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Overweight and obesity are now considered a worldwide pandemic and a growing
public health problem with severe economic and social consequences. Adipose tissue
is an organ with neuroimmune-endocrine functions, which participates in homeostasis.
So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that
causes changes in the brain and induce neuroinflammation. Studies with obese animal
models and obese patients have shown a relationship between diet and cognitive
decline, especially working memory and learning deficiencies. Here we analyze how
obesity-related peripheral inflammation can affect central nervous system physiology,
generating neuroinflammation. Given that the blood-brain barrier is an interface between
the periphery and the central nervous system, its altered physiology in obesity may
mediate the consequences on various cognitive processes. Finally, several interventions,
and the use of natural compounds and exercise to prevent the adverse effects of obesity
in the brain are also discussed.

Keywords: obesity, cognitive decline, inflammation, oxidative stress, natural products, exercise, blood-brain
barrier

INTRODUCTION

Obesity is a chronic and stigmatized disease that affects children, adolescents, adults, and elderly
people (The Lancet Diabetes Endocrinology, 2017; Goisser et al., 2020; Smith et al., 2020; Bray and
Ryan, 2021). Some authors do not consider obesity a disease but a state; the problem with this
definition is that it has led to neglecting the importance of this sickness and serious measures have
not been taken to counteract it. This has led to obesity becoming a growing public health problem
with severe economic consequences (Hruby and Hu, 2015; Berthoud et al., 2020).
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According to the World Health Organization (WHO), more
than 1.9 trillion adults in the world are overweight, and 650
million are obese; besides, this prevalence has also dramatically
increased in children and adolescents. Around 2.8 million
people die each year because of this pandemic (World Health
Organization [WHO], 2021).

Obesity arises due to an energy imbalance between calories
consumed and calories expended, creating an excessive energy
balance state that increases body weight. The WHO has defined
obesity as an excessive accumulation of body fat mass that
can affect health and is diagnosed in adults with a body mass
index (BMI) ≥ 30 kg/m2 (Whitlock et al., 2009). However, the
pathogenesis of obesity is much more complex than a simple
imbalance between energy intake and expenditure that leads
to the passive accumulation of excessive weight. The etiologies
associated with obesity include diverse aspects, such as genetic
and epigenetic factors, and psychological, social, and cultural
features that make obesity and overweight a multifactorial disease
(Heindel and Blumberg, 2019; Genario et al., 2020).

It is well known that obesity substantially increases the
risk of metabolic and chronic diseases such as type 2 diabetes
mellitus (DM2), some types of cancer, cardiovascular and
musculoskeletal diseases (Castro et al., 2017; Blüher, 2019), along
with other disorders such as depression and neurodegenerative
diseases (Gainey et al., 2016; Buie et al., 2019). Interestingly
obesity has been accepted as an important risk factor for
cognitive impairment (Castanon et al., 2015; Dye et al., 2017).
During obesity, adipose tissue produces cytokines such as IL1ß,
IL6, IFNγ, TNFα, MCP1, promoting chronic inflammation
(Guillemot-Legris and Muccioli, 2017). Chronic low-grade
inflammation disrupts the blood-brain barrier (BBB) due to
endothelial dysfunction, generating neuroinflammation and
increasing oxidative stress, leading to cognitive decline (Tucsek
et al., 2014; Castanon et al., 2015). It is essential to mention
that, although there are few studies, obesity has been shown to
impact men and women differently, so the outcomes related to
cognitive decline, dementia, and other diseases might be different
(Censin et al., 2019).

For all these reasons, in this review, we will focus on analyzing
how obesity-related peripheral inflammation can affect the
central nervous system (CNS), generating neuroinflammation.
Since the BBB is the interface between the periphery and the
central nervous system, it may be the link between peripheral
inflammation and the consequences that obesity may have on
various cognitive processes. Furthermore, since the WHO has
outlined different measures to prevent the adverse effects of
obesity, several of those interventions will be discussed.

OBESITY AND INFLAMMATION

Changes in Adipose Tissue During
Obesity
The adipose tissue is a specialized connective tissue classified
into brown (BAT) and white adipose tissue (WAT) (Saely et al.,
2012). BAT predominates in the newborn’s in the interscapular,
perirenal, and inguinal regions. In adults, BAT is present in the

neck, interscapular, and supraclavicular regions but is absent
in the elderly and obese (Mittal, 2019). Sympathetic endings
innervate BAT to mediate lipolysis since it specializes in heat
generation by oxidating fatty acids through the dissipation of
the proton gradient in the inner mitochondrial membrane. The
generation of heat aims to thermoregulate body temperature
(Wang et al., 2021).

Nowadays, WAT is considered an organ with relevant
neuroimmune-endocrine functions, which participates in
the organism’s homeostasis. One of the main functions
of the WAT is the storage of fatty acids to provide these
substrates to other tissues such as muscle during fasting or
in periods of high energy demand. WAT also has a relevant
role in appetite regulation, insulin resistance, cytokine
secretion, mechanical protection, among others (Morigny
et al., 2021). WAT is the most abundant adipose tissue
distributed subcutaneously, perivascularly, and viscerally,
the latter participating in metabolic dysregulations during
obesity (Morigny et al., 2021; Porro et al., 2021). This adipose
tissue is primarily composed of adipocytes, cells specialized in
accumulating lipids. The WAT is also formed by the stromal
cells, including pre-adipocytes, stem cells, endothelial cells,
and immune cells such as macrophages, lymphocytes, and
neutrophils (Ràfols, 2014). Macrophages and T lymphocytes
have generated significant interest for their participation in
the chronic low-grade inflammatory process present in obesity
(Maurizi et al., 2018).

Macrophages can be classically (M1) or alternatively (M2)
activated. Polarization into the M1 profile happens after pro-
inflammatory tumor necrosis factor α (TNFα) and interferon γ

(IFNγ) or toll-like receptor 4 (TLR4) signaling. In consequence,
M1 macrophages express TNFα, interleukin (IL) 1α, IL1β,
IL6, monocyte chemoattractant protein 1 (MCP1, also known
as CCL2), chemokine (C-X-C motif) ligand 9 (CXCL9), and
CXCL10, among other molecules. In turn, these factors attract
unpolarized macrophages and induce the differentiation into
the M1 state (Murray, 2017). Cytokines such as IL4 and IL13
induce M2 polarization. In turn, M2 macrophages secrete IL10,
transforming growth factor β (TGFβ), chemokine (C-C motif)
ligand 1 (CCL1), CCL17, CCL18, CCL22, and CCL24, favoring
the differentiation of unpolarized macrophages into the M2
profile (Murray, 2017).

Under physiological conditions, the sensitivity toward insulin
is maintained by releasing anti-inflammatory cytokines such as
TGFβ and IL10 by the resident or M2 macrophages, favoring
insulin-mediated glucose uptake (Li et al., 2020). Adipocytes
release IL4 and IL13 (Table 1), promoting the polarization of
macrophages to an M2 profile, thus favoring lipid metabolism
and the secretion of TGFβ and IL10, ensuring a reduction in
inflammation and resistance to insulin (Tsao et al., 2014; Akash
et al., 2018).

During obesity, excessive energy coming from the diet and
the lack of physical activity promotes lipid storage in adipocytes
(Trayhurn, 2013; Maurizi et al., 2018). If that persists, adipocytes
broaden in a phenomenon called hypertrophy. The pre-adipocyte
differentiation into adipocytes complements this process to
compensate for the growth of existing ones to maintain a balance
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TABLE 1 | Main cytokines and their effects in obesity.

Cytokines Cytokine source Levels in obesity Cytokine mechanisms in obesity References

IL1β • Subcutaneous
adipose tissue
• Visceral adipose

tissue

↑ adipose tissue
↑ serum

• Induces Pre-adipocyte differentiation.
• Reduction of insulin-induced glucose transport.
• Inhibition of glucose uptake by adipocytes via ERK signaling.
• Acts synergistically with TNFα and IL6, altering the lipase activity,

leading to lipid accumulation in the liver and muscle.
• Contribution to hepatic lipogenesis, triglyceride accumulation, and

development of hepatic steatosis.
• IL6 production.
• T cell and macrophage activation.

Jager et al., 2007; Um
et al., 2011; McArdle
et al., 2013; Negrin
et al., 2014; Wang
et al., 2021

IL2 • Visceral adipose
tissue
• CD4 + and CD8 + T

cells
• Dendritic cells
• Macrophages

↑ adipose tissue
↑ serum

• T cell activation.
• Induction of inflammatory molecules like IL8, IL12A, CCL5,

CCL19, CCR2, and CCR5.
• Contribution to increased insulin resistance secondary to TLR2,

TLR4, and TLR10 interaction.

Liu and Nikolajczyk,
2019; Kochumon et al.,
2020

IL4 • TH2 cells
• Visceral adipose

tissue
• M2 macrophages

↓adipose tissue
↓serum

• Inhibits lipid deposits.
• Inhibits adipogenesis through the expression of peroxisome

proliferator-activated receptor γ (PPARγ).
• Promotes lipolysis due to binding to hormone-sensitive lipase

(HSL).

Tsao et al., 2014; Lu
et al., 2015; Shiau
et al., 2019

IL6 • Subcutaneous
adipose tissue
• Visceral adipose

tissue
• Monocytes
• M1 macrophages

↑ adipose tissue
↓ hypothalamus

• Promotes energy consumption by stimulating the hypothalamus.
• Correlation with high TNFα levels and insulin resistance.
• Chemotaxis and monocyte infiltration in adipose tissue by the

expression of CD11b and CD163.

Sindhu et al., 2015;
Kern et al., 2019;
El-Mikkawy et al., 2020;
Wang et al., 2021

IL10 • TH2 cells
• Regulatory T cells
• B cells
• M2 macrophages

↓ adipose tissue
↓ serum

• Inhibition of pro-inflammatory cytokine synthesis by suppressing
NF-kB in macrophages.
• Association with hypertriglyceridemia by the affection of the

JAK-STAT 3 signaling pathway.

Azizian et al., 2016;
Kondo et al., 2018; Liu
et al., 2018

IL13 • TH2 cells ↑ serum • Polarization of macrophages into an M2 profile through the
IL-13Rα1/IL-4R receptor.
• Decrease insulin resistance.
• Involved in increasing inflammation via the NLRP3 inflammasome.
• Increases fatty acid oxidation in muscle.

Duffen et al., 2018;
Martínez-Reyes et al.,
2018; Knudsen et al.,
2020

IL17 • Th17 cells in visceral
adipose tissue
• M1 macrophages
• Neutrophils

↑ adipose tissue • Inhibition of adipocyte differentiation.
• Increase of inflammatory molecules like COX2 and PEG2.
• Induction of IL6 synthesis by adipocytes.
• CDK5-dependent phosphorylation of PPARγ in adipocytes,

favoring gene expression related to diabetes.

Ahmed and Gaffen,
2010; Liu and
Nikolajczyk, 2019;
Teijeiro et al., 2021

IFNγ • TH1 cells ↑ adipose tissue
↑ serum

• Macrophage regulation switching to the M1 profile.
• Increase of insulin resistance.
• Increase of adipocyte cell size.

Wada et al., 2011;
O’Rourke et al., 2012;
Wang et al., 2014;
Surendar et al., 2019

MCP1 (CCL2) • M1 macrophages ↑ adipose tissue
↑ serum

• Participation in adipogenesis promoting adipocyte growth.
• Facilitation of insulin resistance and glucose intolerance.
• Recruitment of immune cells.

Rocha et al., 2008;
Cranford et al., 2016

TGFβ • Regulatory T cells
• M2 macrophages
• Platelets

↑ serum • Increase insulin resistance through TGFβ/Smad3 signaling via the
repression of the insulin promoter and suppression of insulin level
and secretion.
• Inhibition of adipocyte differentiation.
• Correlation with high levels of serum glucose.

Yadav et al., 2011;
Zamani and Brown,
2011; Hong et al.,
2016; Lee, 2018

TNFα • TH1 cells
• Subcutaneous

adipose tissue
• Visceral adipose

tissue
• M1 macrophages

↑ adipose tissue
↑ serum

• Inhibition of GLUT4 membrane translocation.
• Induction of the serine phosphorylation of insulin substrate-1,

leading to insulin resistance.
• Suppression of the lipoprotein lipase activity.
• Inhibitor of adipocyte differentiation.
• Suppression of genes involved in uptake and storage of

non-esterified fatty acids and glucose.

Bennet et al., 2006;
Tzanavari et al., 2010;
Kern et al., 2019; Liu
and Nikolajczyk, 2019;
Alzamil, 2020; Wang
et al., 2021
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in the storage capacity, in a phenomenon called hyperplasia
(Choe et al., 2016).

Because of cytokine release, especially TNFα, a high number of
classically activated M1 macrophages infiltrate the adipose tissue,
which is associated with insulin resistance (Akash et al., 2018).
Those changes alter the WAT microenvironment, favoring the
expression of pro-inflammatory adipokines and the activation of
adipose tissue macrophages (ATMs) to a pro-inflammatory or
M1 profile, promoting the secretion of more pro-inflammatory
molecules, such as TNFα, IL1β, IL6, and MCP1 (Table 1),
generating an increased accumulation of ATMs, which in
turn secrete a higher amount of pro-inflammatory cytokines
(Sam and Mazzone, 2014). A marker of damage caused by
ATMs infiltration is the formation of crown-like structures
characterized by M1 ATMs expressing CD11c around dead
adipocytes. These structures are increased in obesity and are
related to inflammation and insulin resistance (Lumeng et al.,
2007; Sam and Mazzone, 2014).

In normal conditions, WAT is highly irrigated, ensuring
adequate transport of nutrients and oxygen from the diet;
nevertheless, in obesity, adipocyte hypertrophy hinders the
diffusion of oxygen and nutrients, causing a hypoxic state
(Sam and Mazzone, 2014). The cellular environment with
low oxygen tension elicits hypoxia-sensitive genes that activate
major hypoxia-inducible molecules (HIF) and inflammatory
transcription factors such as NF-κB (Trayhurn, 2014), triggering
a change in the adipokine secretion profile to enter into cellular
stress, both at the mitochondria and the endoplasmic reticulum
(Deng and Scherer, 2010). This first change alters the local
microenvironment, as pro-inflammatory cytokines increase and
the ATMs change to an M1 phenotype producing TNFα, IL1β,
IL6, and MCP1, culminating in a local inflammatory process
and a significant number of infiltrating macrophages (Tsao et al.,
2014). In obese mice, the lack of oxygen in WAT generates
changes related to the dysfunction of adipocytes, where it is worth
highlighting the increase in adipokines related to inflammation
(IL6, leptin, Angptl4, and VEGF), in addition to an increase
in lactate production and the induction of fibrosis and insulin
resistance (de Oliveira and Mafra, 2013; Trayhurn, 2014). Also,
elevated adipose HIF1A protein and RNA levels are present
in patients with obesity class 3, confirming hypoxia in WAT
(Todorćević et al., 2021).

Among the various bioactive molecules produced by
adipocytes are adipokines such as TNFα, leptin, resistin, and
plasminogen activator inhibitor type 1 (PAI-1) (Deng and
Scherer, 2010). The loss of their regulation during obesity
is related to the pathophysiology of metabolic diseases; for
example, decreased adiponectin levels are associated with DM2
(Frankenberg et al., 2017). Its main functions include glucose
and lipid metabolism, and the prevention of inflammation. The
mechanism through which it exerts these functions has not been
explicitly explained.

Inflammatory Mediators in Obesity
As mentioned before, the alteration of adipocytes causes
ATMs to polarize to an M1 profile, synthesizing and secreting
pro-inflammatory cytokines, which are considered obesity

inflammatory mediators and have diverse effects (Sam and
Mazzone, 2014). Ym1, arginase 1, and IL10 gene expression is
observed in lean mice, stimulating an M2 activation on ATMs
as an anti-inflammatory mechanism. While in obese mice, the
transcription of TNFα and iNOS genes increase, contributing to
TNFα-induced insulin resistance (Lumeng et al., 2007; Sam and
Mazzone, 2014).

Among the mentioned cytokines, IL6 regulates multiple
aspects of metabolism like the regulation of adipose tissue,
lipolysis, oxidative metabolism, and energy expenditure (Wueest
and Konrad, 2020). Adipose tissue, endothelial cells (vascular
stroma), fibroblasts, macrophages, monocytes, and lymphocytes
secrete IL6 contributing to acute phase reactions, chronic
inflammatory processes, and homeostatic energy regulation,
influencing obesity and insulin resistance (Stȩpień et al., 2014;
Han et al., 2020). During obesity, adipose tissue increases leptin
secretion and suppresses satiety, promoting gluconeogenesis and
hepatic insulin resistance (Han et al., 2020). Furthermore, one-
third of total IL6 circulating levels is produced in adipose tissue
(Makki et al., 2013).

Tumor Necrosis Factor α is a peptide secreted by different cells
types like monocytes, macrophages, and microglia. In adipose
tissue, pre-adipocytes, stromal vascular cells, and infiltrating
macrophages also secrete TNFα, where it suppresses the genes
involved with the internalization and storage of non-esterified
fatty acids, glucose, and transcription factors involved in
adipogenesis and lipogenesis (Tzanavari et al., 2010). MCP1 is
a chemokine produced by adipocytes and M1 macrophages;
it recruits monocytes/macrophages for their infiltration into
adipose tissue, and its concentration increases in response to IL1,
TNFα, and TLR4 signaling (Surmi and Hasty, 2008; Rajasekaran
et al., 2019). MCP1 increases lipolysis and leptin secretion while
lowering insulin-stimulated glucose uptake, increasing plasma
levels during obesity, contributing to impaired insulin sensitivity
(Makki et al., 2013).

Interleukin 1 is a family of cytokines in which IL1α and IL1ß
stand out. These cytokines are crucial in innate inflammatory
responses, being responsible for fever; however, in recent
decades, they have been recognized for their participation in
the progression of insulin resistance induced by obesity due to
their elevated plasma levels and increased inflammasome NLRP3
activity (Di Renzo et al., 2007; Ballak et al., 2015).

Leptin, the product of the LEP gene, is a 16 kDa peptide
hormone secreted mainly by adipose tissue (Pérez-Pérez et al.,
2020). Its main function is the homeostatic regulation of appetite
and body weight through the induction of anorectic factors and
the expression of orexigenic neuropeptides in the hypothalamus
(Vera et al., 2018). Circulating leptin levels correlate with body
weight. Therefore, obese people tend to produce more leptin than
slimmer people. Mice and humans with leptin deficiency attain
intense hyperphagia and develop severe obesity and various
metabolic and endocrine disorders (Paz-Filho et al., 2012).
Leptin may participate in the activation and maintenance of
the inflammatory response due to its ability to regulate innate
and adaptive immune responses (Bernotiene et al., 2006). In
innate immunity, leptin increases the cytotoxicity of natural
killer (NK) cells, and induces the activation of a wide range of
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cells such as granulocytes, dendritic cells and macrophages. In
the adaptive immune response, leptin increases the proliferation
of naive T lymphocytes and B lymphocytes and decreases
regulatory T lymphocytes (Treg). Leptin can polarize T helper
cells (Th) toward a pro-inflammatory (Th1) rather than an
anti-inflammatory (Th2) phenotype (Abella et al., 2017). In
addition, pro-inflammatory cytokines increase leptin synthesis
and release, which perpetuates the chronic inflammatory state
characteristic of obesity.

Another mediator of inflammation during obesity is the
oxidative stress (OS) generated in fat tissue. OS is defined
as the imbalance between the oxidant molecules generated
by the cells and the antioxidant systems that neutralize them
(Thannickal and Fanburg, 2000). It is well recognized that
OS and inflammation are damaging events that enhance
each other. During obesity, the pro-inflammatory adipokines
activate signaling cascades that can stimulate enzymes that
generate reactive oxygen species (ROS), such as NADPH oxidase
(NOX), which mainly produce superoxide radicals and hydrogen
peroxide (Hsu et al., 2019). ROS, especially the hydroxyl radical,
can oxidize proteins, damage membrane lipids and DNA,
increasing the risk of degenerative diseases. In the CNS, the
nitric oxide synthase (NOS) is also activated, generating nitric
oxide, which produces the peroxynitrite anion that nitrates
proteins, damaging them. Increased NOS activity is associated
with increased calcium and excitotoxicity (Brown, 2010; Yuste
et al., 2015). Inflammation has been related to mitochondrial
dysfunction that causes a decrease in ATP levels and an increased
ROS generation, thus enhancing OS. The changes toward a
more oxidized state activate the NLRP3 inflammasome and
transcription factors such as NF-κB, which in turn induce
the synthesis of more pro-inflammatory cytokines that activate
immune cells, thus perpetuating the damage of the OS and
inflammation (Morgan and Liu, 2011; Sandhir et al., 2017).
The chronic low-grade inflammation produced by adipocytes
generates OS and creating a vicious cycle that alters the functions
of the immune, endocrine, and nervous systems and has been
associated with the establishment of metabolic, cardiovascular,
and degenerative diseases.

Moreover, inflammation and OS can induce cellular
senescence (Burton and Faragher, 2018). Senescence is a
stress response state in which cells lose their ability to proliferate
and secrete a set of pro-inflammatory and growth factors,
proteases, among other proteins, known as the senescence-
associated secretory phenotype (SASP). The SASP attracts
immune cells aiming to remove damaged cells, hence
promoting the restoration of cell homeostasis (Burton and
Faragher, 2018). Senescent cells can be beneficial when they
contribute to tumor suppression, but, in the long term, they
promote tissue deterioration during aging. During obesity,
the inflammation and OS generated in the brain increases the
amount and accumulation of senescent cells, thus contributing
to the neuroinflammation due to the SASP secretion. The
neuroinflammation induced by the senescent cells creates a
vicious cycle that escalates inflammation and OS, and has
been linked to age-related diseases (Maciel-Barón et al., 2017;
Ogrodnik et al., 2019; Figure 1).

High-fat diets (HFD) in experimental rodent models cause
OS, increased circulating pro-inflammatory cytokines, and the
appearance of senescent markers (Minamino et al., 2009;
Cavaliere et al., 2018). The KK-Ay mouse model with ectopic
expression of the Agouti-related protein (AgRP) is hyperphagic
and develops severe obesity. These animals increased ROS
generation though they were fed with a standard diet. The
KK-Ay mice adipose tissue exhibited a senescent phenotype,
characterized by enhanced β-galactosidase activity, high p53
protein, and elevated expression of CDK1 mRNA compared to
wild-type mice. Increased expression of the pro-inflammatory
cytokines TNFα and MCP1, and macrophage markers in the
adipose tissue of KK-Ay mice were also observed, suggesting that
excessive calorie intake may induce senescence-like changes in
adipose tissue (Minamino et al., 2009).

CHRONIC OBESITY AND
NEUROINFLAMMATION

Systemic inflammation, particularly low grade chronic
inflammation, such as the one generated during obesity,
has been reported to cause changes in the brain and induce
neuroinflammation (Ellulu et al., 2017; Ugalde-Muñiz et al.,
2020). The neuroinflammatory response during obesity occurs
in different structures of the CNS, such as the cerebellum,
amygdala, cerebral cortex, and hypothalamus (Guillemot-
Legris and Muccioli, 2017; Jais and Brüning, 2017; Van Dyken
and Lacoste, 2018). Of particular interest in the context of
obesity-induced cognitive decline is the neuroinflammation
generated in the hippocampus, since experimental animal
models subjected to diets rich in fat and carbohydrates have
shown learning and memory deficits. This neuroinflammation
has also been associated with changes in the integrity of the
blood-brain barrier (BBB), so these structures will be discussed
next (Bruce-Keller et al., 2009).

Blood-Brain Barrier as an Interface
Between the Periphery and the Central
Nervous System
The communication between the peripheral tissues capable of
acquiring, detecting, and storing nutrients with the specialized
nuclei in the CNS is essential to regulate nutrition and
metabolism. The BBB is the interface for these communications
because several signals are transferred through the blood (Rhea
et al., 2017). The BBB is located at 99% of brain capillaries
(Pachter et al., 2003) and is formed by brain endothelial cells,
which acquire its barrier phenotype by their cellular interactions
with mural cells, such as pericytes, and by the soluble factors
released by the astroglia (Daneman and Prat, 2015). The
BBB ensures that the composition of the interstitial fluid is
adequate for the physiological properties of each brain region
(Fletcher and Callanan, 2012). It protects the brain from toxic
substances present in the circulation, conferring a chemical and
physical barrier to the CNS (Fletcher and Callanan, 2012) as it
restricts the unregulated diffusion of macromolecules between
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FIGURE 1 | Relationship between obesity-related inflammation and senescence. NF-κB is the central regulator in the stress response and may be activated by
various stimuli. Among them, pro-inflammatory cytokines secreted by adipose tissue during obesity. This factor has also been related to the aging process by
contributing to cellular senescence through the senescence-associated secretory phenotype (SASP).

the blood and the CNS and selectively regulates the transport
of circulating nutrients and hormonal signals from the blood
to the brain and vice versa (Rhea et al., 2017). The BBB
structure involves the establishment of inter-endothelial tight
junctions and the expression of specialized carrier systems. Inter-
endothelial tight junctions are formed by the transmembrane
proteins claudin, occludin, and junctional adhesion molecule
(JAM), which are anchored to the cytoskeleton through their
interaction with adaptor proteins of the MAGUK family, such
as zonula occludens-1 (ZO-1) and ZO-2 (Daneman and Prat,
2015; Figure 2). Another junction type at the BBB is the
adherens junction, formed mainly by the transmembrane protein
cadherin docked to the cytoskeleton through catenins (α, β,
and γ). Adherens junctions are a prerequisite for tight junction
assembly and maintenance (Kadry et al., 2020). When the BBB
function is lost, potentially neurotoxic molecules within the
bloodstream, such as prothrombin, plasminogen, and albumin,
can freely enter the brain (Fletcher and Callanan, 2012). The
inflammation caused by obesity has been related to changes in

BBB permeability (reviewed in Hurtado-Alvarado et al., 2016),
inducing leukocyte extravasation along with the potential entry of
pathogens and toxins into the CNS, which in turn stimulate more
inflammatory responses, causing a vicious cycle (Van Dyken and
Lacoste, 2018). All these mechanisms are regulated by the NF-κB
pathway increasing the expression of pro-inflammatory proteins
such as IL1β, TNFα, and IL6. The increase in pro-inflammatory
cytokines is related to the decrease in tight junction protein
expression and disturbed BBB integrity (Van Dyken and Lacoste,
2018; Figure 2).

The Role of Diet and Aging in the
Blood-Brain Barrier Function
As mentioned above, changes in the BBB structure and
function during obesity may cause further pathologies in
the CNS, increasing neuroinflammation and cognitive decline
(Rhea et al., 2017). Astrocytes and microglia are essential in
maintaining the BBB integrity supporting neuronal metabolism,
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FIGURE 2 | Obesity modifies blood-brain barrier physiology. The blood-brain barrier (BBB) is formed by brain endothelial cells (EC), which acquire its barrier
phenotype by their cellular interactions with pericytes and the soluble factors released by astroglia. The barrier restricts the unregulated diffusion of macromolecules
between blood and the brain. In obesity, low-grade chronic inflammation increases BBB permeability. Obesity-related inflammation depends on the NF-κB pathway,
increasing the expression of pro-inflammatory proteins, related to decreased tight junction protein expression, deranging BBB integrity. AJ, adherens junction; TJ,
tight junction; BL, basal lamina; ZO, zonula occludens; IL, interleukin; TNFα, tumor necrosis factor α; MCP1, monocyte chemoattractant protein 1.

and preventing/responding to local tissue injury, and both cell
types are activated in the brain of rodents and humans with HFD
consumption (Rhea et al., 2017).

A high fat and glucose diet administrated for 90 days to
juvenile male Sprague Dawley rats increased BBB permeability to
sodium-fluorescein, a low molecular weight exogenous tracer, in
the hippocampus. This effect was related to a lower expression in
the mRNA of the tight junction proteins claudin-5, claudin-12,
and occludin, and deficits in hippocampal-related learning

and memory (Kanoski et al., 2010). Likely, a Mediterranean
diet, rich in saturated fat and dextrose, administrated to male
Sprague Dawley rats for 10, 40, and 90 days increased the
BBB permeability to sodium-fluorescein at day 90 in restricted
regions of the hippocampus and the dorsal striatum; indicating
that the loss of barrier function is gradual. This study also
associated the increase in the BBB permeability with the
deficits in the hippocampus-dependent learning and memory
(Hargrave et al., 2016).
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Another diet rich in cholesterol administered to male
C57 BL/6 mice during ten weeks potentiated the effect of
ischemia on BBB permeability by increasing the extravasation
of immunoglobulin (IgG) in the frontal cortex as compared
to ischemic mice fed with a standard diet (ElAli et al., 2011).
Another study showed that obesity at old age increases cognitive
decline, particularly in the hippocampus. Young (7 months) and
old (24 months) male C57 BL/6 mice received either a standard
diet or a HFD. Cognitive impairment in obese and aged mice
was associated with decreased microvascular density and pericyte
coverage in the hippocampus and cerebral cortex; in addition,
reduced blood flow in the cerebral cortex was related to memory
problems (Tucsek et al., 2014).

Under pathological conditions, such as DM2, increased
BBB permeability has also been reported. A rodent model of
streptozotocin-induced DM2 increased BBB permeability to low-
molecular-weight tracers earlier in the midbrain (at 28 days
post-induction) and later in the hippocampus, basal nuclei, and
cerebral cortex (at 56- and 90-days post-induction). However, for
large molecules (e.g., Evans blue), increased BBB permeability
in diabetic animals was observed until later times (more than
56 days post-induction) and only in the midbrain and basal nuclei
(Huber et al., 2006).

Glial Activation in Obesity
This loss of BBB permeability during the chronic low-grade
inflammatory state associated with obesity facilitates that
pro-inflammatory molecules access to the brain parenchyma,
thus allowing them to interact with the microglia (Ouyang
et al., 2014; Gianfrancesco et al., 2019; González-Olmo
et al., 2021). Furthermore, it has been reported that there
is increased activation and proliferation of microglia and
astrocytes in both obese humans and rodent models of obesity
(Castanon et al., 2015).

Microglia, the brain-resident macrophage, responds to
peripheral inflammatory signals by its activation and thus the
secretion of more inflammatory cytokines, perpetuating the
neuroinflammatory condition and leading to neuronal damage
(Thaler et al., 2012; Figure 3).

After stimulation, the microglial cells are activated to a state of
“priming or pre-activation” (Perry and Holmes, 2014). This state
makes the microglia more sensitive to pro-inflammatory stimuli.
Microglial priming occurs during aging, neurodegenerative
diseases, and traumatic brain injury (Perry and Holmes, 2014;
Li J. W. et al., 2018). However, evidence has begun to emerge
that systemic inflammation, either induced with peripheral LPS
or the administration of one or more of the pro-inflammatory
cytokines such as TNFα, IL1β, IL6, IL33, is involved in microglial
priming (Perry and Holmes, 2014; Li J. W. et al., 2018). Due
to the heterogeneity of microglial density depending on the
brain region, brain structures are differentially affected; the
main affected brain regions are the hypothalamus, hippocampus,
cerebral cortex, and striatum (Milanova et al., 2021). Another
example is the NLRP3 protein of the inflammasome in visceral
adipose tissue, which directly affects IL1ß levels in the brain,
activating microglia through the IL1R1 receptor and thus
affecting memory in obese animals (Guo et al., 2020).

Microglial cells rapidly react to HFD, inducing morphological
changes in the hypothalamus (Thaler et al., 2012). HFD
increases Iba-1 expression in the arcuate nucleus (ARC),
paraventricular nucleus (PVN), and hippocampus. No specific
microglial changes are observed in the cerebral cortex and
striatum (Thaler et al., 2012; Milanova et al., 2021). In the
medio -basal hypothalamus (MBH), microgliosis is mediated
by activating pathways such as NF-κB, favoring cell infiltration,
increased food intake, and local inflammation (Valdearcos
et al., 2017). As mentioned above, the activation of these
inflammatory pathways is crucial because the activation
of IKKβ/NF-κB influences leptin and insulin metabolism,
affecting even the processes of glucose intolerance in obesity
(Zhang et al., 2005).

The hypothalamic microglia has been one of the most
studied for its importance in metabolic regulation; this
microglia acts as a sensor that regulates the function of the
hypothalamus and is very sensitive to changes; for example,
males are more susceptible to neuroinflammation in this
brain area (Dorfman et al., 2017; Rosin and Kurrasch,
2019). CX3CL1-CX3CR1 signaling seems to be relevant in
microglial regulation, metabolic homeostasis, and obesity
susceptibility. Male mice fed with HFD presented lower
expression of CX3CL1-CX3CR1 in the hypothalamus, while
HFD-female preserved both ligand and receptor normal
expression (Dorfman et al., 2017).

In the hypothalamus, microglial activation is related to
alterations in the organelles responsible for energy metabolism,
i.e., the mitochondria. HFD increases the mitochondrial number
and the mRNA expression of the uncoupling protein 2 (UCP2);
the selective deletion of UCP2 in microglia prevents diet-induced
obesity (Kim et al., 2019).

However, microglia cells are not the only component in
neuroinflammation secondary to obesity; other glia, specifically
astrocytes, have been extensively studied in an inflammatory
setting. The glial-vascular mechanism in which astrocytes and
endothelial cells are involved modulates microglial activation
and, therefore, inflammation. In in vitro experiments, the
activation of the endothelium favored microglia differentiation
into the amoeboid forms and increased the release of TNFα,
IL1β, and IL10, while IGF1 levels decreased. In contrast,
microglia exposed to conditioned medium from activated
astrocytes showed a M2 phenotype and higher levels of IGF1
secretion; a promotion of phagocytosis was also observed
(Xing et al., 2018).

Multiple studies show astrocyte importance in obesity.
Hypothalamic astrocytes accumulate lipid droplets in an obese
environment, favoring astrogliosis and inflammatory markers
such as TNFα, IL1β, IL6, MCP1, stimulating microglia,
and other astrocytes, enhancing the inflammatory response
(Kwon et al., 2017).

The selective isolation of microglia and astrocytes has made
it possible to differentiate and identify the molecules involved
in neuroinflammation and their changes over time. In a HFD
animal model, on day 3 of diet administration, the microglia
TNFα expression was elevated while astrocytic IL10 increased;
after 28 days of the diet, both astrocytes and microglia became
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FIGURE 3 | Systemic inflammation associated with obesity activates microglia and astrocytes. Obesity chronic low-grade inflammation is mediated mainly by tissue
macrophages in the adipose tissue through the secretion of TNF, IL1β, IL6, and MCP1. Cytokines originated in the adipose tissue stimulate macrophages of other
tissues (liver, muscle, and even brain) further to produce TNF, IL1β, IL6, and MCP1, inducing a generalized inflammatory state. Peripheral inflammatory signals also
activate microglia, which then secretes more inflammatory cytokines, activating astrocytes and favoring a chronic neuroinflammatory condition that leads to neuronal
damage.

clearly inflammatory with high expression levels of TNFα

(Sugiyama et al., 2020).
Microglial activation also correlates with deficits in

hippocampal function in obesity models. Hippocampal
dysfunction was secondary to increased synaptic phagocytosis
and neuronal elimination after 3 months of HFD; regular diet
reversed this effect and normalized hippocampal function (Hao
et al., 2016). Likely, blockade of specific microglial receptors,
such as fractalkine-receptor, prevents the loss of dendritic spines
and cognitive decline in obese mice (Cope et al., 2018).

Inflammatory Molecules in the Obese
Brain
The inflammatory molecules in the obese brain have been
studied extensively by testing different diets in animal

models. For example, high-sugar diets, which promote
cognitive decline in young animals, are associated with
high IL6 and IL1β levels in the dorsal hippocampus (Hsu
et al., 2015). The cafeteria diet model increased Iba-1
expression in the obese brain (de Oliveira et al., 2021).
Chronic HFD feeding for 12 weeks enhanced TNFα, IL6,
and leptin levels in the hippocampus and also promoted
microglial activation in the prefrontal cortex and hippocampus
(Gomes et al., 2020).

Dietary changes may reverse or protect against obesity-
induced neuroinflammation. Modifying the Western diet, high
in fat and low in fiber, decreased cognitive deterioration by
adding β-glucans, prominent soluble fibers. Also, obese animals
treated with β-glucans diminished microglial activation, TNFα,
IL1β, and IL6, favoring hippocampal synaptogenesis markers
(Shi et al., 2020).
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TABLE 2 | Main cytokines in the CNS during obesity and their effects in neuroinflammation.

Cytokines Cytokine source in
the CNS

Expression in CNS
cells in obesity

Cytokine mechanisms in CNS in obesity References

IL1β • Microglia
• Neurons
• Astrocytes
• Oligodendrocytes

↑ Astrocytes
↑ Microglia

• Leukocyte recruitment to the CNS.
• Rapid cellular infiltration to the brain parenchyma.
• Increased MCP1(CCL2) expression by astrocytes and ICAM1 on

vascular endothelial cells.
• Impairment of hippocampal-dependent memory processing.
• Regulation of food intake.
• Increased neuronal cell death.

Shaftel et al., 2008;
Dorfman et al., 2017;
Ding et al., 2018;
Lainez and Coss, 2019;
Guo et al., 2020

IL2 • Neurons ↓ Neurons • T cell proliferation.
• Inhibition of the development of Th17 cells.
• Reduction of neutrophil infiltration.
• Diminishment of tight junction proteins degradation.
• Expression of CD206.

Hoyer et al., 2008; Gao
et al., 2017

IL4 • M2 microglia
• TH2 cells

↓ Neurons • M2 microglial phenotype differentiation.
• Increased microgliosis and astrogliosis.
• Expression of CD206.
• Decreased production of inflammatory cytokines such as TNFα.

Gadani et al., 2012;
Luzina et al., 2012;
Latta et al., 2015; Rossi
et al., 2018; Daseke
et al., 2020

IL6 • Microglia
• Astrocytes
• Neurons
• Endotelial cells

↑ M1 microglia
↑ Astrocytes
↑ Neurons

• Differentiation of oligodendrocytes.
• Modulation of microglial activation.
• Induction of nerve injury.
• Bodyweight loss induced by enhanced leptin signaling through

the STAT-3 pathway.

Szelényi, 2001; Thaler
et al., 2012; Le Foll
et al., 2015; Rothaug
et al., 2016; Bobbo
et al., 2019; Hu et al.,
2020; Recasens et al.,
2021

IL10 • Regulatory T cells
• B cells
• Neurons
• Microglia
• Epithelial cells

↓ Neurons
↓ Microglia

• Vascular remodeling.
• Reduction of leukocyte adhesion and extravasation.
• Regulation of the NFκB signaling.
• Improvement of neurogenesis.

Pereira et al., 2015;
Azizian et al., 2016;
Garcia et al., 2017;
Kondo et al., 2018; Liu
et al., 2018

IL17 • Th17 cells
• T CD4 + cells
• T CD8 + cells

↑ Th17 cells
↑ T CD4 + cells
↑ T CD8 + cells

• Induction of the NFκB pathway.
• Contribution to the BBB permeability.
• M1 polarization of microglia.
• Activation of glial cells to produce inflammatory mediators, matrix

metalloproteinases, chemokines, and free radicals.

Basu et al., 2015; Yang
and Yuan, 2018; Qiu
et al., 2021; Chen
et al., 2022

TGFβ • Regulatory T cells
• Oligodendrocytes
• M2 Microglia
• Astrocytes

↑ Astrocytes • Free radical production through NOX1.
• Cytotoxicity and neurodegenerative changes through the SMAD3

pathway.
• Expression of inflammatory genes in pericytes like NOX4, COX2,

IL6, and MMP2.

Von Bernhardi et al.,
2015; Rustenhoven
et al., 2016; Patel et al.,
2017

TNFα • Astrocytes
• M1 Microglia

↑ Astrocytes
↑ M1 Microglia

• Increase of the anorexigenic POMC activity.
• Potentiation of glutamate-mediated cytotoxicity.
• Induction of the NFκB pathway and secretion of IL1β.
• Affection of the spatial learning and memory function.
• M1 phenotype polarization.

Belarbi et al., 2012;
Thaler et al., 2012;
Olmos and Lladó,
2014; Lainez and Coss,
2019; Rodrigues et al.,
2020

BBB, blood brain barrier; CNS, central nervous system; COX2, Cyclooxygenase 2; ICAM1, intercellular adhesion molecule,1; MCP1, monocyte chemoattractant protein
1; MMP2, matrix metalloproteinase 2; NADPH, nicotinamide adenine dinucleotide phosphate; NFκB, Nuclear factor kappa B; NOX1, NADPH oxidase 1; NOX4, NADPH
Oxidase 4; POMC, proopiomelanocortin.

In the obese brain, multiple pathways and molecules
are affected (Table 2). TNFα is a crucial cytokine in
neuroinflammation secondary to obesity, even critical in
glucose metabolism by attenuating insulin signaling pathways
and increasing levels of IL6, activating a neuroinflammatory
state (Clemenzi et al., 2019). In addition, TNFα is associated with
anxiety secondary to obesity since its pharmacological blockade
improves anxiolytic triggers in obese animals (Fourrier et al.,
2019). Labban et al. (2020) fed rats with HFD for 4 weeks and
found an increase in pro-inflammatory cytokines, such as IL6

and IL12 in serum, an increase in brain OS markers, a decrease
in brain serotonin levels, and an increase in brain dopamine and
glutamate levels.

Consequences of Obesity: Cognitive
Decline
The obesity-related neuroinflammation, the BBB integrity loss,
and the microglial activation induce synaptic remodeling,
neuronal apoptosis, and decreases neurogenesis, which have been
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associated with cognitive decline (Miller and Spencer, 2014; Li
J. W. et al., 2018; Zhou et al., 2020).

Studies performed with obese animal models have shown a
relationship between diet and cognition (Castanon et al., 2015;
Duffy et al., 2019). Rodents fed with HFD have shown deficiencies
in working memory and learning (Nguyen et al., 2014; Gainey
et al., 2016). Moreover, OS and inflammation promoted by
obesity contribute to neuronal damage and cognitive failure.
Zhang et al. (2005) reported that HFD administration to male
Sprague-Dawley rats for 5 months activated NF-κB pathway,
increased ROS production and NOX expression in the cerebral
cortex, as well as prostaglandin E2 (PGE2), cyclooxygenase 1
(COX1), and COX2 levels, contributing to neuronal damage
and cognitive deterioration. It has been reported that feeding
C57B1/6 mice with HFD for 16 weeks modified the redox
state and decreased Nrf2 activation, contributing to cognitive
impairment evaluated by 14-Unit Stone Maze (Morrison et al.,
2010). Something similar was observed in Wistar rats fed a high-
calorie diet (HCD) for 13 weeks; these rats presented memory loss
evaluated with the Morris water maze, in addition to increased
OS (Treviño et al., 2015).

On the other hand, there are studies in mice where memory
deficits were quickly reversed by switching the animals from an
HFD to a low-fat diet (McLean et al., 2018). The above was seen
even after prolonged exposure to HFD-feeding (24 weeks), where
after returning to a regular diet, the animals did not present
learning deficits or spatial memory impairment (Leyh et al.,
2021), suggesting that these impairments might be reversible, at
least at some point.

A relationship between abdominal adiposity and cognitive
decline has been reported regarding human studies where
cognitive behavior was analyzed in obese patients. A negative
association between anthropometric measurements, such
as BMI and waist circumference, and the detriment in
some cognitive tasks was proposed (Dye et al., 2017).
Nevertheless, Ntlholang et al. (2018) found that in older
adults, central adiposity was a stronger predictor of poor
cognitive performance than BMI in older adults. In that
study, the neuropsychological assessment determinations
included the Mini-Mental State Examination (MMSE), Frontal
Assessment Battery (FAB), and Repeatable Battery for the
Assessment of Neuropsychological Status (RBANS). This was
confirmed by Gardener et al. (2021) where a neuropsychological
battery evaluating cognitive domains (episodic memory,
processing speed, semantic memory, and executive function)
was evaluated in obese patients over 65 years of age, and
a detrimental effect of mid-life rather than later life was
found. Interestingly, abdominal adiposity was an important
factor related to cognitive impairment and decline; however,
overall adiposity (determined as BMI) was not a risk factor.
Something similar was reported by Morys et al. (2021),
where obesity was associated with cognitive impairment
cerebrovascular disease.

Moreover, magnetic resonance imaging (MRI) has been used
to assess neuroinflammation and axonal integrity to determine
if there are similar effects in obese humans as observed
in rodents. The results show increased cell density related

to neuroinflammation and decreased axonal density in obese
humans positively correlating with BMI, but not with age
(Kullmann et al., 2020; Samara et al., 2020).

These studies support the relationship between obesity and
cognitive health and attract the researchers’ attention because
obesity may have an immediate and long-term detrimental
impact on cognitive functions. The problem is that the molecular
mechanisms that participate in obesity-related cognitive decline
are diverse, including OS, metabolic dysfunction, cardiovascular
disease, and systemic inflammation (Ajayi et al., 2021),
highlighting those that are related to the impairment of
vascular components where the integrity of the BBB is lost
and the microglia are activated (Buie et al., 2019). Therefore,
it is of paramount importance to continue researching the
mechanisms of action and the interventions to reverse obesity’s
detrimental effects. Mainly because in both, humans and rodents,
the effectiveness of weight loss (through restrictive diets or
other procedures) has been observed to rescue some aspects
of neuroinflammation and defects in cognition and behavior
(Guillemot-Legris and Muccioli, 2017).

Differential Inflammatory Response
Between Sexes During Obesity
There is a differential response in adiposity and the prevalence
of obesity-associated diseases between males and females,
particularly in mammals. In obese men, the occurrence of heart
disease and myocardial infarction is higher, while in women,
obesity is associated with ischemic stroke (Chen et al., 2021).
When comparing men and women with the same BMI, it has
been observed that women have a 10% higher body fat content.
In addition, women show a greater subcutaneous fat volume
than men, while men have a larger volume of intra-abdominal
or visceral fat (Griffin et al., 2016).

Still, there are limited data to explain the origin of these
differences, but several studies have proposed estrogen’s role
in the sex-dependent differential responses in metabolism. The
decrease in estrogen levels in menopausal women is associated
with the loss of subcutaneous fat and the abdominal fat
accumulation (Lizcano and Guzmán, 2014). In support of
estrogen importance, increased adiposity after oophorectomy
and ovarian estrogen clearance were observed in rodents
and monkeys (Chen et al., 2021). In the case of men, low
testosterone levels have also been proposed as a risk factor
for pathophysiology, including insulin sensitivity and DM2
(Terrazas et al., 2019).

On the other hand, the association between sex and OS is
significant because OS is involved in many diseases that occur
differentially in men and women (Kander et al., 2017). Previous
studies revealed that oxidative and nitrosative stress markers are
higher in obese men compared to obese women of the same age.
Although it is difficult to determine whether these interactions
are additive or synergistic, most redox biomarkers depend not
only on age and sex but also on age-sex or age-obesity interactions
(Choromańska et al., 2021).

Recently, several reports comparing the cognitive
impairment by sex associated with obesity have been published.
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Wang et al. (2021) linked blood lipid levels and obesity using
and index named lipid accumulation product (LAP). They
reported that high LAP is associated with cognitive decline in
females with normal blood pressure but not in those with high
blood pressure or males. Suggesting that there is a relationship
between obesity and cognitive decline that is differentially
affected by blood pressure and sex. Hu et al. (2021) informed
that in an older Chinese population, BMI and hip circumference
are positively related to cognitive function in women, while
no association was found in men. Conversely, another study
was performed by Espeland et al. (2021) where older women
and men (mean age 68 years old) with DM2 and overweight
or obesity were evaluated. Cognitive advantages for women
with DM2 and overweight/obesity over men during aging were
observed. These differences given by sex are yet uncertain, but
their understanding is important since the therapeutic targets
and treatments may present variations and should be specifically
directed toward men or women.

INTERVENTIONS TO REDUCE THE
EFFECTS OF OBESITY

Pharmacological Treatments
Most weight control medications act in the brain to stimulate
satiety signals, motivationally helping the patients adhere to
their dietary interventions, with the primary goal of weight
loss. Medical guidelines recommend seven drug treatments
for weight control, including orlistat, liraglutide, phentermine,
phentermine/topiramate, lorcaserin, and naltrexone/bupropion
(Lei et al., 2021).

Phentermine/topiramate therapy is known to significantly
decrease body weight compared to placebo, and the amount of
weight loss has been related to the used dose. Another beneficial
effect of phentermine/topiramate treatment was the waist-
circumference reduction, blood pressure, blood sugar levels,
and lipid levels decrease. However, this drug combination risks
adverse events related to the nervous system (Lei et al., 2021).

Orlistat has been well studied in different obese populations,
including DM2 and patients with impaired glucose tolerance.
Overall, a modest but significant weight loss was observed in
all the groups with favorable effects on obesity comorbidities.
Orlistat has not been associated with severe adverse events and
only mild gastrointestinal effects have been reported in some
patients. In obese patients who do not have diabetes, weight
loss is achieved and maintained for 2 years. Orlistat, together
with a hypocaloric diet, was shown to be effective in preventing
DM2 in patients with glucose intolerance and significantly lowers
glycated hemoglobin levels (Hollander, 2003).

The possible benefits of using liraglutide for long periods of
time have been investigated in people with a BMI greater than
30 or 27 kg/m2 associated with dyslipidemia or hypertension.
Subjects treated with liraglutide achieved significant weight loss
vs. the placebo group. Moreover, when the drug was combined
with physical activity, it significantly increased weight loss
compared to liraglutide alone or physical exercise alone. These
results reinforce the benefits of liraglutide in weight loss and

emphasize the fundamental role of physical activity in chronic
weight control (Lundgren et al., 2021; Tilinca et al., 2021).

Treatment with phentermine 37.5 mg/day for 3 months to
reduce obesity showed a percentage of total weight loss of
7.65% and a more significant reduction in BMI –3.16 kg/m2

compared to Lorcaserin 10 mg/2 times a day with a total weight
loss of 2.99% and a BMI reduction of –1.15 kg/m2. In this
same study, the administration of phentermine was performed
in a group of patients who had received bariatric surgery but
had regained weight and who were subsequently treated with
pharmacotherapy, patients using Lorcaserin had a 1.86% total
weight loss vs. at 7.62% for phentermine and a smaller BMI
reduction of –0.74 vs. –3.06 kg/m2 for phentermine. Lorcaserin
treatment showed a significant decrease in total cholesterol and
low density lipoprotein (LDL) only among surgical patients
with a significant weight reduction (≥5% total weight). Both
drugs were not associated with glycemic improvements, and no
differences were observed between the surgical and non-surgical
groups (Elhag et al., 2019).

Naltrexone/bupropion (NB) has also been used as an
interesting combination therapy to treat weight and risk factors
related to overweight and obesity. A double-blind, placebo-
controlled study with 1496 obese patients with BMI 30–
45 kg/m2 or overweight 27–45 kg/m2 with dyslipidemia and/or
hypertension was conducted. A significant weight loss was
observed with NB (–6.5%) vs. placebo (–1.9%) at week 28 of
treatment, and at week 56 a reduction of –6.4% in NB vs. –
1.2% in the placebo. NB enhanced different markers related to
cardiometabolic risk, and the participants reported improvement
in the quality of life. The most common adverse event with NB
was nausea, which was generally mild to moderate and transient.
NB was not associated with increased depression events or
suicidal tendencies compared to placebo (Apovian et al., 2013).

These drugs have beneficial effects; however, numerous
medications have been withdrawn due to potentially dangerous
or undesirable side effects. In the face of the adverse side effects
of synthetic drugs, natural products have been explored, as
they are considered non-toxic and healthy. Different dietary,
herbal, and natural products, and their active components
have been analyzed for their potential anti-obesity effects
(Sun et al., 2016).

Natural Products Against Obesity
There is a long list of natural compounds that have been used
to control obesity. Examples of those molecules are alkaloids
(capsaicin, caffeine, nicotine), terpenoids (lycopene, lutein,
carotene), phytosterols (diosgenin, guggulsterone), organosulfur
compounds (allyl sulfide, allicin, allixin), phenolic acids (ferulic,
chlorogenic, and caffeic acids), curcuminoids (curcumin),
chalcones (naringenin), lignans (matairesinol), flavonoids
(kaempferol, quercetin, catechins, cyanidin), isoflavones
(genistein), and stilbenes (resveratrol). Anti-obesity effects of
these products include energy expenditure stimulants, appetite
suppressants, α-amylase, α-glucosidase, lipase inhibitors,
adipocyte differentiation inhibitors (decreased adipogenesis),
increased lipolysis, or a combination of these effects (Mohamed
et al., 2014; Sun et al., 2016).
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In this review, we have discussed that obesity-induced
inflammation is considered a potential mechanism that links
this disease to neuroinflammation and cognitive decline, so
targeting obesity-related inflammatory components is proposed
as a valuable strategy to prevent or ameliorate the development
of such CNS detrimental effects (Hirai et al., 2010).

Effect of Dietary Products on Obesity-Associated
Neuroinflammation
Momordica charantia (bitter melon) has been reported to reduce
brain OS and FoxO, as well as normalize neuroinflammatory
markers (NFκB, IL16, IL22, and IL17R) in the brain of
female mice fed with HFD (Nerurkar et al., 2011). Green tea
extract ameliorates HFD-induced hypothalamic inflammation
reducing the increase in TLR4, IκB-α, NF-κB p50, and
IL6 in mice (Okuda et al., 2014). Epigallocatechin gallate,
the major polyphenol in green tea, inhibited HFD-induced
obesity by enhancing BAT thermogenesis and diminishing
the hypothalamic inflammation and microglia overactivation
through NF-κB and STAT3 pathway regulation (Zhou et al.,
2018). In another study, this green tea compound was
found to attenuate hypothalamic inflammation inhibiting the
JAK2/STAT3 signaling pathway in HFD-induced obese mice
(Mao et al., 2019).

Anthocyanin-rich blackberry extract counteracted HFD-
induced dysbiosis, and modifications in gut microbiota
were linked to its anti-neuroinflammatory effect (Marques
et al., 2018). Purple sweet potato anthocyanin pigment
diminished neuroinflammation induced by HFD in mice
by inhibiting MAPK and NF-κB activation, downregulating
the expression of iNOS, COX2, IL1β, IL6, and TNFα, and
raising IL10 expression (Li J. et al., 2018). Several studies
support the use of dietary anthocyanins coming from fruits,
vegetables, and beans against DM2-mediated Alzheimer’s disease
(Khan et al., 2021).

Peel extract of pineapple fruit protects against HFD-
induced behavioral disturbances by decreasing the risk of
atherogenicity due to anti-inflammatory, and antioxidant effects.
The extract improves brain antioxidant status by increasing
reduced glutathione (GSH) and catalase and decreasing IL6 and
malondialdehyde (MDA) levels (Ajayi et al., 2021).

Effect of Herbal Products on Obesity-Associated
Neuroinflammation
Dry leaf powder of Withania somnifera used in ayurvedic
formulations ameliorated HFD-induced neuroinflammation,
suppressing the expression of inflammatory markers (PPARγ,
iNOS, MCP1, TNFα, IL1β, and IL6) (Kaur and Kaur, 2017).
Furthermore, Xuefu Zhuyu decoction, a traditional Chinese
medicine, reduced insulin and leptin levels, neuroinflammation,
astrocyte and microglia activation, and amyloid deposition
in an animal model of Alzheimer’s disease (Yeh et al., 2017).
In this model, an ethyl acetate extract of leaves of Ugni
molinae Turcz containing tannins, flavonoid derivatives,
phenolic acids, and pentacyclic triterpenoids exhibited
neuroprotective, anti-inflammatory, and anti-oxidative
properties (Jara-Moreno et al., 2018).

Malva parviflora used in traditional medicine in Africa and
America has anti-inflammatory, antioxidant, and hypoglycemic
effects. In a recent study, the anti-inflammatory effect of
a hydroalcoholic leaf extract was found to ameliorate HFD
effects in an obese transgenic 5XFAD mouse model of
Alzheimer’s disease. This extract, which contains oleanolic and
scopoletin as active compounds, suppresses neuroinflammation
by inhibiting microglia pro-inflammatory M1 phenotype and
rescuing microglia phagocytosis via a PPAR-γ/CD36 dependent
mechanism (Medrano-Jiménez et al., 2019).

A Mucuna pruriens (L.) extract rich in oligosaccharide (1-
kestose and levodopa) and phenolic compounds (catechins,
chlorogenic acid, trans-resveratrol, and kaempferol 3-glucoside),
reduced food intake, neuroinflammation, and hippocampal IL6
levels of obese rats (Tavares et al., 2020). Moreover, Ghaddar
et al. (2020) reported that Antirhea borbonica herbal tea prevents
BBB leakage, cerebral OS, and partly improves neurogenesis in a
diet-induced overweight zebrafish model.

Tinospora cordifolia extract supplemented in HDF-fed female
rats reduced anxiety-like behavior and improved locomotor
behavior by decreasing the expression of inflammatory cytokines,
modulating apoptosis, and synaptic plasticity (Singh et al., 2021).

Finally, new approaches such as molecular docking studies
targeting microglia-specific proteins support using some natural
products (like curcumin, cannabidiol, and resveratrol) as
possible candidates to regulate redox imbalance, OS, and
neuroinflammation (Maurya et al., 2021).

Diets and Exercise
The primary strategy for treating obesity is diet supplemented
with physical exercise and cognitive-behavioral therapy. Low-
calorie diets are the most recommended to start reducing
body weight. However, these dietary regimens must be
supplemented with macronutrients, vitamins, and minerals. The
2015–2020 Dietary Guideline for Americans recommends that
carbohydrates comprise 45–65% of calories, fat 25–35% of
calories, and protein 10–30% of calories. Once the desired body
weight has been reached, the number of calories consumed in the
diet can be gradually increased to balance the calories consumed
and calories expended.

Regular physical exercise improves the balance between
energy consumed and expended, thereby gradually improving
the diet’s effectiveness and maintaining diet-induced weight
loss. There is a weight loss of 5–8.5 kg in 6 months after
the intervention through calorie restriction and exercise.
After 48 months, an average of 3–6 kg of the weight loss
was maintained (Fock and Khoo, 2013; Bales and Porter-
Starr, 2018). Likewise, combining a hypocaloric diet with
supervised aerobic exercise 2 days a week offers an optimal
non-pharmacological tool in managing blood pressure,
cardiorespiratory conditions, and body composition in
overweight/obese and sedentary people with hypertension
(Gorostegi-Anduaga et al., 2018).

In regards to neuroinflammation, exercise has also shown
very promising results. Exercise on a treadmill reduced the
levels of inflammation markers such as TNFα, IL1β, and
COX2 in the hippocampus of 8-month-old Sprague–Dawley rats
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on an HFD diet (Kang et al., 2016). Additionally, exercise
decreased the activation of microglia and astrocytes in the
cerebral cortex and hippocampus compared to sedentary
rats fed with HFD (Koga et al., 2014). In HFD obese
mice, treadmill exercise enhanced cognitive function by
improving neuroplasticity and brain-derived neurotrophic
factor (BDNF) expression (Kim et al., 2016). In another
study, voluntary physical activity (wheel running) increased
hippocampal neurogenesis and spatial learning in female
C57BL/6 mice fed with HFD (Klein et al., 2016). Likewise,
C57BL/6J (B6) mice fed with a western diet from 2 to
12 months of age, prevented cerebrovascular and white matter
damage by free access to running saucer wheels exercise
(Graham et al., 2019).

CONCLUSION AND PERSPECTIVES

As discussed throughout this paper, obesity is a severe
health problem associated with many diseases, including
neuroinflammation and cognitive decline. To date, multiple
interventions have been proposed to minimize or prevent
neuroinflammation and cognitive impairment. However, the
most important would be to develop prevention programs

to teach people to eat healthily and perform an adequate
exercise regimen.
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