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OBJECTIVE—In type 2 diabetes, chronic hyperglycemia is
detrimental to �-cells, causing apoptosis and impaired insulin
secretion. The transcription factor cAMP-responsive element–
binding protein (CREB) is crucial for �-cell survival and function.
We investigated whether prolonged exposure of �-cells to high
glucose affects the functional integrity of CREB.

RESEARCH DESIGN AND METHODS—INS-1E cells and rat
and human islets were used. Gene expression was analyzed by
RT-PCR and Western blotting. Apoptosis was detected by
cleaved caspase-3 emergence, DNA fragmentation, and electron
microscopy.

RESULTS—Chronic exposure of INS-1E cells and rat and hu-
man islets to high glucose resulted in decreased CREB protein
expression, phosphorylation, and transcriptional activity associ-
ated with apoptosis and impaired �-cell function. High-glucose
treatment increased CREB polyubiquitination, while treatment of
INS-1E cells with the proteasome inhibitor MG-132 prevented the
decrease in CREB content. The emergence of apoptosis in
INS-1E cells with decreased CREB protein expression knocked
down by small interfering RNA suggested that loss of CREB
protein content induced by high glucose contributes to �-cell
apoptosis. Loading INS-1E cells or human islets with a cell-
permeable peptide mimicking the proteasomal targeting se-
quence of CREB blocked CREB degradation and protected
INS-1E cells and human islets from apoptosis induced by high
glucose. The insulin secretion in response to glucose and the
insulin content were preserved in human islets exposed to high
glucose and loaded with the peptide.

CONCLUSIONS—These studies demonstrate that the CREB
degradation by the ubiquitin-proteasome pathway contributes to
�-cell dysfunction and death upon glucotoxicity and provide new
insight into the cellular mechanisms of glucotoxicity. Diabetes
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T
he deterioration of �-cell function and survival
caused by chronic exposure to supraphysiologi-
cal concentrations of glucose is termed gluco-
toxicity (1–6). Evidence (1–8) supports the

notion that increased �-cell death by apoptosis is associ-
ated with the onset of type 2 diabetes. Given the pivotal
role of �-cell mass in determining whether an individual
will progress to type 2 diabetes, there is growing interest in
studies aimed at understanding the mechanisms that con-
trol life and death of �-cells (1–6).

The cAMP-responsive element–binding protein (CREB)
is a transcription factor that binds to the cAMP response
element within the promoter region of many genes. This
transcription factor is essential for glucose homeostasis
and �-cell survival (9–11). Mice that are deficient in CREB
activity, caused by expression of a dominant-negative
A-CREB transgene in �-cells, develop diabetes secondary
to �-cell apoptosis (9). Glucose and glucagon-like peptide
(GLP)-1 activate CREB by phosphorylation at residue
serine 133 via calcium and cAMP pathways to regulate the
expression of �-cell genes, such as the antiapoptotic B-cell
lymphoma 2 (bcl-2) and insulin receptor substrate-2
(IRS-2) genes (9,10). CREB overexpression in MIN6 cells
leads to protection against cytokine-induced apoptosis
(10), while dominant-negative mutant forms of CREB
induce apoptosis and decrease the antiapoptotic action of
growth factors in human islets (11). Pathways that regu-
late CREB phosphorylation have been intensively studied,
while those controlling CREB expression in normal or
pathophysiological situations within �-cells have received
little attention. We reported that the extracellular signal–
regulated kinases (ERKs)1/2 signaling cascade controls
the phosphorylation and protein level of CREB and that
this signaling network plays a key role in �-cell survival
(12).

CREB activity is essential for �-cell survival (9–11).
However, we hypothesize that intracellular concentrations
of CREB may be critical for �-cell survival and function
and can be regulated at the level of protein stability/
degradation. Within its primary structure, CREB presents
a specific sequence known to be a potential proteasomal
targeting sequence. The presence of a functional protea-
some pathway in �-cells (13–17), which has been reported
to be activated by high glucose and to degrade proteins
such as MafA and IRS-2 (13,14), prompted us to examine
whether chronic exposure of �-cells to supraphysiological
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(CNRS), UMR5203, Université Montpellier (IFR3), Montpellier, France;
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concentrations of glucose adversely affects levels of CREB
mRNA and protein expression.

RESEARCH DESIGN AND METHODS

Materials and reagents. Anti-CREB, anti–cleaved caspase-3, anti-bcl2, and
anti-ubiquitin antibodies were from Cell Signaling Technology (New England
Biolabs, Beverly, MA). Anti–phosphoserine133-CREB antibody was obtained
from Upstate (Charlottesville, VA). Anti–activating transcription factor
(ATF)-1 and anti-glucokinase antibodies were from Santa Cruz Biotechnology
(Santa Cruz, CA). Anti–�-actin antibody was obtained from Sigma (St. Louis,
MO). Culture media and FCS were purchased from Life Technologies (Life
Technologies, Grand Island, NY). MG-132 was purchased from Calbiochem
(La Jolla, CA). All other reagents were from Sigma (St. Louis, MO).
Cell culture, electron microscopy, and isolation of rat pancreatic islets.

The rat �-cell line INS-1E was provided by Dr. P. Maechler (Department of
Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva,
Geneva, Switzerland) (18). Electron microscopy was performed as previously
described (12). Islets were isolated from fed male Wistar rats (Charles River,
L’Arbresle, France) (aged 11–14 weeks) weighing 280–320 g (12). Batches of
100–200 islets were cultured in RPMI-1640 medium containing 11 or 30 mmol/l
glucose, 5% BSA, 100 UI/ml penicillin, and 100 mg/ml streptomycin.
Diabetic Goto-Kakizaki rats. Ten- to 12-week-old male nondiabetic Wistar
and diabetic Goto-Kakizaki (GK) rats were maintained at a constant temper-
ature (21°C–23°C) with a 12:12-h light:dark cycle. Food and water were
available ad libitum. The characteristics of the nonobese GK rat model of type
2 diabetes maintained in the colony at the University of Paris 7 have been

described previously (19). Islets were isolated at the University of Paris 7 as
previously described (20). Groups of 300–500 Wistar or GK islets were stored
at �80°C until studied. All rats used in this study were treated in accordance
with European Community guidelines, and the local institution approved the
experimentation.
Human islets processing, DNA fragmentation, and evaluation of insulin

content and secretion. Human pancreata were harvested in three brain-dead
nonobese nondiabetic donors (ages 25, 54, and 67 years) in agreement with
French regulations and the local institutional ethical committee. Human islets
were isolated at the Institut National de la Santé et de la Recherche Médicale
(INSERM) U859 (Lille, France) according to a slightly modified version (21) of
the automated method (22). All experiments on human islets were performed
at INSERM U859 (Lille, France). Islets were cultured in CMRL-1066 supple-
mented with 0.625% BSA, 100 UI/ml penicillin, and 100 mg/ml streptomycin
and containing 5.5 or 30 mmol/l glucose. Apoptosis was evaluated by
determination of histone-complexed DNA fragments (mono- and oligonucleo-
somes) with the Cell Death Detection ELISA kit (Roche Molecular Biochemi-
cals, Mannheim, Germany).

Insulin content was measured by immunoradiometric assay (Sanofi Diag-
nostics Pasteur, Marnes-La-Coquette, France) after insulin extraction of islets
(3 � 40 islet equivalents [IEs] per condition) with 2 mol/l acetic acid
containing 0.2% BSA. For insulin release experiments, islets (5 � 40 IE) were
preincubated for 30 min in RPMI medium containing 10% newborn calf serum
and 2.8 mmol/l glucose and subjected to two successive 1-h incubations with
2.8 (basal) and 20 (stimulation) mmol/l glucose. The stimulation index was
defined as the ratio of stimulated to basal insulin secretion.
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FIG. 1. Apoptosis in INS-1E cells exposed to high-glucose treatment. High glucose concentration led to a time-dependent increase in cleaved
caspase-3. Levels of �-actin are shown as loading control. A: Typical autoradiographs representative of four experiments are shown. B: Graph
representing cleaved caspase-3 levels deduced from quantitative results of four representative experiments obtained from analyses using a
Java-based image processing program (Image J), developed by Wayne Rasband (National Institutes of Health). C: INS-1E cells cultured for 72 h
in 30 mmol/l glucose presented a series of morphological changes at distinct phases of apoptotic process (indicated by arrows in b and c). These
ultrastructures of apoptosis were not detected in INS-1E cells cultured for 72 h in 11 mmol/l glucose (a). Quantification of apoptotic cells
was performed on printed micrographs obtained from three independent experiments. The percentage of apoptotic cells versus normal cells was
evaluated based on the described morphological apoptotic characteristics. At least 150 cells were counted for each condition. The result was
expressed as percent of total cells. (A high-quality digital representation of this figure is available in the online issue.)
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Measurement of CREB activity, quantitative real-time PCR, and CREB

small interfering RNA in INS-1E cells. CREB activity was measured using
transient transfection with a combination of pFR-Luc reporter plasmid
containing Gal4 response elements (2.7 �g) and the fusion transactivator
plasmid pFA2-CREB (0.3 �g), in which the transactivation domain of CREB
is linked to DNA binding domain of Gal4 (Stratagene, La Jolla, CA), as
previously described (10). Quantitative real-time PCR (qRT-PCR) was per-
formed using LightCycler technology (Roche, Meylan, France) as previously
described (12). For the CREB small interfering RNA (siRNA) experiment, 20-
to 25-nucleotide stealth-prevalidated siRNA duplexes designed for rat CREB

were used (Invitrogen, Carlsbad, CA). INS-1E cells were seeded in 12-well
plates in culture medium without antibiotics and grown overnight to reach
30% confluency. The next day, lipofectAMINE2000-siRNA complexes were
prepared according to the manufacturer’s instructions. Three different CREB
siRNA duplexes were tested at final concentrations of 25 (0.12 �g), 50 (0.24
�g), or 100 nmol/l (0.48 �g) in each well. Cells were transfected with CREB
siRNA or control siRNA (which corresponds to a nontargeting 20- to 25-
nucleotide siRNA designed as negative control) for 6 h before switching to
fresh culture medium including antibiotics. Seventy-two hours after transfec-
tion, cells were lysed.
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FIG. 2. CREB expression, phosphorylation, and transcriptional activity in INS-1E cells exposed to high glucose. A: Levels of CREB, P-CREB
(ser133), cleaved caspase-3, ATF-1, and �-actin detected by Western blotting in INS-1E cells cultured for 48 h in 11 or 30 mmol/l glucose. C: Levels
of CREB in INS-1E cells cultured in 30 mmol/l glucose for various times as indicated or in INS-1E cultured in regular cultured medium (control).
As control, levels of cleaved caspase-3 in INS-1E cells cultured in 30 mmol/l glucose for various times or in INS-1E cultured in regular cultured
medium (control) is also shown. Typical autoradiographs representative of 5 to 10 experiments are shown. Graphs representing CREB protein
expression (B and D) and CREB phosphorylation levels (B) deduced from quantitative results of 5–10 representative experiments obtained from
analyses using Image J. �, CREB; o, P-CREB (serine 133). E: Levels of phospho-CREB and CREB detected by Western blotting in INS-1E cells
cultured for 48 h in 11 or 30 mmol/l glucose and then stimulated with 10 mmol/l glucose for 15 min. F: The graph represents levels of
phosphorylation of CREB deduced from quantitative results of 6–10 representative experiments, obtained using Image J. G: Measurement of
luciferase activity in INS-1E cells transiently cotransfected for 6 h with pFR-Luc and pFA2-CREB, cultured for 48 h in 11 or 30 mmol/l glucose
and then stimulated with 10 mmol/l glucose for 4 h.
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Western blotting and immunoprecipitation. Following incubation, cells,
rat, or human islets were lysed for 30 min at 4°C in a lysis buffer as described
(12,23). All samples were normalized for protein content by a Bradford assay,
and equal amounts of proteins (25–50 �g of protein/lane) were analyzed
(12,24,25). For immunoprecipitation, supernatants were incubated with anti-
CREB antibody. Immunocomplexes were precipitated from the supernatant
with protein A/G plus agarose, washed three times with ice-cold lysis buffer,
boiled in Laemmli’s sample buffer, and resolved by SDS-PAGE (25). Proteins
were visualized by chemiluminescence detection (Pierce, Rockford, IL).
HIV-tat peptides treatment. Peptides were synthesized by Eurogentec
(Seraing, Belgium) and added on INS-1E cells for 48 h or on human islets for
72 and 120 h (final concentration 10 �mol/l). Equal volume of the solvent-
carrier DMSO was incubated with cells or islets as a control. To monitor
peptide delivery, INS-1E cells were grown on glass coverslips for 3 days and
incubated for 20 h without (a) or with (b) biotinylated HIV-tat peptide. Cells
were fixed in methanol at 4°C and permeabilized in 0.25% Triton X-100. Cells
were then incubated for 2 h with Texas red–conjugated avidin (1:100 dilution)
in PBS containing 0.25% Triton X-100. Coverslips were mounted using a
polyvinyl alcohol medium and observed with a Leitz DMRB microscope
equipped for epifluorescence (Leica, Solms, Germany).
Statistical analysis. Results are expressed as the means � SE for n

independent experiments. Differences between results were analyzed by using
Student’s t test or ANOVA followed by the Fisher’s least-significant difference
test using Statview 4.1 software (Abacus, Berkeley, CA). A P value of �0.05
was considered significant (*P � 0.05; **P � 0.01; ***P � 0.001).

RESULTS

Chronic exposure of INS-1E cells to high glucose
concentration induces apoptosis. Levels of cleaved
caspase-3, a key executioner and marker of apoptosis (26),
gradually increased between 48 and 72 h in cells exposed
to 30 mmol/l glucose. Exposure of INS-1E cells to 11
mmol/l glucose for 48, 60, and 72 h preserved cells from
apoptosis since no emergence of cleaved caspase-3 was
observed (Fig. 1A and B).

Morphological characteristics of apoptosis were ob-
served by electron microscopy several hours following
cleavage of caspase-3. INS-1E cells exposed to 30 mmol/l
glucose for 72 h presented morphological changes of
apoptotic process, such as margination of chromatin to-
ward the nuclear membrane (Fig. 1C, b, arrows) or
swelling of cytoplasm and fragmentation of condensed
nuclear chromatin into round spheres characteristic of a
later apoptotic phase (Fig. 1C, c, arrows). Enough micro-
photographs were acquired to count �30% of INS-1E cells
with apoptotic characteristics. No apoptotic features were
observed in INS-1E cells cultured in 11 mmol/l glucose for
72 h (Fig. 1C, a).
Chronic exposure of INS-1E cells to high glucose
concentration decreases CREB expression and
function. Treatment of INS-1E cells with 30 mmol/l glu-
cose for 48 h led to a 42 � 5% decrease in CREB protein
content, while the CREB-like transcription factor ATF-1
remained unaffected (Fig. 2A and B). Full activation of
CREB requires phosphorylation at serine 133 (27). The
serine 133 phosphorylation of CREB decreased by 51 � 5%
in cells exposed to 30 mmol/l glucose for 48 h (Fig. 2A and
B). CREB levels markedly declined with high-glucose
treatment reaching minimal levels by 72 h (Fig. 2C and D).

We measured CREB activity in response to acute glu-
cose stimulation in high-glucose–treated INS-1E cells. We
assessed the serine 133 phosphorylation of CREB in cell
lysates and carried out transient transfection assays with
two plasmids that measure specifically the promoter ac-
tivity mediated by the transactivation domain of CREB
(10). In cells exposed to high glucose for 48 h, glucose-
stimulated CREB phosphorylation at serine 133 was al-
most completely abolished (Fig. 2E and F) and glucose-

induced CREB reporter activity was drastically decreased
(Fig. 2G).
High-glucose exposure affects CREB protein expres-
sion in rat islets. Following isolation, islets were cul-
tured in 11 mmol/l glucose for 24 h and exposed to 11 or 30
mmol/l glucose for 48 or 96 h. While a 48-h exposure of
islets to high glucose had no effect on CREB protein

A B

C D

E F

FIG. 3. CREB protein expression in isolated rat islets exposed to
high-glucose concentration and in isolated GK rat islets. A: Levels of
CREB and cleaved caspase-3 detected by Western blotting in rat
islets cultured for 48 h in 11 or 30 mmol/l glucose. B: Results are
quantified using Image J (ns, not significant). C: Levels of CREB and
cleaved caspase-3 detected by Western blotting in rat islets cultured
for 96 h in 11 or 30 mmol/l glucose. D: Results are quantified using
Image J. The most representative blots obtained from three inde-
pendent experiments are shown. E: Levels of CREB detected by
Western blotting in control and GK rat islets. Levels of �-tubulin are
shown as loading control. The most representative blots obtained
from three independent experiments are shown. F: Results are
quantified using Image J.
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expression (Fig. 3A and B), a 96-h exposure of islets to
high glucose induced a 43 � 6% reduction in CREB protein
expression associated with the emergence of cleaved
caspase-3 (Fig. 3C and D).

We verified whether hyperglycemia leads to CREB pro-
tein degradation in vivo. We used the GK rat model, one of
the best-characterized animal models of spontaneous type
2 diabetes (19). Notably, we found a significant (�47%)
reduction in CREB protein expression in islets isolated
from GK rats, demonstrating that hyperglycemia leads to
CREB degradation in vivo (Fig. 3E and F).
Loss of CREB protein expression leads to �-cell
apoptosis. To evaluate whether CREB downregulation
might play a role in the progression of �-cell apoptosis
induced by the high-glucose exposure, the expression of
CREB was silenced by siRNA to the same extent as observed
in INS-1E cells exposed to high glucose for 48 h (i.e., �50%
decrease in CREB protein content). Transfection of INS-1E
cells using 25, 50, and 100 nmol/l of CREB siRNA resulted in
�20, �50, and �85% knockdown of CREB protein content,
respectively, and gradual emergence of cleaved caspase-3
(two- and fourfold increase for 50 and 100 nmol/l CREB
siRNA, respectively) (Fig. 4A). An �50% loss of cellular
CREB protein content, similar to the level of CREB observed
following 48 h of high-glucose exposure, causes the emer-
gence of cleaved caspase-3 (Fig. 4B).
High-glucose–induced CREB degradation is mediated
by the ubiquitin-proteasome pathway. The ubiquitin-
proteasome pathway plays an important role in the degra-
dation of regulatory proteins, including transcription
factors (28). Examination of the rat primary structure of
CREB revealed a specific sequence known to be a poten-
tial proteasomal targeting sequence (29,30). This motif
belongs to a homologous consensus sequence family
(DSUXXS, where D is aspartic acid, S is serine, U is a
hydrophobic amino acid, and X is any amino acid) (29).
The CREB sequence (DSVTDS) is closely located to lysine

residue(s) and is found between residues D116 and S121

within a 60-residue region of CREB called kinase-inducible
domain (KID) (Fig. 5A) (27). The DSVTDS sequence does
not exist within other proteins including CREB-related
ATF transcription factors and is conserved in the human
primary structure of CREB (ref. 30 and S.C., S.D., unpub-
lished observations). While CREB protein content was
clearly decreased (Fig. 2A and B), we found that CREB
mRNA levels were not altered in INS-1E exposed for 48 h
to high glucose (Fig. 5B), indicating that the decreased
CREB protein expression occurs most probably at a
posttranscriptional level.

Proteins are targeted for proteasome-mediated degrada-
tion by covalent attachment of multiple moieties of ubiquitin
to lysine residue (28,29). We next sought to establish whether
CREB becomes polyubiquitinated upon 48 h of high-glucose
treatment. CREB was immunoprecipitated from cell lysates
and then subjected to Western blotting for the detection of
ubiquitin. The blot shows an increase in polyubiquitinated
CREB at 48 h of high-glucose exposure (Fig. 5C).

We evaluated the levels of CREB content in INS-1E cells
exposed to high glucose for 48 h and treated for the last 12 h
with or without the proteasome inhibitor MG-132. The lowest
concentration of MG-132 (150 nmol/l) and a 12-h treatment
were used to avoid cytotoxicity (31). Treatment of cells with
MG-132 totally prevented CREB protein degradation induced
by the high-glucose exposure and partially preserved CREB
phosphorylation at serine 133 (Fig. 5D).

Depending on the cell type, inhibition of the proteasome
using MG-132 leads to cell survival or apoptosis (32,33).
We verified whether inhibition of the proteasome activity
with MG-132 prevented glucotoxicity. Although treatment
of cells with MG-132 prevented CREB protein degradation
induced by the high glucose (Fig. 5D), this treatment did
not prevent apoptosis of cells exposed to 30 mmol/l
glucose but, rather, increased cleaved caspase-3 levels.
This treatment also increased cleaved caspase-3 levels in
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cells exposed to 11 mmol/l glucose (Fig. 5E). Thus, it is
likely that inhibition of the proteasome in �-cells blocks
not only the degradation of key survival factors, such as
CREB, but also the degradation of proapoptotic factors
and damaged, misfolded, or misassembled proteins, which

favors the accumulation of numerous deleterious signals
for �-cell survival reinforcing the emergence of apoptosis.
These results further suggest that pharmacological block-
ade of the proteasome does not protect �-cells against the
apoptosis induced by high glucose. Hence, using a protein

Potential sequence for targeting to proteasomal degradation
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by quantitative RT-PCR in INS-1E cells cultured for 48 h in 11 or
30 mmol/l glucose deduced from three independent experiments. C: A
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munoprecipitated proteins were resolved by SDS-PAGE and
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control. A representative exposure is shown from five independent
experiments. D: Effect of MG-132 (150 nmol/l) on CREB and P-CREB
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experiments are shown. The graphs represent levels of CREB and
P-CREB and deduced from quantitative results of five independent
experiments obtained using Image J. E: Effect of MG-132 on cleaved
caspase-3 levels. Typical autoradiographs representative of five inde-
pendent experiments are shown. �-Actin levels are also shown as
internal and loading control. (A high-quality digital representation of
this figure is available in the online issue.)
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transduction technology, we tested whether blocking CREB
polyubiquitination and its proteasome degradation may pro-
tect �-cells against the deleterious effects of hyperglycemia.
Peptide mimicking the CREB proteasomal targeting
sequence inhibits high-glucose–mediated CREB deg-
radation and protects INS-1E cells from apoptosis.
The potential role of the DSVTDS sequence in targeting
CREB to the proteasome for degradation was investigated.
INS-1E cells were exposed to high glucose and loaded with
synthesized cell-permeable peptide mimicking the CREB
proteasomal targeting sequence. Protein transduction do-
mains (PTDs), such as the small PTD from the tat protein

of HIV-1, allow the efficient delivery of proteins and
peptides into cells through the plasma membrane (34). A
scrambled peptide and a 10–amino acid peptide derived
from the CREB proteasomal targeting sequence were
covalently linked at their NH2-terminus to a 12–amino acid
carrier peptide derived from the HIV-tat sequence (Table
1). To monitor peptide delivery, INS-1E cells were incubated
with HIV-tat peptides conjugated with biotin. Texas red–
conjugated avidin incubation reveals that the peptides en-
tered the cells and were localized mostly in the cytoplasm as
well as in the nucleus and in the nucleolus (Fig. 6A).

Although the scrambled peptide (Scr) had no effect on
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TABLE 1
Sequences of synthetic peptides

HIV-tat peptide Sequences

Scr: scrambled peptide control H2N-YGRKKRRQRRRGSTKVDSQRDV-COOH
Tat-CREB: CREB targeting sequence peptide H2N-YGRKKRRQRRRGVDSVTDSQKR-COOH

P P

2P tat-CREB: 2P CREB targeting sequence peptide H2N-YGRKKRRQRRRGVDSVTDSQKR-COOH

HIV-tat peptide sequence is underlined, scrambled peptide is in italics, and CREB targeting sequence is in bold.
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CREB downregulation, the CREB proteasomal targeting se-
quence HIV-tat peptide (tat-CREB) totally blocked CREB
degradation induced by high glucose, indicating that the
DSVTDS sequence plays a key role in targeting CREB to the
proteasome (Fig. 6B). Because we noticed the presence of
phosphorylable serine residues within the proteasomal tar-
geting sequence of CREB, we synthesized a double serine
phosphorylated CREB proteasomal targeting sequence HIV-
tat peptide (2P tat-CREB) (Table 1). Interestingly, loading
INS-1E with the 2P tat-CREB peptide inhibited the CREB

downregulation (Fig. 6B), suggesting that high-glucose–in-
duced phosphorylation of the DSVTDS sequence also plays a
role for the targeting of CREB to proteasomal degradation.

To further assess the hypothesis that the lack of CREB
observed following high-glucose exposure contributes to the
emergence of �-cell apoptosis, we measured the levels of
cleaved caspase-3 in INS-1E cells loaded with the CREB
proteasomal targeting sequence peptide and displaying a
complete preservation of CREB protein expression (Fig. 6B).
Notably, emergence of cleaved caspase-3 induced by high
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glucose was significantly reduced, by 51 � 5%, in cells loaded
with the CREB proteasomal targeting sequence peptide (Fig.
6C and D).
CREB proteasomal targeting sequence peptide pro-
tects human islets from glucotoxicity-induced apopto-
sis, insulin content decrease, and insulin secretion
failure. Studies reported that HIV-tat peptides transduced
practically 100% of the islet cell population and that the
delivery was even highly effective in cells located in the
inner core region of the human islets (35,36). We investi-
gated whether loading cultured human islets with the
CREB proteasomal targeting sequence peptide protects
them from apoptosis induced by chronic high-glucose
exposure over time. Human islets were exposed to culture

medium containing 5.5 or 30 mmol/l glucose for 72 or
120 h, and DNA fragmentation, which reflects apoptosis
(37), was determined. DNA fragmentation gradually in-
creased between 72 and 120 h in islets exposed to 30
mmol/l glucose compared with islets exposed to 5.5
mmol/l glucose (Fig. 7A). Loading human islets with the
CREB proteasomal targeting sequence peptide blocked by
�62 and �100% the DNA fragmentation induced by a 72 or
120 h exposure to high-glucose concentration, respec-
tively, indicating that the peptide is very efficient in
protecting human islets from the deleterious apoptotic
effect of glucotoxicity (Fig. 7A).

We determined CREB protein expression in human
islets chronically exposed to high glucose and loaded with
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the CREB proteasomal targeting sequence peptide. A
120-h exposure of human islets to high glucose induced a
drastic reduction in CREB protein content (Fig. 7B). The
Scr peptide had no effect on CREB downregulation,
whereas the tat-CREB peptide totally blocked CREB deg-
radation in human islets exposed to high glucose (Fig. 7B).

Chronic high-glucose exposure of �-cells deteriorates
not only �-cell survival but also insulin secretion and
insulin transcription (1–8). Indeed, we observed that insu-
lin content and insulin secretion in response to glucose
(stimulation index in the graph) were significantly de-
creased by 42 and 74%, respectively, in human islets
exposed for 120 h to a high-glucose concentration (30
mmol/l) (Fig. 7C and D). Notably, we observed that
loading human islets with the CREB proteasomal targeting
sequence peptide totally prevented glucotoxicity-induced
insulin content decrease and insulin secretion failure (Fig.
7C and D), indicating that the human islets loaded with the
peptide are viable and functional and protected against the
deleterious effects of glucotoxicity.

These observations suggest that the preservation of
CREB expression in �-cells is essential for survival but
also favors the maintenance of an efficient glucose sens-
ing. Notably, we found that loading INS-1E cells with the
CREB proteasomal targeting sequence peptide totally
prevented high-glucose–induced downregulation of the
antiapoptotic protein bcl-2 and of the glucose sensor
glucokinase (38) (Fig. 7E).

DISCUSSION

Here, we report that high-glucose treatment of �-cells
increased CREB polyubiquitination and that inhibition of
the proteasome activity or loading �-cells with a peptide
mimicking the CREB proteasomal targeting sequence
blocked high-glucose–mediated downregulation of CREB.
A large family of ubiquitin protein ligases recognize spe-
cific motifs in protein substrates, allowing polyubiquitina-
tion to proceed. Modifications of these motifs, such as
serine phosphorylation induced by protein kinases, may
render them susceptible to recognition by the ubiquitin
ligases (28,29). Hence, it is likely that some high-glucose–
induced modifications of the CREB proteasomal targeting
sequence and/or high-glucose–activated serine kinase(s)
allows a specific ubiquitin ligase or a specific enzymatic
complex to act on CREB for polyubiquitination with
subsequent proteasomal degradation. Regarding the data
obtained with the nonphosphorylated and the double-
phosphorylated CREB proteasomal targeting sequence, it
can be hypothesized that upon high-glucose exposure, the
DSVTDS sequence of CREB is specifically recognized by a
protein complex allowing the recruitment of one (or two)
CREB kinase(s) (which remain to be identified) and the
phosphorylation of the serines within the sequence. The
polyubiquitination apparatus recognizes this phosphory-
lated degradation signal. This triggers the polyubiquitina-
tion of nearby lysine(s) and the subsequent proteasomal
degradation. Since chronic oxidative stress has been pro-
posed to be a central mechanism for glucotoxicity in
�-cells (5,39), it is possible that the oxidative stress
generated by chronic exposure to high glucose plays a role
in the recruitment of the molecular mechanism(s) target-
ing CREB to the proteasome pathway for degradation.
Moreover, it has been reported that the association of
small ubiquitin-related modifier-1 (SUMO1) with CREB
stabilizes and promotes nuclear localization of CREB (40).
Since a potential role of SUMO in �-cells has recently

emerged (41,42), it is now also of interest to investigate
whether SUMOylation may play a role in CREB degrada-
tion and CREB-targeted degradation process.

Chronic hyperglycemia is now well-known to have
severe adverse effects on �-cell survival and function as a
reduction of insulin secretion in response to glucose and
insulin stores termed glucotoxicity (1–8). Hence, the pres-
ervation of a functional �-cell mass has become the major
point of research in type 2 diabetes, and the future therapy
of type 2 diabetes aims at protecting the �-cell from
apoptotic death (1–6). Notably, we found that the insulin
secretion in response to glucose and the insulin content
were totally preserved in human islets exposed to high
glucose and loaded with the CREB proteasomal targeting
sequence peptide. This suggests that the preservation of
CREB protein expression in �-cells is essential for survival
and also favors the maintenance of an efficient glucose
sensing, exocytosis machinery, and insulin gene transcrip-
tion. In line with this, we found that protecting CREB from
degradation by loading INS-1E cells with the CREB pro-
teasomal targeting sequence peptide totally prevented
high-glucose–induced downregulation of the antiapoptotic
protein bcl-2 and glucokinase. The bcl-2 gene is transcrip-
tionally regulated by CREB (10). However, whether the
glucokinase gene is transcriptionally regulated directly or
indirectly by CREB remains to be elucidated. With respect
to the role of chronic oxidative stress in �-cell death, it can
be further hypothesized that CREB may also control the
expression of key enzymes that counteract the emergence
of oxidative stress.

Preventing apoptosis of �-cells also holds promise to
improve islet transplantation outcomes as a treatment of
type 1 as well as type 2 diabetes (21,22,43). Following
transplantation, islets undergo drastic apoptosis that lim-
its their function and long-term islet graft survival
(21,22,44). Among the detrimental effects, transplanted
islets have to fight against the hyperglycemic excursions of
the recipient (44). Because of its ability to protect the
viability and the glucose sensitivity of human islets ex-
posed to high glucose, the CREB proteasomal targeting
sequence peptide could be an asset in the preparation of
islets for transplantation.

In conclusion, we report that chronic exposure of
�-cells to high-glucose concentrations decreased CREB
protein expression due to ubiquitin-proteasome–mediated
degradation. Protection of CREB from degradation in
�-cells chronically exposed to high-glucose concentration
not only favors �-cell survival but also preserves glucose
sensing, insulin gene transcription, and insulin secretion.
Thus, our data demonstrate that CREB protein expression
levels within the �-cells are essential for the control of a
functional �-cell mass. These studies also illustrate that a
specific blockade of CREB targeting to proteasomal deg-
radation may be therapeutically useful to protect �-cells
from the deleterious effects of chronic hyperglycemia.
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