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Blood vessel imaging using 
radiofrequency-induced second 
harmonic acoustic response
Yuanhui Huang   1,2, Stephan Kellnberger1,2,3, George Sergiadis1,4,5 & Vasilis Ntziachristos1,2

We introduce a contrast mechanism for visualizing blood vessels based on radiofrequency-induced 
second harmonic acoustic (RISHA) signals sensing blood conductivity. We develop a novel imaging 
system using commonly available inexpensive components, and demonstrate in vivo RISHA 
visualization of blood vessels based on low-power quasi-continuous radiofrequency excitation of tissue 
at frequencies of a few MHz. We show how the novel approach also implicitly enables radiofrequency-
induced passive ultrasound imaging and can be readily applied to non-invasive imaging of blood vessels 
ex vivo and in vivo. We discuss the implications of non-invasive conductivity measurements in the 
context of biomedical applications.

Vascular imaging plays a central role in the assessment of blood vessels and can be used to diagnose diseases 
related to abnormal blood flow1–3. Different contrast mechanisms have been explored for non-invasive portable 
imaging of tissue vasculature. While existing methods exploit different properties of blood to visualize vascula-
ture, the underlying contrast mechanisms inherently limit the application of these methods in vascular imaging. 
Ultrasonography exploits differences in the reflection of ultrasound (US) waves between vascular structures and 
surrounding tissue, allowing the visualization of large blood vessels as hypoechoic regions4,5. Such a method can 
also identify vessel functionality by detecting Doppler shifts in emitted ultrasonic frequencies because of blood 
flow5–7. Optoacoustic imaging7,8, based on the strong optical absorption by hemoglobin, also allows visualization 
of vessels, typically over a larger diameter span than conventional ultrasonography9,10. Optical coherence tomog-
raphy11 has also been considered for imaging fine vasculature, based on variations of reflected light due to blood 
flow, but it is suited for visualizing only superficial vessels at depths of about 400 microns. In contrast to using 
mechanical waves or optical energy, higher-energy photons do not provide adequate contrast for blood vessels. 
Consequently, X-ray computed tomography12,13 requires the use of iodine-based contrast agents. Similarly, mag-
netic resonance angiography14 requires gadolinium-based contrast agents for vasculature imaging.

In this work, we explore a new, agent-free contrast mechanism for non-invasive blood vessel imaging. We 
show for the first time that radiofrequency (RF) energy can be used for high-resolution label-free blood ves-
sel visualization based on difference in electrical conductivity between blood and surrounding tissues. We 
explain the basis of radiofrequency-induced second harmonic acoustic (RISHA) generation and explain how 
quasi-continuous RF waves in the MHz range, delivered by energy coupling in the near-field, can be employed 
to visualize vasculature in vivo and ex vivo. We develop a RISHA sensing modality and investigate whether RF 
fields with wavelengths exceeding 10 meters can enable RISHA imaging of small vasculature in mice. We further 
examine the dependence of blood RISHA response on oxygenation state and demonstrate the implicit ability of 
the new modality to produce RF-induced passive ultrasound images.
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Results
Concept of the RISHA signal generation.  We have recently15,16 shown that electrically conductive mate-
rials exposed to continuous wave (CW) radiofrequency excitation at frequency fRF emit ultrasonic (RISHA) waves 
at double the frequency of the excitation radiofrequency wave, i.e. 2 × fRF. RISHA waves ω→p r( , ) at angular fre-
quency ω and detected at position →r  result from the absorption of RF energy by the conductive material. RISHA 
wave can be described using the thermoacoustic wave equation in the frequency domain, assuming an RF electric 
field (E-field) source15:
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where ∇2 denotes the spatial Laplacian operator, vs is the acoustic speed in medium, β is the thermal expansion 
coefficient, Cp is the specific heat capacity, σ →r( ) is the spatial distribution of electrical conductivity of the medium 
imaged, ω→Ê r( , )0  is the spectral E-field amplitude in the medium, and = −j 1. Assuming the applied E-field 
has an angular frequency ω0 = 2πfRF, i.e. ω π→ = → = →E r t e E t e E f t( , ) cos( ) cos(2 )r r RF0 0 0 , the RF power distribution 
in the Fourier domain can be then calculated as:

→ ω π → δ ω ω δ ω ω δ ω= − + + +Ê r E e( , )
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Substituting Eq. (2) into Eq. (1) and solving for the RISHA wave p r( , )ω→  yields a second harmonic acoustic pres-
sure wave with a frequency resonating at two times the E-field frequency ω = 2ω0, i.e. fRISHA = 2 × fRF. For example, 
it has been shown15,16 that conductive materials absorbing RF energy with fRF = 3.1 MHz generate RISHA waves 
at fRISHA = 2 × fRF = 6.2 MHz, based on the thermoacoustic effect.

Second harmonic acoustic wave generation in thermoacoustics is universal to all excitation frequencies and 
not limited to the RF spectrum. While we show second harmonic acoustic waves only at RF frequencies, this 
phenomenon is also occurring at higher frequencies in the GHz and THz band. However, the detection of GHz 
and THz acoustic waves is technically challenging due to the unavailability of acoustic detectors in this frequency 
band and the strong acoustic attenuation. Therefore, as a proof-of-concept study, we chose a relatively low fre-
quency in the RF range for RISHA sensing, because (1) the second harmonic acoustic wave is within the detection 
bandwidth of our transducers, (2) the acoustic attenuation is moderate as acoustic attenuation increases as an 
exponential function of frequency, and (3) low frequency RF enables higher penetration depths in tissue.

RISHA imaging set-up.  We hypothesized that near-field15–19, narrowband RF excitation in the low-MHz 
range can generate RISHA responses from blood and that these responses can be detected and reconstructed into 
blood vessel images based on differences in electrical conductivity between blood and surrounding tissues. To 
test this hypothesis, we implemented a RISHA experimental setup consisting of a custom-built coil to couple RF 
energy to a sample in its near-field (Fig. 1a). In contrast to typical thermoacoustic imaging implementations20, 
which irradiate the sample in the far-field21,22 usually at GHz-range frequencies, near-field energy coupling ena-
bles optimal RF energy deposition even in the few-MHz range and minimizes the requirement for high-power 
pulsers15–19,23. Figure 1a shows diagrammatically the RISHA imaging set-up (see Methods), which comprises a 
custom-built 3.2 MHz RF generator emitting 12 µs RF-field bursts at a maximum energy of 765 mJ and repetition 
rate of 1–50 Hz, a homemade coil to couple energy to samples in its near-field, and a 10-MHz transducer (focus, 
25.4 mm; central frequency, 10 MHz; f-number, 2) to capture RISHA responses. The coil, samples, and transducer 
are immersed in de-ionized water (electrical conductivity < 5.5 × 10−6 S/m) for optimal RF energy and RISHA 
wave coupling. The transducer is mounted on a xy stage for raster scans with 100-µm step size.

Figure 1b schematically describes the temporal signals involved in RISHA sensing. During an RF excitation, 
electromagnetic coupling of the RF field to the piezoelectric transducer causes transducer relaxation15,17,18,24, 
which generates pulse/echo US signals approximately 60 dB weaker than the signal generated by a conventional 
pulser/receiver unit (Model 5077PR, Olympus-Panametrics, USA), as shown in Supplementary Text 1 and Fig. S1. 
To separate RISHA signal in temporal sequence from the transducer relaxation, we applied the quasi-CW excita-
tion, instead of CW excitation, as the narrowband RF excitation (0.16 MHz bandwidth defined by full-width at 
half-maximum, FWHM). Likewise, quasi-CW excitation enables also the temporal separation of RISHA and echo 
US signal that is generated during transducer relaxation. The echo US signal is herein exploited for simultaneous 
ultrasonography imaging of hyperechoic target based on time-of-flight (TOF) measurements. For instance, by 
placing the transducer 18 mm away from the sample imaged, RISHA signals can be detected 12 µs after excitation, 
i.e. 1 × TOF required to traverse the distance from sample to detector, as shown in Fig. 1b,c. As previously demon-
strated15,16, the RISHA signals oscillate at the second harmonic of the excitation radiofrequency: fRISHA = 2 × fRF. 
At 2 × TOF, the detector also records the pulse-echo US signal emitted during its RF-induced relaxation. This US 
signal exhibits a frequency fUS = fRF. RISHA set-up using quasi-CW excitation enables co-registered dual-mode 
RISHA/US imaging based on the difference either in frequencies or TOFs measurement (see Methods for details 
of signal processing and image formation).

RISHA sensing: whole blood.  Figure 1c shows the simultaneous RISHA and RF-induced US signals 
detected from a polyethylene tube containing mouse blood. The blood sample was excited by the quasi-CW 
RF-field bursts of fundamental frequency fRF = 3.2 MHz, and the resulting RISHA waves were detected at the 
second harmonic of fRF, i.e. fRISHA = 2 × fRF = 6.4 MHz, occurring at a TOF of 15–20 µs after the start of the RF 
emission. At 2 × TOF (30–40 µs) of the same sequence, ultrasound echoes of the tubing walls were detected. The 
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frequency spectra of the generated RISHA waves and the US echoes are shown in the Fourier analysis in the inset 
of Fig. 1c. This first demonstration of blood sensing based on its electrical conductivity was achieved herein with 
second harmonic acoustic signals, due to the use of quasi-continuous excitation and near-field coupling.

RISHA imaging performance.  To characterize the RISHA-based blood imaging system and assess its 
performance, we first analyzed the RISHA responses from a pair of crossed copper wires (200 µm in diameter) 
soldered together at their crossover point (Fig. 1d). RISHA imaging of the copper wire phantom was performed 
by scanning the transducer in the xy plane in steps of 100 µm. Figure 1e shows the maximum intensity projec-
tion (MIP) of RISHA responses of the crossed copper wires, based on RF energy absorption from the wires (see 
Methods for details of signal processing and image formation). Figure 1f shows the corresponding US echo image, 
related to the acoustic impedance of the wires. Figure 1g shows the co-registered dual-mode RISHA/US image, 
illustrating the complementary contrast of the RISHA signal (rendered in red) to the US echo signal (rendered 
in green). The US image appears as a ‘shadow’ of the RISHA image and does not overlap perfectly, due to the 
constructive and destructive interference patterns of its narrowband acoustic signals, similar to the effect that 
was reported by Mohajerani et al.25 and confirmed by our simulations using k-Wave12 (see Methods for k-Wave 
simulation, Supplementary Text 2 and Fig. S2).

Figure 1h shows a line profile of the RISHA image of copper wires (along white arrow in Fig. 1e), indicating 
a target-to-background ratio (TBR) of 20 dB in the RISHA image. Deconvolution26 of the estimated FWHM by 
the wire diameter indicates a lateral resolution of 475.3 µm, consistent with the diffraction-limited resolution 
of 469 µm of the transducer at 6.4 MHz. The achieved lateral resolution is approximately 1/(2.2 × 104) of the 
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Figure 1.  RISHA imaging set-up and tests on blood and copper wires. (a) Schematic of RISHA set-up. A 
function generator (FG) triggers a radiofrequency generator (RF Gen) to produce RF-field bursts. A coil couples 
RF energy to the samples (S) within its near-field. The induced RISHA waves are detected by an ultrasound 
transducer (T). The transducer also transmits ultrasound (US) waves due to electromagnetic coupling of the RF 
field. The coil, sample, and transducer are immersed in de-ionized (DI) water. Translational stages (not shown) 
scan the transducer in the xy plane. (b) Temporal signals involved in RISHA sensing. The transducer records 
at the beginning the relaxation signal during quasi-CW RF excitation induced by electromagnetic coupling 
(purple, frequency fRF), and the US echoes (green, fUS = fRF) at a time of flight of a roundtrip (2 × TOF). RISHA 
waves (red, fRISHA = 2 × fRF) are detected at 1 × TOF. (c) RISHA response of mouse blood in a polyethylene tube. 
The 0–12 µs activity corresponds to the transducer relaxation due to RF coupling. RISHA responses and US 
echoes have different TOFs. Inset Fourier transform (FFT) shows the differences of their spectral frequency: 
ultrasound at fUS = fRF = 3.2 MHz; RISHA at fRISHA = 2 × fRF = 6.4 MHz. (d–h) Dual-mode RISHA/US imaging of 
copper wires soldered at their crossover point. (d) Photograph of the wires. (e) RISHA image. The dashed arrow 
indicates the line scanned in panel h, and brown arrows indicate side lobes due to acoustic interference. (f) US 
image. (g) Co-registered RISHA (red) and US (green) images. (h) Line profile showing a target-to-background 
ratio (TBR) of 20 dB and a resolution of 475.3 µm. Scale bar, 2 mm.
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3.2-MHz RF wavelength used, which is 10.5 meters in de-ionized water. This ratio of RISHA resolution to RF 
wavelength is constant for a given detector f-number, which was 2 in our case (see Methods for detailed analysis 
of imaging resolution).

The axial resolution of RISHA is measured to be ~1.35 mm using the same copper wire due to the relatively 
long duration of the RF excitation burst, as shown in Supplementary Fig. S3c,d and Text 3. We also note that 
the axial resolution of RISHA is not limited to 1.35 mm, but can be improved by applying shorter RF-bursts for 
RISHA signal excitation, and converting RISHA to higher excitation frequencies in the order of 10–100 MHz17–19.

To study the penetration depth of our RISHA imaging set-up, we imaged a copper wire of 1 mm in diameter 
at different depths within chicken muscle (Supplementary Text 4 and Fig. S4). The results suggest that the loss/
decay of near-field RF energy in thick conductive tissue has a significant impact on the penetration depth of 
RISHA imaging. In its present state, the dual-mode RISHA/US imager can visualize conductive materials, such as 
copper wires, with a RISHA target-to-background ratio of 6 dB to a depth of 25 mm in muscle tissue (ultrasound 
attenuation in soft tissue27 is 0.75 dB/cm/MHz).

RISHA imaging of blood phantoms.  Whole blood exhibits good electrical conductivity (0.98 S/m at 
3 MHz), suggesting nearly two-fold (6 dB) greater RF absorption than muscle tissue28 (0.57 S/m) and 36% less 
RF absorption than physiological saline solution29 (1.54 S/m). We examined the RISHA signals collected from 
four polyethylene tubes (Fig. 2a) filled with vegetable oil, an aqueous solution of anticoagulant ethylenediamine 
tetraacetic acid (EDTA, 20.1341 µL/500 µL), mouse blood with the same EDTA concentration as the aqueous 
solution, or 0.9% physiological saline solution (see Methods for sample preparation). The RISHA image (Fig. 2b; 
rendered in red) shows the RF-absorbing contents of the tubes, which is not seen by ultrasonography (rendered 
in green). While the US image shows similar signals for all four tubes, RISHA responses vary as expected with 
electrical conductivity. We show in Fig. 2c the average RISHA/US responses along the y-axis of Fig. 2b, together 
with the standard deviation of the measurements. No RISHA signal was detected from the oil tube, since oil 
has negligible conductivity at 3.2 MHz, and relatively low RISHA signals were detected from the anticoagulant 
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Figure 2.  RISHA imaging of blood phantoms. (a–c) Imaging of polyethylene tubes (φ3 mm) filled with 
vegetable oil, an aqueous solution of anticoagulant EDTA, mouse blood containing the same EDTA 
concentration as the aqueous solution, or 0.9% NaCl. (a) Photograph of the tubes. The blue box indicates the 
scanned region. (b) Co-registered RISHA (red) and US (green) images. The dashed brown box is analyzed 
in Supplementary Fig. S2. The yellowish color is a result of adding red with green showing the overlapping 
area of the two contrasts. (c) Average of signals from panel b along y-axis (40 rows/measurements) showing 
relative amplitudes of RF absorption (solid red) and US echo (dashed green) in x-axis. The shaded color patches 
that is surrounding the average signal show the standard deviation of the measurements. (d–g) Imaging of 
a synthetic phantom containing a tube of mouse blood (B) overlaid on side-by-side pieces of porcine fat (F) 
and muscle (M). (d) Photograph of the phantom. (e) RISHA image. The dashed blue box indicates the region 
analyzed in panel g. (f) Co-registered RISHA and US images. The yellowish color is a result of adding red with 
green showing the overlapping area of the two contrasts. (g) Average of RISHA signals in the dashed box in 
panel e, along the y-axis. The resulting projection along the x-axis shows two-fold higher RF absorption (TBR 
6 dB) by blood than by muscle. (h–k) Imaging of ex-vivo chicken tissue containing a blood vessel and muscle. 
Arrows indicate blood vessel. (h) Photograph of the tissue. (i) RISHA image. The dashed arrow indicates a line 
profile analyzed in panel k. (j) Co-registered RISHA and US images. (k) Line profile of RISHA signals along the 
dashed arrow in panel i showing two-fold higher RF absorption by blood than by muscle. Scale bars are 2 mm.
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EDTA. Conversely, saline demonstrated the highest RISHA signals, and signals from blood showed an amplitude 
of ~85% of that of saline. The US images in these experiments (Fig. 2b) showed ‘shadows’, like the ones observed 
with copper wires (Fig. 1f), which we again attribute to narrowband US wave interference (see Supplementary 
Text 2 and Fig. S2).

To assess the sensitivity of the RISHA signals to the electrical conductivity differences between blood and 
surrounding tissue ex vivo, we imaged a synthetic experimental sample consisting of a polyethylene tube filled 
with mouse blood and overlaid with pieces of porcine fat and muscle tissue placed side-by-side (Fig. 2d). RISHA 
imaging (Fig. 2e,f) clearly resolves the blood and muscle tissue with the expected contrast of 6 dB (Fig. 2g), con-
sistent with the conductivity-based differences of RF absorption. Because of its low conductivity28 (0.026 S/m), 
fat tissue was invisible on the RISHA image (Fig. 2e). The tubing and surrounding tissues were visible in the US 
image (Fig. 2f) because of their strong reflectivity of US waves. The yellow areas in Fig. 2f show the overlap of 
RISHA signals (red) and US reflections (green). The blood tube appeared thinner on the fat-tissue side in the 
RISHA image in Fig. 2e, whereas the US image in Fig. 2f indicates that the transducer remained focused along 
the tube. Therefore, the RISHA signal decrease is unlikely due to the angulated positioning of the tube relatively 
to the transducer aperture. Instead, this RISHA signal variation can be attributed to the natural sedimentation 
of red blood cells toward the bottom of the tube, where RF absorption decreases because red blood cells are less 
conductive than the blood plasma in the upper part of the tube28,30. While in Fig. 2b the transducer is focused on 
the rear wall of the tubing sample, in Fig. 2f the focus of transducer is placed to the center of the tube sample. Due 
to different foci alignments and the resulting interference of narrowband US waves, the shadow artifact is not 
visible in Fig. 2f (see also Supplementary Text 2 and Fig. S2).

We further explored whether RISHA imaging could resolve intrinsic contrast of vascular structures within 
chicken muscle ex vivo. A chicken tissue of ~3 mm thick containing a blood vessel (Fig. 2h) was imaged over a 
14 mm × 5 mm field of view and clearly revealed an image of the blood vessel with 6-dB contrast between blood 
and muscle (Fig. 2i,k) and 500-µm resolution. Figure 2j shows the dual-mode RISHA/US image. The US image 
(green) shows practically no contrast between vasculature and surrounding muscle. Equivalent results were 
obtained from thicker (5 mm) and more heterogeneous ex vivo samples of chicken meat containing dermis, fat 
and muscle (see Supplementary Text 5 and Fig. S5). In these cases, RISHA imaging resolved vasculature located 
>3 mm below the surface with a TBR of 12 dB.

RISHA imaging of mouse vasculature.  To complement studies on synthetic phantoms and ex vivo tissue, 
we performed RISHA imaging of a mouse ear after euthanasia. Figure 3a shows the hybrid RISHA/US image 
overlaid on the microscopic photograph of the scanned mouse ear, revealing that RISHA imaging allows visual-
ization of small vessels in mouse ear with a resolution of ~500 µm, consistent with both our experiments of res-
olution characterization using copper wire and the diffraction-limited resolution of RISHA imaging at 3.2-MHz 
RF excitation.

To study the change of blood in electrical conductivity in pre- and post-mortem animal, we also performed 
RISHA imaging in a mouse tail, both in vivo (Fig. 3b) and 30 minutes after mouse euthanasia when blood oxy-
genation level is low (Fig. 3c; see Methods for mouse experiment procedure). Overlay of co-registered RISHA/US 
images on the corresponding photographs of the mouse tail pre-mortem (Fig. 3b) and post-mortem (Fig. 3c) gave 
comparable results: RISHA signals (red) revealed the caudal artery beneath the skin, while US signals (green) 
provided complementary information about overall tail structure. In this arrangement, RISHA imaging did not 
detect the lateral or dorsal veins, because we only focused ultrasound detection on the middle caudal artery. An 
analysis of normalized RISHA signal differences between the pre- and post-mortem states (Fig. 3d–f) revealed 
amplitude differences of less than 10% between in vivo and post mortem, demonstrating that blood conductivity 
does not depend on blood oxygenation level or other post-mortem changes. Line profiles through the caudal 
artery in RISHA images in vivo and post mortem (Fig. 3f) indicate that the TBR in both RISHA images was above 
27 dB, mainly due to the fact that the conductivity of blood in the caudal artery is higher than the conductivity of 
skin and bone.

Discussion
We have presented a new label-free, non-invasive method to image conductivity paths within dielectric materi-
als, including animal tissues. We showed that RF induces second harmonic acoustic responses and allows blood 
vessel imaging without the need to administer contrast agents. Imaging experiments in vivo and ex vivo showed 
that the RISHA response of blood, i.e. the blood conductivity, is independent of its oxygenation state. Our tech-
nique excites samples with RF in the high frequency band (3–30 MHz), and provides a final image resolution 
2.2 × 104 times smaller than the excitation wavelength of 10.5 meters. The use of near-field narrowband energy 
coupling maximizes RISHA response and minimizes energy loss. RISHA imaging requires only inexpensive, 
widely available RF hardware as well as widely available US detection hardware, enabling simultaneously US 
pulse-echo imaging of the sample without additional hardware. This dual-mode RISHA/US imaging method 
allows pixel-by-pixel co-registration of the conductivity path and sample morphology, which provides an intui-
tive, holistic visual understanding of the sample. Such a technique could be used not only for biomedical imaging, 
but also for imaging the interior of industrial products, such as integrated circuits, revealing both the conductive 
paths and morphology of the circuits.

RISHA vasculature imaging offers an alternative to other blood vessel imaging methods by using inexpensive 
and readily available components that can lead to a low-cost and highly portable sensor. Promising applications 
of portable RISHA imaging could be general detection of sub-dermal blood vessels for catheter insertion, or inex-
pensive, disseminated measurements of vasculature, for example in characterizing loss in response to anti-tumor 
therapies.
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Our hybrid RISHA/US imaging system enabled dual contrast imaging which was optimized for blood vessel 
visualization. Better anatomical images using US imaging can be achieved by focusing the transducer on hypere-
choic structures like tissue bone or using multiple ultrasound sensors with different focusing depth, or by using a 
dedicated US pulser/receiver unit as shown in Supplementary Fig. S1a,c.

RISHA imaging has a large dynamic range15 and can detect blood vessels with a TBR of more than 6 dB in 
muscle tissue and more than 27 dB in bone/skin tissues, providing a sensitive and non-invasive tool for assessing 
changes in blood conductivity31. Conductivity sensing could be more generally helpful in assessing bulk ionic 
content in body fluids, such as urine (1.75 S/m), where ion levels are an important marker of renal abnormal-
ities32,33, offering diagnostic ability in bladder and kidney diseases. Other tissues could also be imaged using 
RISHA non-invasively aiding to disease diagnosis, including bile (1.4 S/m at 3 MHz), gallbladder (0.9 S/m), cere-
brospinal fluid (2.00 S/m), and intervertebral disc (0.83 S/m), to name a few28,34,35.

It may be possible to bring the resolution of RISHA imaging into the micrometer range by using higher fre-
quencies of acoustic detection (10–300 MHz), and the corresponding radiofrequency excitation (5–150 MHz) 
based on the second harmonic acoustic generation principle. While conductivity absorption remains as the 
dominant contrast19, RISHA of high resolution/frequency may allow label-free visualization of subcellular ion 

Figure 3.  RISHA imaging of vasculature in living and euthanized mouse. An ear (dashed blue circle) of a mouse 
(illustrated in the center) was imaged after the mouse euthanasia, while the tail (solid blue circle) was imaged in 
vivo and then euthanized. (a) Co-registered RISHA (red) and US echo (green) images of an ear in a mouse post 
mortem, superimposed onto a microscopic photograph of the scanned area displaying small vessels. White 
arrows indicate blood vessels. (b) Co-registered RISHA/US images of mouse tail in vivo, superimposed onto the 
corresponding photograph. The red solid box shows the region scanned in vivo. Short white arrows indicate the 
caudal artery; the dashed arrow indicates the line profile analyzed in panel f for comparison of RF absorption. (c) 
Co-registered RISHA/US image of the same mouse tail as in panel b, but 30 mins after euthanasia of the animal. 
The dashed blue box shows the same scanned area as in panel b. Short white arrows indicate the caudal artery; the 
dashed arrow indicates the line profile shown in panel f. (d) The normalized difference map of RISHA response 
(arbitrary units, a.u.), ∆RISHA = (in vivo - post mortem), obtained by subtracting the post-mortem signal from the 
pre-mortem signal, showing overall morphological changes. (e) The normalized integration ∫( RISHA) of RISHA 
signals in panels b and c along the x-axis. The resulting projection along the y-axis shows RF absorption by 
oxygenated blood in the mouse tail in vivo (solid red) and by deoxygenated blood after euthanasia (dashed blue). 
(f) Profiles of the lines scanned in RISHA images in vivo and post mortem in panels b and c, showing differences 
<10% in RISHA amplitude of 27 dB TBR. Scale bars are 1 mm.
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concentrations, analogous to what has been accomplished with optical/optoacoustic imaging9. This could make 
high-frequency RISHA an intriguing experimental tool for label-free cellular studies of ion transport and related 
processes. For example, RISHA can directly observe changes in ionic content of living cells in response to RF 
stimuli36. The ability to analyze electro-cellular37,38 and electro-thermo-cellular interactions may allow RISHA 
to enrich the bioengineering toolbox with a new, non-invasive electric field method analogous to optics39, 
patch-clamp40, or magnetics based techniques41–43.

Conventional pulsed thermoacoustic imaging at 434 MHz has been applied for breast cancer detection44, 
while higher excitation frequencies at several GHz have been used to image different biological tissues based on 
their dielectric losses21–23,45. These microwave-based thermoacoustic imaging methods provide good soft tissue 
contrast and the contrast could be further enhanced by administering contrast agents22,46. Nevertheless, short-
comings include low energy coupling due to far field radiation17, and poor imaging resolution >1 mm due to the 
long excitation pulses typically employed (pulse modulation >500 ns). RISHA addresses several limitations of 
existing thermoacoustic imaging methods by using near-field coupling and quasi-CW excitation in low-MHz 
range. However, our RISHA imaging system is limited by lack of contrast agents in the low-RF region46,47. The 
development of contrast agent for low frequency RF absorption is challenging and requires detailed understand-
ing of the contrast mechanism in this frequency band46,48. Because RISHA imaging is based on inhomogeneous 
RF excitation in the reactive near-field of coupling elements17,49, future applications on thick samples larger than 
a mouse would require RF field strength correction17,18.

In summary, RISHA imaging demonstrated 6-dB blood-to-muscle contrast, high dynamic range of conductiv-
ity detection, and the ability to perform simultaneous RF-induced passive ultrasound imaging using inexpensive 
instrumentation. We demonstrated the ability to image at depths of up to 2.5 cm in muscle using RISHA imaging. 
Future system optimizations can improve the resolution and sensitivity, using optimized RF-field excitation and 
higher frequencies. RISHA imaging could be employed in various biomedical applications non-invasively assess-
ing vasculature, overall tissue electrical conductivity, and also for functional imaging like characterization of the 
relationship between blood oxygenation and conductivity as well as thermoacoustic Doppler flowmetry of blood 
flow.

Methods
RISHA imaging set-up.  The dual-mode RISHA/US imaging system (Fig. 1a) is driven by a custom-built 
quasi-continuous wave RF-field generator containing a RC discharging circuit and a custom-built helical coil 
for near-field energy coupling. The helical coil is wound with 3 mm diameter copper wire and shielded with 
heat shrink tubing (TF31-9/3, HellermannTyton) with dielectric strength of 37 kV/mm. The quality factor of 
the RF-field generator is 20, allowing the set-up to provide narrowband stimulation at 5% FWHM-bandwidth 
(0.16 MHz) and a central frequency of 3.2 MHz. A function generator (33210A, Agilent Technologies) controls 
the repetition rate of the quasi-continuous RF bursts (1–50 Hz, max 765 mJ per pulse). We performed raster scan-
ning with a spherically focused transducer (V311, Olympus-NDT; central frequency, 10 MHz; focus, 25.4 mm) 
mounted on xy-translation stages (LTA-HS, ESP 300 controller, Newport Corp) that move across the sample in 
100-µm steps in the xy plane corresponding to 1/5th of the diffraction limit of the 6.4 MHz RISHA wave. The 
coil, sample, and transducer are immersed in a de-ionized water bath to provide efficient US and RF coupling. 
To remove low frequency oscillation, we used a high-pass RC filter with cutoff frequency at 300 kHz to filter the 
signal detected by transducer. In our experiments, a 51-dB amplifier (AU-1332, MITEQ) amplified the signals in 
copper wire experiments, while a 63-dB amplifier (AU-1291, MITEQ) amplified the signals in experiments with 
biological tissues. The amplified signals were digitized by a digital oscilloscope (TDS3054B, Tektronix). The digi-
tized data were averaged 16 or 32 times and stored on a personal computer, which was also used for synchronizing 
the raster scanning and for reconstructing the images.

In our in vivo measurement, we used 16 times averaged signals, with 50 Hz burst repetition rate. The raster 
scan step size was set to 100 μm. Considering 0.1 second for the data transmission and stage scan for each data 
point, the total imaging time for a 10 mm × 10 mm field of view is ~70 mins.

Signal processing and image formation.  Co-registered US and RISHA images can be reconstructed 
based on maximum intensity projections (MIPs) of the acquired acoustic signals: RISHA and US signals were dis-
tinguished based on their different frequency spectra and time of flight (Fig. 1b,c). In this work, in order to obtain 
optimal image target-to-background ratio, MIPs were generated based on the characteristic frequency-doubling 
in the Fourier spectra of the RISHA and US signals. The temporal sequences were first filtered by a low-pass filter 
with cutoff frequency of 20 MHz. The amplitude values of the Fourier spectrum at the frequency fRISHA (6.4 MHz, 
for RISHA signal) or fUS (3.2 MHz, for US signal) were then used as the pixel value for each grid point to gen-
erate the RISHA and US images, correspondingly. Alternatively, if MIPs were generated in the time domain, a 
band-pass filter was first applied with a lower cutoff frequency of 2.7 MHz and higher cutoff of 3.7 MHz to the US 
data; and with 5.9 MHz and 6.9 MHz to the RISHA data, correspondingly. Then the images were filtered using a 
median filter, and the smallest pixel value was subtracted from all pixels to generate a dark background for better 
visualization. At each scanning point, RISHA and US signals were derived from the same acquired sequence, so 
co-registration of the two types of images was achieved simply by assigning the normalized RISHA image to the 
red channel of an RGB image, and the normalized US image to the green channel.

For better visualization of the mouse ear post mortem (Fig. 3a) and the chicken ex vivo results (Supplementary 
Fig. S5d,e), we applied a mild tubular-structure filter50 with Gaussian kernels of diameters ranging from 240 to 
640 µm, corresponding to the imaging resolution range of our set-up.
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RISHA imaging resolution.  The diffraction-limited lateral imaging resolution using RISHA (dRISHA) is 
defined by the RISHA wavelength (λRISHA) and by the f-number of the ultrasound transducer, which is F/D (focus 
length F = 25.4 mm and diameter D = 12.7 mm). It can be calculated as:
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The achievable imaging resolution of RISHA appears to be a fixed fraction of the excitation RF wavelength 
employed. Substituting numbers into Eq. (5) yields a lateral resolution of 469 µm, corresponding to 1/(2.2 × 104) 
of the RF wavelength at 3.2 MHz (according to Eq. (4), λRF = 10.5 meters). Axial resolution of RISHA imaging can 
then be calculated as 0.80 × λRISHA according to Wang et al.51, yielding a resolution of 188 µm.

Sample preparation: Whole blood and chemical solutions.  Polyethylene tubes (Fig. 2a) with a diam-
eter of 3 mm were filled with vegetable oil, an aqueous solution of the anticoagulant ethylenediamine tetraacetic 
acid (EDTA, 20.1341 µL/500 µL), mouse blood28 (σ = 0.98 S/m) containing the same concentration of EDTA, or 
0.9% physiological saline solution29 (NaCl, σ = 1.54 S/m). To ensure the same concentration of anticoagulant, we 
used the same type of EDTA anticoagulant microvette (Microvette 500 K3E, Sarstedt) to collect mouse blood and 
to prepare the tubes containing aqueous solution of EDTA.

Sample preparation: Synthetic phantom and ex vivo tissue.  A synthetic phantom was prepared by 
laying the polyethylene tube containing mouse blood on top of side-by-side pieces of porcine muscle and fat tissue 
ex vivo (Fig. 2d). Conductivity of muscle and fat are, 0.57 S/m and 0.026 S/m at 3 MHz and 20°C, respectively28. To 
preserve the ionic content of the porcine muscle and thereby its RF absorptivity, we covered it with low-density 
polyethylene film with a thickness of 20 µm, which shows similar acoustic impedance at 20 °C (Z0 = 1.73 µPa·s/
mm) as water (Z0 = 1.48 µPa·s/mm). This kept acoustic losses below 0.7%. The low electrical conductivity of pol-
yethylene52 (σ = 10−15 S/m) meant that RISHA responses at 3 MHz could be entirely attributed to the biological 
tissue (typically 0.01–1 S/m). The fat tissue in the phantom was not covered with polyethylene film because it 
was expected to show low RF absorption due to its low conductivity. The fat tissue can also be covered with same 
polyethylene film immersed in low RF-absorbing oil to preserve its ‘RF absorptivity’.

The ex vivo chicken soft tissue, shown in Fig. 2h, contained a blood vessel approximately 500 µm wide sur-
rounded by muscle tissue. To conserve its RF absorptivity, this tissue was covered with the same polyethylene film 
as mentioned above.

Sample preparation: Mouse vasculature experiments.  All mouse procedures were approved by the 
Bavarian Animal Care and Use Committee and all experiments were performed in accordance with the guide-
lines and regulations approved by the Government of Bavaria, Germany. All imaging experiments have been 
performed with RF energy levels well within the safety standards defined by IEEE Standard for Safety Levels with 
Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz53. The ear and tail 
of a CD-1 nude mouse were imaged using our dual-mode RISHA/US set-up. For in vivo measurements of the 
tail (Fig. 3b), the mouse was first anesthetized for 90 minutes by intraperitoneal injection of ketamine/xylazine 
(0.1 mL/g of mouse weight with 1 mL ketamine 100 mg/mL, 0.25 mL xylazine 20 mg/mL, and 6 mL physiology 
saline solution), then it was placed on a custom-built mouse bed above water level, and kept warm by an infrared 
lamp. During the experiment, the mouse tail was fixed to a 3D-printed imaging frame (blue PLA material in 
Fig. 3b,c) and immersed in de-ionized water. For tail imaging of the mouse after euthanasia (Fig. 3c), the animal 
was first injected intraperitoneally with 40 µL heparin (25 000 I.E./5 mL, Heparin-Natrium Braun) to keep blood 
from coagulating, and then the anesthetized mouse was sacrificed by cervical dislocation. While keeping the 
mouse in the same position on the mouse bed, we waited for 30 minutes to ensure low hemoglobin oxygenation 
level in blood. Then we scanned the tail again under the same conditions as for in vivo imaging. Upon finishing 
imaging of the mouse tail after euthanized, we changed the mouse position so that the ear was fixed to the imag-
ing frame and scanned (Fig. 3a) under the same conditions as for the tail.

k-Wave simulation.  Acoustic interference that is caused by a tube with a diameter of 3 mm and wall thick-
ness of 0.1 mm was simulated using the k-Wave Matlab toolbox12. The computational grid size was set to 0.1 mm, 
same as the mechanical scanning step size. The ultrasound transducer characteristics were as follows: central fre-
quency, 10 MHz; bandwidth, 73.45%; focus distance, 25.4 mm; diameter, 12.7 mm. Mass density of polyethylene 
material was defined to be 940 kg/m3 and ultrasound speed to be 2080 m/s. The coupling medium was water, with 
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a mass density of 998 kg/m3 and a speed of sound of 1,500 m/s. A time-varying, 3.2-MHz quasi-continuous US 
wave was specified for the transducer elements, and a time-varying RISHA wave of 6.4 MHz was specified for the 
aqueous content within the tube. The transducer was moved across the sample to simulate raster scanning. Signal 
processing and image reconstruction algorithms used in the simulation were similar to those used in imaging 
experiments. The analysis and result are shown in Supplementary Text 2 and Fig. S2.

Data Availability
The raw data that support the findings of this study, and the Matlab programs that are used to collect, process and 
reconstruct the data are available from the corresponding authors on request.
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