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Abstract: A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro
whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR)
Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety
(halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration
(MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the
2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both
the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively.
The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent
aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET
calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated
the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further
optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-
resistant MTB.
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1. Introduction

Tuberculosis (TB) is one of the top 10 leading causes of mortality worldwide and is
the leading cause of death from infectious disease among adults [1]. It is a communicable
disease caused by the bacterium Mycobacterium tuberculosis (MTB) that primarily affects
the lungs, resulting in pulmonary TB [2]. TB can also infect other sites of the body, causing
extrapulmonary TB [3,4].

To date, no major changes in the treatment of TB have been made, and the current
standard treatment still involves a combination of four antibiotics (isoniazid, rifampin,
pyrazinamide, and ethambutol) given for two months followed by isoniazid and rifampicin
for an additional four months [2]. This anti-TB regimen has been successful in the treat-
ment of MTB H37Rv. However, the emergence of multidrug-resistant TB (MDR-TB) and
extensively drug-resistant TB (XDR-TB), as well as HIV/TB co-infection cases, have made
TB control more difficult [5,6]. Moreover, treating resistant TB can take up to 24 months
and might be associated with side effects and a low chance of cure. This, in turn, can lead
to poor patient compliance, which can also contribute to the development of resistance [7].

Several drug leads from natural products [7,8] and marine organisms [9] and var-
ious chemical entities and repurposed drugs, such as linezolid and clofazimine [10,11],
have been suggested for the treatment of resistant TB [2]. Some of them have been condi-
tionally approved and recommended by the World Health Organization (WHO), including
bedaquiline, delamanid, and pretomanid. However, the majority are still undergoing
clinical trials. Despite their favorable anti-TB action, resistance to both bedaquiline and
delamanid, due to prolonged duration of therapy, has been reported [12,13]. Conversely,
safety concerns were raised about the use of pretomanid, linezolid, and clofazimine for the
treatment of TB [2,14,15]. Despite the efforts to discover new anti-TB compounds, current
therapies are still facing the development of resistance and poor compliance due to long
treatment duration. Therefore, it is evident that there is an urgent need for the development
of new potential anti-TB compounds that can act on new molecular targets to overcome
drug-resistant MTB strains and to control the wide spread of TB. 2,3-Dihydroquinazolin-
4(1H)-ones (2,3-DHQs) are fused heterocyclic compounds that exist in natural products such
as luotonins A, B, E and F [16,17], tryptanthrin [18], rutaecarpine [19]. 2,3-DHQs possess a
broad range of pharmacological properties such as anti-cancer [20–24], antidepressant [25],
antidiabetic [26], antifungal [27], antihypertensive [28,29], anti-inflammatory [30,31], an-
tibacterial [32], antioxidant [33], antiviral [34], bronchodilator [35], centrally acting muscle
relaxant [36], diuretic [37], sedative and hypnotic [38] agents (Figure 1). Quinazolin deriva-
tives have also been reported as bactericides [39], fungicides [40] and insecticides [41].

We have been interested in identifying potential novel anti-TB compounds from natu-
ral sources [42,43], cyclic depsipeptides [44], and synthetic heterocyclic compounds having
pharmacophores, such as benzothiazoles, triazolyl 1,2,3,4-tetrahydropyrimidines, dihy-
dropyrimidines, and substituted indolizines as potential antitubercular agents [45–52].
In continuation of our efforts in identifying promising heterocyclic compounds for pharma-
cological activity [53–63], this study aims to identify potential anti-TB compounds. Herein,
we screened a set of our recently reported substituted 2,3-dihydroquinazolin-4(1H)-one
analogues (except the novel compound 3l) to assess their potency against different strains
of MTB. These compounds were also further investigated to evaluate their cytotoxicity
against normal human dermal fibroblast cells. Moreover, we attempted to identify the
putative mycobacterial target of those compounds by applying a computational approach.
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Figure 1. The 3D crystal structure of the Mycobacterium tuberculosis BioA enzyme (PDB code 4XJO). 
(A) Surface representation of the homodimer enzyme. Monomer A is colored light brown, and mon-
omer B is colored light blue. The co-crystallized inhibitors are shown in the CPK representation with 
carbons colored yellow. (B) Same view as in A, in which monomer B is shown in cartoon represen-
tation to highlight the location of the two active sites. The PLP molecule is shown in the CPK repre-
sentation with carbons colored pink. (C) Detailed representation of the active site highlighting the 
main binding residues that are represented as sticks with carbons colored green. 
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hydropyrimidines, and substituted indolizines as potential antitubercular agents [45–52]. 
In continuation of our efforts in identifying promising heterocyclic compounds for phar-
macological activity [53–63], this study aims to identify potential anti-TB compounds. 
Herein, we screened a set of our recently reported substituted 2,3-dihydroquinazolin-
4(1H)-one analogues (except the novel compound 3l) to assess their potency against dif-
ferent strains of MTB. These compounds were also further investigated to evaluate their 
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2.1. Antitubercular Activity 

The in vitro antitubercular activity of the tested derivatives (3a–3m) against H37Rv 
and multi-drug resistant strains of M. tuberculosis is presented in Table 1. The in vitro re-
sults showed promising antitubercular activities against the susceptible H37Rv M. tuber-
culosis strain with minimum inhibitory concentration (MIC), ranging from 2–128 µg/mL. 
The most active analogues against the susceptible H37Rv M. tuberculosis strain with a MIC 
value of 2 g/mL were the compounds 3l and 3m with a di-substituted aryl moiety (con-
taining electron withdrawing halogens) connected to the 2-position of the quinazoline 
scaffold. Compound 3k, which had a MIC of 4 g/mL, likewise demonstrated extremely 
good inhibitory efficacy against the same strain. The inclusion of an imidazole ring at the 
2-position of the quinazoline scaffold resulted in significant inhibitory action against the 
multi-drug resistant strains of M. tuberculosis with a MIC value of 16 µg/mL. None of the 

Figure 1. The 3D crystal structure of the Mycobacterium tuberculosis BioA enzyme (PDB code
4XJO). (A) Surface representation of the homodimer enzyme. Monomer A is colored light brown,
and monomer B is colored light blue. The co-crystallized inhibitors are shown in the CPK representa-
tion with carbons colored yellow. (B) Same view as in A, in which monomer B is shown in cartoon
representation to highlight the location of the two active sites. The PLP molecule is shown in the CPK
representation with carbons colored pink. (C) Detailed representation of the active site highlighting
the main binding residues that are represented as sticks with carbons colored green.

2. Results and Discussion
2.1. Antitubercular Activity

The in vitro antitubercular activity of the tested derivatives (3a–3m) against H37Rv
and multi-drug resistant strains of M. tuberculosis is presented in Table 1. The in vitro results
showed promising antitubercular activities against the susceptible H37Rv M. tuberculosis
strain with minimum inhibitory concentration (MIC), ranging from 2–128 µg/mL. The most
active analogues against the susceptible H37Rv M. tuberculosis strain with a MIC value
of 2 g/mL were the compounds 3l and 3m with a di-substituted aryl moiety (containing
electron withdrawing halogens) connected to the 2-position of the quinazoline scaffold.
Compound 3k, which had a MIC of 4 g/mL, likewise demonstrated extremely good in-
hibitory efficacy against the same strain. The inclusion of an imidazole ring at the 2-position
of the quinazoline scaffold resulted in significant inhibitory action against the multi-drug
resistant strains of M. tuberculosis with a MIC value of 16 µg/mL. None of the remaining
analogues had a promising inhibitory activity against the multi-drug-resistant strains of
M. tuberculosis. Nevertheless, the identified active compounds could be considered as lead
molecules that upon further optimization might evolve into more potent drug candidates.
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Table 1. In vitro whole-cell anti-TB results of substituted 2,3-dihydroquinazolin-4(1H)-ones analogues
(3a–m) against Mycobacterium tuberculosis and their cytotoxic effect on fibroblast cells.

Compound Code Compound Structure
Level of Activity (µg/mL) Cytotoxicity (%) at

100 µM *Susceptible (H37Rv) MDR

3a
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Table 1. Cont.

Compound Code Compound Structure
Level of Activity (µg/mL) Cytotoxicity (%) at

100 µM *Susceptible (H37Rv) MDR

3i
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2.2. Cytotoxicity Assay

To determine the safety of the test compounds, 2,3-dihydroquinazolin-4(1H)-ones
(3a–3m), the MTT (3-[4,5-dimethylthiazol-2-yl]-diphenyltetrazolium bromide) assay was
used as tabulated in Table 1. The most active compounds, 3l and 3m, were found to be safe
and tolerable, at 36% and 31%, respectively, with toxicity against the normal human dermal
fibroblast cells at a concentration of 100 µM. (equal to 32 µg/mL for 3I and 30 µg/mL for
3m). The previous statement indicates that these two compounds will have IC50 values
>100 µM (>32 or 30 µg/mL for 3I and 3m, respectively) which is higher than their MIC
against MTB (2 µg/mL). The same is for 3k, which showed an MIC value of 4 µg/mL and
16 µg/mL against the H37Rv and MDR strains, respectively. The cytotoxicity of 3k when
tested at 100 µM (=21.4 µg/mL) was 19.2%, which means that its IC50 will be much higher
than 21.4 µg/mL and higher than the MIC values.

2.3. Computational Studies
2.3.1. Searching for a Putative Drug Target

In this study, the biological testing of the anti-TB activity of the title compounds
(3a–3m) was conducted using the whole-cell screening method; therefore, different com-
putational approaches were implemented to identify a possible drug target that could
explain the mechanism of action of the tested compounds. The same approach we de-
vised previously [52] was used in this study. In this approach, an exhaustive literature
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search identified 48 mycobacterial macromolecules that are essential for bacterial survival
and persistence that could be potential MTB drug targets (Table S1), of which 21 targets
with solved 3D crystal structures were selected for molecular docking studies (Table S2).
The 21 potential targets were selected based on their essentiality to mycobacterial growth
and survival, and the availability of their solved 3D crystal structures (H37Rv MTB strain).

The selected protein crystal structures were prepared, solvated and minimized, as pre-
viously described [64–66], in order to remove any potential artifacts caused by crystal
packing. The binding sites were then determined, and all co-crystallized ligands were
extracted and redocked into their appropriate binding sites. Ligand redocking was meant
to validate the docking procedure prior to docking the tested compounds. A well-defined
binding site and an accurate docking algorithm would be able to regenerate the native
co-crystallized pose for the redocked ligands, which is usually assessed by calculating the
root mean square deviation (RMSD) between the redocked pose and the native ligand.
The calculated RMSD measures the accuracy of the docking algorithm; a value less than 2
is adequate, but a value less than 1 would be excellent [67]. In redocking co-crystallized
ligands, the CDOCKER docking algorithm was successful in replicating the binding pose
of the native ligands with RMSD values ranging from 0.15 to 1.43 Å. Following the vali-
dation step, the tested compounds were docked into the binding sites of the 21 selected
proteins, and the docked poses were then rescored using 11 different scoring functions.
There are four classes of scoring functions, namely forcefield-based, empirical, knowledge-
based, and machine-learning-based scoring functions [68]. In this study, in addition to the
two CDOCKER forcefield-based scores, which are the -CDOCKER energy (-CDE) and the
-CDOCKER interaction energy (-CDIE) scores, another eight empirical scoring functions
were used, namely LigScore1 and LigScore2, PLP1 and PLP2, Jain, Ludi1, Ludi2 and Ludi3,
in addition to two knowledge-based scoring functions, PMF and PMF04. All of these scor-
ing functions are available in DS, and their output scores are reported as positive values;
hence, the higher the score, the higher the binding affinity.

Following the same previous approach, the identification of a putative mycobacterial
target for the tested compounds was achieved by calculating the Pearson Correlation Coeffi-
cient (r) between the computational scores and their respective experimentally determined
MIC values [69] (Table 2). A more potent inhibitor would have a low MIC value, which,
ideally, would correlate with a high computational score. Therefore, mycobacterial targets
that show negative correlations between their MIC values and computational scores were
assumed to be putative targets for the tested compounds.

Table 2 shows that the highest correlation coefficient between the experimental and com-
putational results was obtained with the PMF4 scoring function when the compounds were
docked into the active site of the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent
aminotransferase (BioA) enzyme (r = −0.86). The high negative correlation means that
active compounds (low MIC values) are correlated with high docking scores. The value of
the correlation coefficient (r) determines the strength of association between the two sets of
variables. Generally, a value of |r| between 0.1–0.3 indicates a small association, 0.3–0.5 is
medium, and 0.5–1.0 indicates a large association [66]. Furthermore, this enzyme showed
another high correlation with LigScore1 (r = −0.63). Accordingly, the tested compounds
are predicted to be most likely targeting the BioA enzyme. These findings can be further in-
vestigated by other computational methods such as molecular dynamics (MD) simulations.
However, the experimental in vitro enzyme assay remains the main conclusive method to
validate our computational results.
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Table 2. The overall correlation coefficients matrix between the minimum inhibitory concentration
values of the tested compounds and their computational scores obtained from different scoring
functions for each of the selected target enzymes.

Index Name LS1 LS2 PLP1 PLP2 Jain PMF PMF4 CDE CDIE Ludi-1 Ludi-2 Ludi-3

1 Alanine racemase −0.71 0.29 −0.16 −0.12 0 −0.06 −0.51 0.38 0.31 −0.15 −0.19 −0.35
2 CamA −0.57 −0.39 −0.12 −0.05 −0.09 −0.07 −0.45 −0.3 −0.38 0.44 0.19 −0.06
3 DprE1 −0.3 0.62 0.1 −0.01 −0.12 0.28 −0.82 0.51 0.38 0.33 0.2 0.3
4 FabH −0.67 0.26 −0.42 −0.44 −0.02 −0.24 −0.75 0.35 0.32 −0.24 −0.3 −0.31
5 InhA −0.59 −0.5 0.12 0.32 0.32 0.12 −0.29 0.02 −0.08 0.4 0.49 −0.05
6 MabA −0.4 0.35 −0.3 −0.23 −0.51 −0.46 −0.66 0.28 0.16 −0.13 −0.15 −0.34
7 AspS −0.68 −0.32 −0.14 −0.05 0.05 0.08 −0.51 0.06 −0.16 0.06 0.01 −0.03
8 LeuRS −0.82 0.54 0.3 −0.06 −0.15 −0.27 −0.62 0.41 0.08 0.58 0.54 0.13
9 GlmU −0.3 0.52 −0.32 0.11 −0.36 0.05 −0.81 0.43 0.2 0.17 0.17 0.33
10 PanK −0.02 0.75 −0.14 −0.12 −0.08 −0.15 −0.31 0.25 0.25 0.56 0.38 0.08
11 PknB −0.36 −0.58 −0.56 −0.3 0.03 −0.03 −0.67 0.03 −0.2 0.1 0.12 −0.12
12 PknA −0.42 0.4 −0.07 0.11 −0.76 0.13 −0.52 0.17 0.01 0.25 0.05 0.03
13 KasA −0.28 −0.08 −0.62 −0.48 −0.38 −0.24 −0.38 −0.04 −0.26 −0.27 −0.25 −0.43
14 KasA (BS2) * −0.27 0.38 0.17 0.06 0.32 0.43 −0.44 0.14 0.43 −0.02 0.06 0.16
15 Pks13 −0.1 0.32 0.3 0.39 0.66 −0.12 −0.66 0.59 0.29 0.1 0.22 0.25
16 BioA # −0.63 0.1 0.14 0.28 0.65 −0.42 −0.86 0.74 0.55 0.52 0.58 0.65
17 EchA6 −0.33 0.17 −0.04 0.3 0.31 −0.17 −0.69 0.38 0.31 0.46 0.05 0.18
18 MmpL3 −0.77 −0.38 0.25 0.31 0.14 0.32 −0.39 0.04 −0.07 0.1 0.1 0.42
19 AspAT −0.41 0.67 −0.24 0.24 0.16 0.01 −0.62 0.23 0.14 0.15 0.41 0.44
20 MurE −0.83 −0.05 0.25 0.35 0.6 −0.31 −0.38 0.31 0.15 0.33 0.29 0.2
21 EthR −0.39 0.17 0.06 0.19 −0.41 −0.24 −0.78 0.48 0.13 0.13 0.22 0.12
22 PrpC −0.4 0.29 −0.44 −0.46 0.08 0.04 −0.56 0.37 0.3 0.08 0.16 0.05

* KasA enzyme has two binding sites; an acyl chain-binding site (BS1), and the catalytic active site (BS2). Both were
used for docking. This refers to the second binding site. # The highlighted values, in bold red, represent the
highest obtained correlation coefficient.

2.3.2. Analysis of the Binding Interactions with the Putative Target (BioA)

The identified putative target was the BioA enzyme. This enzyme catalyzes the
second step in biotin biosynthesis and is essential for bacterial survival and persistence.
Contrary to humans, MTB de novo synthesizes biotin to be utilized by carboxylases in fatty
acid metabolism and gluconeogenesis pathways; thereby, BioA is an ideal target for the
development of potential antitubercular agents [70].

Structurally, the functional form of the mycobacterial BioA enzyme is a homodimer,
in which the monomer structure is composed of two domains, the small domain (amino
acid residues 1–60 and 339–437) and the large domain (residues 61–338). Two active sites
are located at the interface between the two monomers, 18 Å apart, and are composed
of residues Pro24-Ser34, Ser62-Ala67, Arg156-Asp160, His171-Arg181, Gln224-Gly228,
and Arg400-Arg403 from one chain, and Met′87-His′97 and Ala′307-Asn′322 from the other
chain [70–72]. Among these residues, Tyr25, Trp64, Trp65, Tyr157, Arg400, and Phe402
were reported to be of high relevance to ligand binding [72,73] (Figure 1).

The structural model of the MTB BioA enzyme was downloaded from the protein
data bank (PDB code, 4XJO), which corresponds to the BioA enzyme in complex with an
inhibitor, 5-[4-(3-chlorobenzoyl)piperazin-1-yl]-1H-inden-1-one (41O), and the coenzyme
pyridoxal-5′-phosphate (PLP) at a resolution of 1.50 Å; then, it was prepared as detailed in
the Methods section. The docking protocol was validated prior to docking the designed
compounds via extracting and redocking the co-crystallized ligand (41O). The redocked
pose was in perfect agreement with the native co-crystallized ligand pose with a RMSD
of 0.15 Å. Then, the designed compounds were docked into the active site of the enzyme.
Figure 2 shows the binding mode and binding interactions of compound 3m within the
active site of the BioA enzyme compared to that of the co-crystallized ligand (41O).
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Figure 2. (A) The binding mode and binding interactions of compound 3m within the active site of
the BioA enzyme compared to that of the co-crystallized ligand (41O, PDB code 4XJO) in (B). The left
and middle panels show the binding modes of compound 3m and 41O. The active site is shown
as a hydrophobic surface. The right panel shows the 2D interaction maps of the two compounds.
The interacting amino acid residues are shown as disks and are colored according to the type of their
intermolecular interactions with the enzyme.

As shown in Figure 2, compound 3m occupies the binding pocket of the active site,
and the 2D interaction map shows the involvement of many key binding residues within the
active site in intermolecular interactions. Compound 3m establishes two hydrogen bonds
with the amino acid residues Tyr157 and Arg403, a slat bridge with Arg403, along with nu-
merous hydrophobic interactions including pi-pi stacking with Tyr25, pi-pi T-shaped with
Tyr157, and pi-alkyl with Pro24 and Tyr25. These interactions suggest that compound 3m
seems to have a favorable binding affinity toward the BioA enzyme. Once the mechanism
of action of the tested compounds is confirmed, their detailed binding interactions can
be utilized to guide prospective optimization efforts to design more potent and selective
drug candidates.

2.3.3. MD Simulations

Compared to molecular docking, MD simulations offer a much higher level of accu-
racy since the molecular flexibility of the entire simulated complex is fully accounted for.
Moreover, MD simulations provide a multitude of dynamical, structural, and energetic in-
formation pertaining to the simulated system [74,75]. Therefore, MD was employed herein
to further study the binding stability and interactions of the most active compound 3m
with its putative target. The simulated virtual complex was obtained from the top-ranked
docked pose of compound 3m with the BioA enzyme. Moreover, the apo form of the BioA
enzyme was also simulated for comparison purposes. The apo form was modeled by
deleting the co-crystallized ligands. The generated trajectories were then analyzed based
on their thermodynamic properties, RMSD, and root mean square fluctuation (RMSF).

Figure 3 shows the RMSD and RMSF values for the simulated systems. The average
RMSD values of the BioA complex (with both 41O and compound 3m) was 1.33 Å, which
is a little higher than that of the BioA-apo system which showed an RMSD value of 1.20 Å
(Figure 3A), which could possibly be attributed to slight conformational changes in the BioA
complex to better accommodate the hosted ligands. In addition, the calculated RMSF for
each of the two simulated systems, after being fitted to the first frame from the production
phase in order to eliminate the effect of rotational and translational motion, showed similar
fluctuation patterns with close values (Figure 3B). The average RMSF values for BioA
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complex and BioA-apo were 0.96 and 0.98 Å, respectively, indicative of stable systems
throughout the simulation time.
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Figure 3. (A,B) are RMSD and RMSF plots for the simulated BioA-3m complex compared to the apo
form. (C). The RMSD plots for compound 3m compared to 41O as the simulated system evolved
with time.

In order to have a closer look at the dynamical behavior of the complexed ligands
(41O and 3m), we calculated their respective RMSD values throughout the simulation time
(Figure 3C). The two compounds fluctuated during the first 10 ns until they reached a
stable state that was maintained to the end of the 50 ns of simulation. The average RMSD
value of compound 3m was 0.90 Å compared to 1.22 Å for 41O, indicative of stable and
good binding affinity. All of the above-discussed dynamical findings can be visually traced
in the generated trajectories (Supplementary Materials; Movie S1). Further, snapshots of
the simulated BioA complex are shown in Figure 4.

Figure 4 represents different snapshots of the simulated BioA-3m complex at different
time points. As stated earlier, among the active site residues, Tyr25, Trp64, Trp65, Tyr157,
Arg400, and Phe402 were reported to be of high relevance to ligand binding. Compound
3m has maintained numerous interactions with most of those residues throughout the sim-
ulation time, namely Tyr25, Trp64, Arg400, and Phe402. Interactions of 3m with the BioA
active site’s residues included hydrogen bonding between Arg400 and the oxygens of the
dihydroquinazolinone and the methoxy, and between Arg403 and the nitro oxygens; Pi-Pi
stacking between Trp64 and Phe402 with the phenyl rings; Pi-cation interaction between
Arg400 and the phenyl ring of dihydroquinazolinone; in addition to other hydrophobic
interactions (see Figure 4 for more details). These stabilizing interactions are seemingly
indicative of favorable binding between 3m and the BioA enzyme. The collective computa-
tional results support the conclusion that the BioA enzyme is the most likely target for the
tested compounds.
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2.3.4. ADME and Toxicity Predictions

In any drug discovery project, it is highly recommended to estimate the ADMET
properties for the compounds of interest in order to direct optimization efforts on those that
show favorable properties. Therefore, since the anti-TB activities of the tested compounds
were promising, their ADMET properties were calculated using the ADMET Descriptors
and the Toxicity Prediction (TOPKAT) protocols in DS (Tables 3 and 4).

The calculated properties indicated promising ADMET profiles for the tested com-
pounds. All compounds showed good ADME properties, except for the hepatotoxicity
descriptor, which showed that all of them were predicted to be hepatotoxic except for
compound 3e. Similarly, all toxicity parameters were favorable, except for mutagenicity
predictions of which only compounds 3j and 3k showed low potential for mutagenicity.
Moreover, their drug-likeness and oral bioavailability were predicted by consideration
of Lipinski’s rule of five and Veber’s rule. Lipinski’s rule states that for an orally active
drug, no more than one of the following criteria can be violated, namely no more than
five hydrogen bond donors, no more than 10 hydrogen bond acceptors, molecular mass of
less than 500 daltons, and a log p value of less than or equal to 5. For Veber, the rule relies
on molecular flexibility, rather than molecular weight, which is accounted for by rotatable
bonds that need to be fewer than 10; and on polar surface aria which should be less than
140 Å2 (or a total H-bond count fewer than 12) [76]. None of the designed compounds
violated any of these rules. According to the above predictions, the designed compounds
showed promising ADMET and drug-like properties, and consequently, the active members
among the set can be considered candidates for further optimization cycles.
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Table 3. Calculated ADME descriptors.

Compounds MIC (µg/mL) ADME Descriptors *

Index Code H37Rv MDR-MTB AS BBB CYP2D6 Inhibition Hepatotoxicity HIA a PPB b AlogP PSA c

1 3a 64 >128 3 2 FALSE TRUE 0 TRUE 2.432 51.851
2 3b >64 No activity 3 2 FALSE TRUE 0 TRUE 2.327 65.856
3 3c 8 >32 3 2 FALSE TRUE 0 TRUE 2.206 63.736
4 3d >64 No activity 1 1 FALSE TRUE 0 TRUE 4.568 51.851
5 3e 128 No activity 2 1 FALSE FALSE 0 TRUE 3.026 42.921
6 3f >128 No activity 2 1 FALSE TRUE 0 TRUE 3.113 42.921
7 3g 64 No activity 3 2 FALSE TRUE 0 TRUE 2.415 60.781
8 3h >128 No activity 3 2 FALSE TRUE 0 TRUE 2.61 46.273
9 3i >64 No activity 3 3 FALSE TRUE 0 TRUE 2.343 85.744

10 3j >64 No activity 3 2 FALSE TRUE 0 TRUE 2.654 42.921
11 3k 4 16 4 3 FALSE TRUE 0 FALSE 0.666 73.031
12 3l 2 >64 2 1 FALSE TRUE 0 TRUE 3.402 42.921
13 3m 2 >64 2 3 FALSE TRUE 0 TRUE 2.326 94.674

Aqueous Solubility (AS) BBB Penetration Human Intestinal Absorption (HIA)

Level Drug-likeness Level Description Level Description

0 Extremely low 0 Very High 0 Good absorption
1 No, very low, but possible 1 High 1 Moderate absorption
2 Yes, low 2 Medium 2 Low absorption
3 Yes, good 3 Low 3 Very low absorption
4 Yes, optimal 4 Undefined
5 No, too soluble

a: human intestinal absorption, b: plasma protein binding, c: polar surface area. * Key to the above-calculated
ADME descriptors.

Table 4. Calculated toxicity parameters.

Compounds MIC (µg/mL) Toxicity Parameters *

Index Code H37Rv MDR-MTB AM a SI b OI c AB d DTP e CMR f CFR CLM CFM

1 3a 64 >128 0.997 0.016 0 0 0.026 0 0 0.988 1
2 3b >64 No activity 1 0 0 0.001 0 0 0 0 1
3 3c 8 >32 1 0 0 0 0.002 0 0 0.007 1
4 3d >64 No activity 1 0.219 0 0 0.997 0 0 1 1
5 3e 128 No activity 1 0 0 0.003 0.001 0 0 0.27 1
6 3f >128 No activity 0.998 0 0 0 0.004 0 0 0.978 1
7 3g 64 No activity 1 0.061 0 0 0.275 0 0 0.956 1
8 3h >128 No activity 1 0 0 0.969 0 0 0 0 1
9 3i >64 No activity 1 0 0 0 0.002 0 0 1 1
10 3j >64 No activity 0.078 0 0 0 0.101 0 0 1 1
11 3k 4 16 0 0 0 0 1 0 0 1 1
12 3l 2 >64 0.956 0 0 0 0.154 0 0 1 1
13 3m 2 >64 1 0 0 0 0.056 0 0 1 1

Probability Values Probability Level Description

0.0 to 0.30 Low probability Such a chemical is not likely to produce a positive response in an experimental assay
>0.30 but <0.70 Intermediate probability

>0.70 High probability Likely to produce a positive response in an experimental assay

a: Ames mutagenicity, b: skin irritation, c: ocular irritancy, d: Aerobic Biodegradability, e: Developmental toxicity
potential, f: rodent carcinogenicity (for male and female rats and mice, CMR, CFR, and CLM, CFM, respectively).
* Key to the above-calculated toxicity parameters.

3. Materials and Methods
3.1. General

All the chemicals and solvents were obtained from Sigma-Aldrich/Merck (St. Louis,
MO, USA). To monitor the progress of the chemical reaction, thin-layer chromatography
(TLC) was utilized on Merck 60 F-254 silica gel plates using ethyl acetate and n-hexane (6:4)
as a solvent system and UV light for visualization. A Buchi melting point B-545 equipment
was used to determine melting points. Nicolet 6700 FT-IR spectrometer was used to record
the FT-IR spectra. DMSO-d6 solvent was used to record 1H and 13C-NMR spectra on
Bruker AVANCE III 400 MHz instrument. Chemical shifts (d) were indicated in parts per
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million downfield from tetramethylsilane, and the coupling constant (J) is recorded in
Hertz. The splitting pattern is abbreviated as follows: s, singlet; d, doublet; t, triplet; m,
multiplet. Mass spectra were recorded using LC-MS-Agilent 1100 series with MSD (Ion
trap) using 0.1% aqueous trifluoroacetic acid in acetonitrile system on C18-BDS column.
Elemental analysis was performed on Thermo Finnigan FLASH EA 1112 CHN analyzer.

3.2. Chemistry

The synthetic scheme for the construction of title compounds is illustrated in Scheme 1.
The detailed characterization of the title compounds 3a–3k and 3m, including single-crystal
X-ray data of a representative example (compound 3g), was described in our previous com-
munication [77,78] with their yield between 82–95%. The scheme of synthesis including
instrumental techniques such as FT-IR, 1H, and 13C-NMR data and spectra of compound 3l
are available as electronic supplementary information (Scheme S1, Figure S1–S3).

Antibiotics 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 
Scheme 1. The chemical synthetic scheme for the synthesis of 2,3-dihydroquinazolin-4(1H)-one de-
rivatives (3a–m). 

3.3. Antitubercular Activity 
The antitubercular property of the test compounds 3a–3m was evaluated against two 

types of M. tuberculosis strains, namely, H37Rv and well-characterized MDR strains, using 
the colorimetric Resazurin Microplate Assay (REMA) method as described in our previ-
ous communication [79]. The MICs were defined as the minimum drug concentration re-
quired to inhibit the organism from growing while leaving no color changes in the well 
[51]. The MTB reference strain H37Rv (American Type Culture Collection (ATCC) 25177) 
and MDR-TB were cultured for a total of 3 weeks in Middlebrook 7H11 medium [80] and 
were then supplemented with Oleic Albumin Dextrose Catalase (OADC) (0.005% v/v oleic 
acid, 0.2% w/v glucose, 0.085% w/v NaCl, 0.02% v/v catalase, and 0.5% 171 w/v bovine se-
rum albumin (BSA)). Incubation was set at 37 °C. The obtained cultures were utilized to 
prepare an inoculum in a sterile tube with 0.05% Tween 80 and 4.5 mL of phosphate buffer 
with glass beads (5 mm in diameter) by vortexing. After this, the cultures settled for a total 
of 45 min; the clear bacterial supernatant was standardized to McFarland Number 1 using 
sterile water. The resulting bacterial concentration was approximately 1 × 107 colony-
forming units (CFU)/mL, which was then diluted with sterile water. Overall, 100 µL of the 
dilution was added to Middlebrook 7H10 agar plates containing 8–0.125 µg/mL of the 
agent. The test compounds (8 µg/mL) were dissolved in distilled water and diluted to the 
required concentration before being added to the agar medium. The test compound MICs 
were read 3 weeks following 37 °C incubation and were regarded as the minimum drug 
concentration that could inhibit >99% growth of the bacterial culture when compared to 
controls. 

3.4. Cell Line 
The cell line under investigation was normal human skin fibroblast cells (CCD-

1064SK) purchased from American Type Culture Collection (ATCC) (Manassas, VA, 
USA). Fibroblast cells were cultured in Iscove’s Modified Dulbecco’s Medium (Euro 
Clone, Italy) as recommended by ATCC. The media was supplemented with 10% heat-

Scheme 1. The chemical synthetic scheme for the synthesis of 2,3-dihydroquinazolin-4(1H)-one
derivatives (3a–m).

3.3. Antitubercular Activity

The antitubercular property of the test compounds 3a–3m was evaluated against
two types of M. tuberculosis strains, namely, H37Rv and well-characterized MDR strains,
using the colorimetric Resazurin Microplate Assay (REMA) method as described in our
previous communication [79]. The MICs were defined as the minimum drug concentration
required to inhibit the organism from growing while leaving no color changes in the
well [51]. The MTB reference strain H37Rv (American Type Culture Collection (ATCC)
25177) and MDR-TB were cultured for a total of 3 weeks in Middlebrook 7H11 medium [80]
and were then supplemented with Oleic Albumin Dextrose Catalase (OADC) (0.005% v/v
oleic acid, 0.2% w/v glucose, 0.085% w/v NaCl, 0.02% v/v catalase, and 0.5% 171 w/v bovine
serum albumin (BSA)). Incubation was set at 37 ◦C. The obtained cultures were utilized
to prepare an inoculum in a sterile tube with 0.05% Tween 80 and 4.5 mL of phosphate
buffer with glass beads (5 mm in diameter) by vortexing. After this, the cultures settled for
a total of 45 min; the clear bacterial supernatant was standardized to McFarland Number 1
using sterile water. The resulting bacterial concentration was approximately 1 × 107 colony-
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forming units (CFU)/mL, which was then diluted with sterile water. Overall, 100 µL of
the dilution was added to Middlebrook 7H10 agar plates containing 8–0.125 µg/mL of the
agent. The test compounds (8 µg/mL) were dissolved in distilled water and diluted to
the required concentration before being added to the agar medium. The test compound
MICs were read 3 weeks following 37 ◦C incubation and were regarded as the minimum
drug concentration that could inhibit >99% growth of the bacterial culture when compared
to controls.

3.4. Cell Line

The cell line under investigation was normal human skin fibroblast cells (CCD-1064SK)
purchased from American Type Culture Collection (ATCC) (Manassas, VA, USA). Fibroblast
cells were cultured in Iscove’s Modified Dulbecco’s Medium (Euro Clone, Italy) as recom-
mended by ATCC. The media was supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Ebsdorfergrund, Germany), 1% of 2 mM L-glutamine, 100 U/mL penicillin,
and 100 µg/mL streptomycin. According to the cells’ growth profile, fibroblast-seeding
density was 1 × 105 cell/well. Cell viability was determined by trypan blue exclusion
using a hemocytometer.

3.5. MTT Cytotoxicity Assay

The MTT colorimetric assay was used to assess the effect of the synthesized compounds
on the viability of the fibroblast cell lines. Initially, cells were washed with phosphate buffer
saline (PBS) followed by decantation of PBS and cells detachment with 0.25% trypsin-EDTA
(Euro Clone). A volume of 10 mL of the culture media was added, and the cell suspension
was centrifuged at 1000 rpm for 10 min. The pellets were resuspended in a 10 mL medium
to make a single-cell suspension. The viability of the cells was determined by trypan blue
exclusion, and it exceeded 90% as counted in a hemocytometer. The cell suspension was
diluted to give the optimal seeding density, and 100 µL of the cell suspension was plated
in a 96-well plate. Cells were cultured at 37 ◦C in a humidified atmosphere of 5% CO2.
After 24 h incubation, the cells were treated with 100 µM of the synthesized compounds
(diluted in culture media to yield the required concentration) and then incubated for 72 h.
At the end of the exposure time, 15 µL of MTT stock solution (5 mg/mL in sterile PBS,
pH 7.4) (Promega, Madison, WI, USA) was added to each well and incubated for 3 h.
After that, 100 µL of solubilizing stop solution was added to each well to solubilize the
dark violet formazan crystals. The optical densities at 570 nm were then measured using a
micro-plate reader (Biotek, Winooski, VT, USA), and the percentage of cell viability was
calculated with respect to a control corresponding to untreated cells.

3.6. Computational Methods

The same computational approach we implemented previously to identify the putative
mycobacterial targets for the screened compounds was used in this study [52] (Figure 5).
Briefly, an extensive literature review revealed 48 macromolecular targets that are essential
for mycobacterial survival, of which 21 have solved 3D crystal structures (deposited in the
Protein Data Bank) that were used in molecular docking studies [81–83]. All crystal struc-
tures were prepared, solvated, and minimized using Biovia Discovery Studio 2020 [52,84].
Then, the tested compounds were also prepared using DS and were docked into the binding
sites of the 21 proteins using the CDOCKER algorithm in DS. All docked poses were then
rescored using different scoring functions, and their Pearson correlation coefficients with
the experimental MIC values were calculated. The enzyme with the highest correlation
value was identified as a putative target for the tested compounds. Finally, the binding
mode and binding stability of a virtual complex of compound 3m with its putative target
were simulated using Amber 12 relative to the native co-crystallized inhibitor. Moreover,
a range of pharmacokinetic and toxicity descriptors for the tested compounds (3a–3m) was
calculated using the ADMET Descriptors protocol and the Toxicity Prediction (TOPKAT)
protocol in DS [85].
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4. Conclusions

This research is part of our ongoing attempts to find potential new anti-TB agents,
where a series of substituted 2,3-dihydroquinazolin-4(1H)-one analogues (3a–3m) was
evaluated for their anti-MTB activity (in vitro) against the drug-susceptible H37Rv and
MDR strains of MTB. The MIC values of the compounds showed good anti-MTB inhibitory
activities ranging from 2-128 µg/mL. Compounds 3l and 3m attached with di-substituted
aryl moiety (having electron withdrawing halogens) at the 2-position of the quinazoline
scaffold were the most active, with a MIC value of 2 µg/mL against the drug-susceptible
H37Rv strain of MTB. Compound 3k also showed significant inhibitory activity against both
the H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The presence
of the imidazole ring at the 2-position of the quinazoline scaffold probably resulted in
distinguished inhibitory activity for compound 3k against the MDR strain, whereas other
analogues did not show any inhibitory activity against the MDR strain of MTB. The safety
and tolerability of the compounds 3a–3m were evaluated by carrying out the in vitro MTT
assay against the normal human skin fibroblast cells, where the most active compounds 3l
and 3m were found to be tolerable with 36% and 30% toxicity, respectively.

Computational studies were also carried out to identify the putative target for the
tested compounds (3a–3m). The computational results revealed the mycobacterial BioA en-
zyme as the most likely putative target. Collectively, the good biological results, the promis-
ing ADMET descriptors, and the identification of a putative target are encouraging to con-
duct further optimization of the most active lead molecules 3k–3m. Moreover, the current
findings highlighted the importance of experimentally validating the identified putative
target to develop 2,3-dihydroquinazolin-4(1H)-ones as probable BioA inhibitors in order to
combat the drug-sensitive and drug-resistant strains of MTB.
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