence information were downloaded from COSMIC v90 (Tate
et al. 2019). We used our recent regBase-CAN score (Zhang et al.
2019) to prioritize cancer driver regulatory variants. The
VarNote-CAN pipeline incorporated four main steps to rank cancer
driver regulatory variants for personal cancer genome: (1) filtration
on germline variants; (2) filtration on variant consequences and
epigenomic features; (3) filtration on somatic recurrence; and (4)
cancer driver mutation prioritization. The online VarNote-CAN
pipeline and visualization is available at http://mulinlab.org/
varnote/application.html#CAN.

Evaluation of VarNote-CAN for regulatory somatic mutation
prioritization

Somatic eGene and associated eQTL intervals were downloaded
from a large-scale pan-cancer whole-genome analysis (PCAWG
Transcriptome Core Group et al. 2020). In each eQTL interval,
we identified the highly recurrent somatic mutations based on
COSMIC v90 data and constructed a data set of candidate driver
regulatory mutations. Because some intervals contain multiple
best somatic mutations with the same recurrence, we only selected
one representative by requiring a median pathogenic score on
regBase-CAN. We simulated individual cancer mutation profiles
by spiking the candidate driver regulatory mutation into somatic
mutation calling results of each WGS cancer genome (1950 pa-
tients collected from ICGC). We then executed VarNote-CAN
pipeline for all simulated personal cancer genomes (filtering crite-
ria: variant consequence: protein-coding and splicing-altering ex-
cluded; genome region: 10 kb upstream and downstream from the
gene promoter) and compared the ranks of the spike-in cancer
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driver mutations among our regBase-CAN score and existing
somatic regulatory mutation prediction methods, including
FunSeq2 v2.1.6 (Fu et al. 2014), CScape (Rogers et al. 2017),
CADD v1.4 (Kircher et al. 2014), Eigen (Ionita-Laza et al. 2016),
GenoCanyon (Lu et al. 2015), and FATHMM_MKL (Shihab et al.
2015).

Software availability

All source code and scripts for methods evaluation and manuscript
results are available at GitHub (https://github.com/mulinlab/
VarNote) and as Supplemental Code. Software, documentation,
and VarNote online applications are available at http://mulinlab
.org/varnote. VarNote web servers are running at qual-core mode
and SAS hard disks for genomic feature intersection and variant
annotation.
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