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Predictive tools, utilising biomarkers, aim to objectively assess the potential response to a particular clin-
ical intervention in order to direct treatment. Conventional cancer therapy remains poorly served by pre-
dictive biomarkers, despite being the mainstay of treatment for most patients. In contrast, targeted
therapy benefits from a clearly defined protein target for potential biomarker assessment.
We discuss potential data sources of predictive biomarkers for conventional and targeted therapy,

including patient clinical data and multi-omic biomarkers (genomic, transcriptomic and protein expres-
sion). Key examples, either clinically adopted or demonstrating promise for clinical translation, are high-
lighted. Following this, we provide an outline of potential barriers to predictive biomarker development;
broadly discussing themes of approaches to translational research and study/trial design, and the impact
of cellular and molecular tumor heterogeneity. Future avenues of research are also highlighted.
Crown Copyright � 2021 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Predictive tools aim to objectively assess the potential response
to a particular clinical intervention or evaluate the differential out-
comes – including toxicity – of two or more interventions, in order
to direct treatment. Their use in guiding treatment decisions
should therefore lead to improved clinical outcomes. In contrast,
prognostic tools (or biomarkers) provide information about likely
patient outcome irrespective of treatment [1]. Predictive tools for
oncology can be derived from various data sources, including
patient clinical details, histologic or radiologic data and multiple
omic biomarkers (genomic, transcriptomic, epigenomic and pro-
tein expression). Hence, in this article we use the term predictive
tools to include all the above, but will focus on predictive omic
biomarkers, predictive analytics, and nomograms.

Clinicopathological data remains the primary stratification
method used by clinicians when prescribing conventional anti-
cancer therapy. Clinicopathological markers include tumor clinical
and imaging-based assessment and histopathological findings,
including tumor protein marker expression. Pathological stage, as
defined by the AJCC TNM criteria (as a combination of Tumor size,
Nodal and distant Metastasis) is the widely adopted method of
prognostic risk stratification across solid tumors [2]. The most
recent 8th Edition of the AJCC criteria demonstrated a significant
shift in focus through the incorporation of molecular biomarkers
into TNM staging for some cancer types. For example, expression
of key receptors (HER2, oestrogen, progesterone) and genes (Onco-
typeDx score) are incorporated into a pathologic stage group for
breast cancer [3] and expression of p16 protein – a surrogate mar-
ker of human papilloma virus infection – is included for oropha-
ryngeal cancer [4]. However, whilst molecular subtyping may
predict response to individual treatments, TNM staging remains
prognostic – informing treatment selection but not predicting
response.

Technological advances in molecular biology and histopathol-
ogy techniques, supporting well-designed studies, have greatly
increased our understanding of the molecular basis of tumor biol-
ogy, progression, and treatment response. Notably since the year
2000, there have been over 80,000 publications in PubMed with
the joint headings of ‘cancer’ and ‘predictive marker’, indicating
the growing role of predictive tools. However, patient benefit has
not fully materialised – the list of predictive tools routinely used
in the clinical setting is still very limited, in contrast to numerous
prognostic tools. At the end of 2019, 64 antitumor therapies target-
ing 24 molecular alterations were in clinical practice; detection of
the alteration was required for prescription of only 19 (30%) of
these therapies [5].

The identification and development of most currently available
biomarkers utilised tumor biopsy specimens and this remains the
primary method of tumor molecular assessment in routine clinical
practice. However, the panacea of a non-invasive blood test – a ‘liq-
uid biopsy’ – that can provide tumor-specific multi-omic informa-
tion has garnered considerable interest and investment over the
past few decades. Primary areas of focus in liquid biopsy research
have been circulating tumor DNA (ctDNA) and circulating tumor
cell (CTC) compartments, which are discussed below.
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In this review we discuss the current status of predictive tools
for conventional and targeted therapy, highlighting barriers to
their development and widespread application. We also outline
outstanding questions and unmet needs regarding future direc-
tions of predictive biomarker development and clinical adoption.

2. What predictive tools are currently in clinical practice?

When discussing ‘conventional therapy’ in this review we are
referring to surgery, chemotherapy, or radiotherapy. As will be
highlighted, predictive biomarkers are lacking for these treat-
ments. Stepping back, it is not difficult to see why. At the time of
their development and introduction, these conventional therapies
were the only option for cancer patients and, despite advances in
research, have been the mainstay of cancer therapy for over half
a century. For this reason, there was no urgent clinical need for
predictive biomarker development and so research mainly focused
on improving their efficacy whilst decreasing morbidity, such as
intensity-modulated radiotherapy [6]. Contrast this to novel tar-
geted or immunotherapy drugs, which have variable inter-
patient efficacy and considerable cost implications. For these new
therapies predictive biomarkers are important, if not essential, as
companion diagnostics (CDx), to enable patient selection and so
increase efficacy and cost-efficiency. In this section we will discuss
the various types of existing and potential predictive biomarkers
for conventional and targeted therapies. We will highlight key
examples to provide context for further discussion of barriers to
development and clinical translation (see Fig. 1).

2.1. Predictive tools guiding surgical intervention

Few studies have sought to define predictive biomarkers related
to surgical intervention. The majority of evidence remains prog-
nostic in nature, discussing surgical outcomes irrespective of the
treatment decision. In cancer types where surgery is established
as the primary treatment modality, trial design to define predictive
biomarkers for patients who should or should not undergo surgery
is ethically challenging [7]. In those cancers with equivocal evi-
dence for primary treatment then predictive biomarkers are
urgently needed. As discussed below, research has largely focused
on the adjuvant setting. However, advances in surgical technique
and technology promise improved outcomes – this is particularly
true in cancer types where surgical access is difficult and creates
significant patient morbidity. In this setting, arguably robotic sur-
gery has the greatest potential for impact, for example surgical
robotic endoscopic surgery [8] or trans-oral robotic surgery to treat
oropharyngeal cancer [9]. However, such technical advances are
often not developed with accompanying predictive biomarkers
and cohort sizes in early phase trials are small.

One area that has garnered interest is that of enhanced or mod-
ified tumor imaging to guide surgical decision making in a predic-
tive fashion [10]. In the assessment of draining lymph node basins
from primary tumors, functional imaging modalities that measure
tissue physiology can predict the need for surgical intervention,
such as axillary or cervical node clearance in breast cancer (BRC)
and head and neck squamous cell carcinoma (HNSCC) respectively



Fig. 1. Pictorial representation of data sources for predictive biomarker development and barriers that prevent successful clinical translation. Individual data variables (blue)
may be predictive but some may be prognostic (such as TNM) but in combination form a predictive tool.
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[11,12]. For example, Mehanna et al demonstrated the predictive
value of positron emission tomography-computed tomography
surveillance in HNSCC patients post-chemoradiotherapy, with sur-
gical intervention limited to those who had residual disease [13].
2.2. Predictive biomarkers for conventional radio- and chemotherapy

Predictive biomarkers to identify patients who will benefit from
adjuvant radio- and/or chemotherapy are crucial to improve out-
comes, especially in the primary surgery setting. As will be dis-
cussed, several tools have been investigated to develop predictive
biomarkers for this purpose – including biomarkers related to
mechanism of action, gene expression signatures, residual disease
and liquid biopsies. We give key examples of each to highlight the
current landscape.

Biomarkers of the mechanism of action of radio- and/or
chemotherapy are an obvious candidate for predictive utility; iden-
tifying protein or gene expression in downstream pathways
directly related to the treatment modality. One such example, is
excision repair cross completing group 1 (ERCC1) protein, a com-
ponent of the DNA repair pathway, which has been investigated
as a biomarker of chemotherapy response [14–16]. While ERCC1
demonstrated prognostic value for multiple cancers, clear evidence
for its utility as a predictive biomarker is lacking. For example,
early promise as a predictive biomarker for adjuvant chemother-
apy in NSCLC [15] or chemotherapy efficacy in CRC [17] was not
reproduced in larger cohort studies. Such evidence demonstrates
the challenge to identify and translate predictive biomarkers to
clinical practice.

A recent systematic review identified 10 potential predictive
biomarkers of radiotherapy response [18]. Of these, five were pro-
tein markers of DNA damage response and five were gene signa-
3

tures. The closest biomarker to clinical translation was the
radiosensitivity index (RSI), comprising 10 genes whose expression
significantly correlatedwith tumor cell radiosensitivity [19]. TheRSI
has been clinically validated in multiple patient cohorts including
different cancers, the largest being breast cancer (n = 503) [20].
Given the interdependency of radiosensitivity and oxygen availabil-
ity, gene signatures for assessment of tumor hypoxia have been
developed for multiple cancers, including HNSCC [21,22]. Retro-
spective analyses support the utility of such signatures to predict
benefit from hypoxia modification, further validation is ongoing
[23].

Combining expression profiles from multiple genes into vali-
dated panels has facilitated the development of numerous predic-
tive tools. One of the earliest and most widely adopted examples
is Oncotype DX – a 21 gene signature initially developed to predict
recurrence in node-negative tamoxifen-treated breast cancer (BRC)
[24]. Subsequently, Oncotype DX has been shown to predict benefit
from chemotherapy in high-risk, but not low-risk patients. A recent
trial of 9,719 HER2-negative node-negative BRC patients demon-
strated that endocrine treatment was non-inferior to chemother-
apy plus endocrine treatment for patients with a mid-range
Oncotype DX score of 11–25 (n = 6,711), thus predicting those
patients who can be spared adjuvant chemotherapy [25]. TheMam-
maPrint assay has further developed this concept into a 70 gene sig-
nature that predicts recurrence in node-negative BRC patients
irrespective of estrogen receptor or HER2 status [26]. In contrast
to Oncotype DX, which uses RT-PCR to quantify gene expression,
Mammaprint uses a microarray assay, which can assess expression
of thousands of genes, allowing a depth of information previously
unobtainable within clinical cost and time constraints.

The above-described predictive tests are tissue-based, often
utilising formalin-fixed paraffin-embedded (FFPE) tumor samples



N. Batis, J.M. Brooks, K. Payne et al. Advanced Drug Delivery Reviews 176 (2021) 113854
for the quantitative assessment of transcript abundance or protein
expression. Alternative strategies include functional/molecular
imaging to predict treatment response and liquid biopsy-based
assessments. The presence of residual disease following primary
treatment can be regarded as a predictive biomarker for specific
adjuvant therapy. Using BrC as an example, the CREATE-X trial
demonstrated that HER2-negative residual disease following neo-
adjuvant chemotherapy and primary surgery was a marker of
response to adjuvant capecitabine [27]. Similar results were
observed in the KATHERINE trial, whereby HER2-postive residual
disease was a predictive biomarker for response to trastuzumab
emtansine (T-DM1) adjuvant therapy [28]. The utility of liquid
biopsies (primarily blood samples) is being widely explored –
mostly in relation to targeted therapies (discussed below) and
immunotherapies [29,30]. Very few trials have evaluated ctDNA
derived predictive biomarkers for conventional therapies, the main
focus being prognostic markers. The COBRA trial is evaluating
ctDNA as a predictive biomarker for adjuvant chemotherapy in
CRC, but results are still awaited [31].
Table 1
FDA-Approved oncology drugs with labels that have been revised to include Toxicity
predictive markers [43,44,46].

Drug Year of treatments’ FDA
Approval

Predictive Biomarker

Capecitabine 1998 DPYD
Cisplatin 1978 TPMT poor metabolisers
Fluorouracil 2000 DPYD
Irinotecan 1996 UGT1A1
Mercaptopurine 1953 TPMT poor metabolisers
Nilotinib 2007 UGT1A1
Pazopanib 2009 UGT1A1
Rasburicase 2002 G6PD
Sebrafenib 2018 G6PB
Tamoxifen 1977 CYP2D6 poor metabolisers
Tamoxifen 1977 F5; Factor V Leiden carriers
Tamoxifen 1977 F2; Prothrombin mutation

G20210A
Thioguanine 1966 TPMT poor metabolisers

CYP2D6, Cytochrome P450 2D6; DPYD, dihydropyrimidine dehydrogenase; G6PD,
glucose-6-phosphate dehydrogenase; F2, coagulation factor II; F5, coagulation
factor V; TPMT, thiopurine S-methyltransferase; UGT1A1, UDP glucuronosyltrans-
ferase 1 family, polypeptide A1.
2.3. Predictive biomarkers guiding application of targeted therapies

The advent of targeted therapies, such as tyrosine kinase inhibi-
tors (TKIs), has resulted in numerous predictive biomarkers being
developed, based upon expression of the specific therapeutic tar-
get. However, there is a disparity between target availability and
therapeutic efficacy in certain cancer types. Thus, TKIs have shown
success and are a mainstay of treatment in, for example, NSCLC,
BRC and CRC. In contrast, EGFR-inhibitors such as cetuximab have
not demonstrated clear benefit in HNSCC in the primary setting
when compared to standard-of-care platinum-based CRT [32,33]
and are currently approved as an adjunct in recurrent/metastatic
patients only [34]. Variability in response within tumor types
may be explained mechanistically. For example, KRAS mutations
which lead to constitutive activation of downstream signalling
pathways, rendering upstream inhibition of EGFR futile. Testing
of additional predictive biomarkers is required to identify such
contraindications, for example KRAS genotyping in metastatic
CRC patients to predict response to Cetuximab therapy [35].

The Food and Drug Administration (US) (FDA) currently lists 44
CDx devices/tools approved in oncology [36]. Tests have been
approved for single gene mutations serving as predictive biomark-
ers in multiple companion diagnostic applications, for example
BRACA1/2, ALK, EGFR, KRAS and BRAF mutations. The development
of next-generation sequencing and high-throughput assays assess-
ing multiple gene expression or mutation patterns has led to a
plethora of expression signatures and mutation panels reported
to have predictive value. Several of these have now been translated
into routine clinical practice. One example is the FDA approved
FoundationOne CDx, a tissue-based test which analyses mutations
in 324 genes, in addition to providing microsatellite instability
(MSI) and tumor mutational burden (TMB) scores [36]. Approved
as a CDx for over 20 targeted therapies, FoundationOne CDx
demonstrates how improved cost-effectiveness of next-
generation sequencing has transformed genomic testing for pre-
dictive biomarkers in clinical practice. More recently, this test
has been developed for analysis of ctDNA from blood samples –
the FoundationOne Liquid CDx [37] – which directs the use of tar-
geted therapies in NSCLC, prostate, breast and ovarian cancer. Sev-
eral ‘single gene’ ctDNA tests are also approved, such as the cobas
EGFR Mutation Test for the detection of EGFR mutations in NSCLC
to predict sensitivity to Osimertinib [38,39]. However, their clinical
application is mostly limited to trials, whereas the FFPE tissue-
based counterparts are more commonly used.
4

2.4. Predictive tools of toxicity

Pharmacogenomics is the study of how genes affect an individ-
ual’s response to drugs. It combines pharmacology and genomics
to develop safe effective medications, tailoring dosage to a
patient’s genetic profile. This is particularly important because
combination approaches based on tumor biology – for example
blockade of multiple aberrant signalling pathways – may result
in enhanced toxicity which precludes their use [40]. In the context
of this article, we highlight the application of pharmacogenomics
as a predictive tool for the safety of oncological treatment. For
example, dihydropyrimidine dehydrogenase (DPYD) genotyping
is approved for prediction of fluorouracil (5-FU), capecitabine or
tegafur treatment toxicity [41,42]. However, testing is not widely
adopted in clinical practice. Further markers include thiopurine
S-methyltransferase (TPMT) and catechol O-methyltransferase
(COMT) variants associated with cisplatin-related hearing damage
in frontline paediatric cancer treatment [43–45]. Table 1 sum-
marises the key predictive markers that should be assessed prior
to prescription of specific oncology treatments to minimise associ-
ated toxicities. Revised labels are updated often by regulatory bod-
ies to include approved tests for markers of toxicity, but there is
always some delay in clinical adoption.
3. Translational research and clinical adoption

Notwithstanding the successful applications described above,
few predictive biomarkers have fulfilled their promise to date –
translating from discovery to clinical utility [47,48]. In this section
we discuss the various underlying issues that hinder the develop-
ment and wider clinical adoption of effective predictive tools. We
highlight the shortfalls of poorly designed and underpowered stud-
ies, the innate difficulty in undertaking sufficiently large robust
validation studies, as well as the need for universally harmonised
sample collection protocols and assays.

3.1. Study design, sample size and statistics

The concepts of alternative hypothesis testing and statistical
power were first formalised by Neyman and Pearson in 1928
[49]. Almost one hundred years later, lack of statistical power
remains a common confounding factor for the interpretation of
study results. Sample size calculations depend on the selection of
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a single endpoint. However, in practice, clinical studies often have
multiple endpoints, and indeed any sample size can be justified by
prudent choice of endpoint and power. Issues arise when investi-
gators do not determine a meaningful effect size prior to study ini-
tiation [50–54]. A power calculation forces investigators to name
the main outcome variable of their trial, which can then be checked
in the analysis, to protect against data dredging [50]. Underpow-
ered studies can create major barriers to biomarker validation
and downstream clinical adoption.

Early phase biomarker studies sometimes lack epidemiological
validity or statistical power and therefore fail to detect a difference
between groups even where such difference exists. Paradoxically,
insufficient statistical power also increases false positives, as well
as false negatives [51,52]. A recent study [55], reported discrepan-
cies between primary outcomes in published articles versus origi-
nal study protocols for 62% of trials reviewed. Hence, publication
bias favours reporting of statistically significant results. The combi-
nation of underpowered early studies and reporting bias can neg-
atively impact publication of large validation studies, especially if
results are non-significant [48,51]. Thus, appropriate early trial
design, with well-planned and executed recruitment strategies
are paramount for robust, successful biomarker studies. The devel-
opment and validation pathway should be designed to meet the
specific performance criteria for different biomarker applications,
such as treatment selection versus disease monitoring.

Another common pitfall in study interpretation is the applica-
tion of multiple statistical analyses to the same data sets, hence
increasing the chance of false positives [53]. By multiple testing,
we refer to instances when a dataset is subjected to repeat statis-
tical testing – including multiple time-points or subgroups – all of
which increase the probability of detecting a false-positive. Meta-
analyses and good accompanying clinical data can help strengthen
studies. However, confounding factors such as diverse treatment
options/delivery schedules or individual patient characteristics,
can make it more difficult to avoid statistical errors and fully con-
trol the planning of analyses. To prevent these serious problems,
planned comparisons should be pre-specified in the research pro-
tocol, with adjustments for multiple testing.

Retrospective studies are frequently used for early-stage bio-
marker development and validation being time and cost-
effective. However, they are often subject to bias, such as control
selection, outcome selection, loss to follow-up and differential
diagnosis. Another weakness is the difficulty in ascertaining
whether the analyses used were designed when the research idea
was conceived or were a result of data dredging and p value hunt-
ing for hypothesis redevelopment. Good practice for navigating
through some of the common pitfalls can be found in the following
reviews [56,57].

3.2. Lack of standardised, harmonised sample collection and
processing protocols

Historically, biomarker discovery and development has lacked
the well-defined regulatory structure mandated for the develop-
ment of new drug entities. The resultant lack of pre-analytical
studies, harmonised sample collection and standardised assay pro-
tocols across clinical laboratories, contributes to diminished repro-
ducibility of study findings and undermines downstream clinical
application. For example, poor-quality clinical samples (due to col-
lection or storage practices and sample age) can contribute to false
discovery, even when using a meticulous study design [58]. These
problems render many markers insufficiently sensitive or specific
for their intended use in clinical practice. Pepe and colleagues pro-
posed a five-phase formal categorization to guide biomarker devel-
opment [59]. Subsequently, the establishment of the Early
Detection Research Network (EDRN) by the National Cancer Insti-
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tute, USA., has led to improved coordination between biomarker
research laboratories [60]. The application of uniform standards
should facilitate the translation of newly discovered biomarkers
to the clinic [59], but this process must be enforced by all approval
bodies for global compliance and standardisation [60].

In addition to sample collection issues, the lack of standardised,
robust assays often creates issues in meta-analysing studies and
interpreting results, as well as identifying reliable prediction tools.
Taking an example from immunotherapy approaches, multiple
tests are approved for assessing expression of the immune check-
point, programmed death ligand-1 (PD-L1). The assays use differ-
ent platforms, antibodies, scoring systems and cut-offs for
positivity [61], different tests being aligned to specific indications.
Even though all are assaying the same marker (PD-L1) they are
effectively separate tests with limited transferability [62,63]. Even
where a single biomarker test is employed, inter-laboratory varia-
tion may confound assay standardisation. One way to address this
issue is via centralised testing, where only a single laboratory
offers a specific test (for example, the FoundationOne CDx and
FoundationOne liquid CDx).

As alluded to above, issues arise when quantification is a
requirement for the predictive tool and cut-off values need to be
implemented [64]; both the lowest and highest levels of quantifi-
cation must be determined for sensitivity and specificity, to enable
clinical adoption within the given application context. Most times
these are not harmonised between different studies, making inter-
pretation challenging and leading to poor clinical adoption. One
root cause for this challenge arises from the use, in early develop-
ment, of a cohort that is defined by a certain genetic or environ-
mental background (in order to have sufficient disease homogeny
to develop and assess a molecular biomarker) thus introducing a
sample bias [48,50,53]. Such bias becomes an issue when validat-
ing predictive tools developed in a well-defined study population
and compounded when translating such biomarkers into clinical
practice – where every individual patient poses unique challenges
to the biomarker: tumor location and heterogeneity, co-
morbidities, lifestyle and environmental influences, as well as an
individual clinical care team with local limitations or care choices
[54,65].

3.3. Difficulty in undertaking validation studies of sufficient size and
robust design

Trial recruitment is always an issue when conducting biomar-
ker validation studies, even in cancer types with a higher popula-
tion incidence. This problem is accentuated for less common
cancers, like HNSCC, and is further compounded when assessing
biomarkers of low incidence. Large scale, multi-centre studies are
needed to address this. One such example is the phase II
NCI-MATCH trial which recruited a large proportion of patients
with less common (e.g. gastroesophageal, kidney), as well as the
most frequent cancers (e.g. colorectal, breast, NSCLC) from over
1100 sites across the United States [66].

Another approach is the so-called adaptive trial design, which
has no formal pre-trial sample size calculation [67]. This is essen-
tially a two-phase trial, with an initial phase used to identify opti-
mal drug dose, biomarker cut-offs, or estimates of the standard
deviations of the outcome variables. Such data can then inform
appropriate changes to the trial protocol, including amended sta-
tistical power calculations and target sample size. This approach
is gaining significant traction in cancer research, an example of
which is the UK Lung Matrix trial. Patients are stratified into differ-
ent treatment arms according to genotype markers that have been
identified in their cancer. Of 5,467 patients screened, 2,007 were
eligible for enrolment and of these only 288 patients received
genotype-matched therapy [68]. However, in clinical practice this
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would facilitate targeted treatment of patients who would benefit
from the intervention, minimising potential side-effects and costs.

3.4. Poor clinical uptake of available predictive tools

As discussed above, effective predictive tools are available at
least for some indications. However, availability does not necessar-
ily correlate with clinical adoption. For example, national guideli-
nes recommend RAS, BRAF and MSI-testing for patients with
metastatic colon cancer in the United States, but the testing rate
is only around 50% [69]. A similar situation has been reported for
NSCLC, where testing rates, although improving, still vary for indi-
vidual markers and between countries [70]. Barriers to testing
include limited sample availability, complexities of test selection,
timelines (where treatment is urgently required and particularly
if single marker tests are sequentially applied), cost, and difficulties
in interpreting and applying test results. Targeted NGS approaches
(such as FoundationOne CDx) provide broad information covering
multiple actionable targets and are cost-effective. The downside
is increased complexity of data generated and the associated chal-
lenges in clinical application. The European Society for Medical
Oncology (ESMO) has developed a framework to facilitate prioriti-
sation of genomic targets based on clinical evidence of utility – the
ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)
[71]. However, there remains an unmet need for a comprehensive
support platform to uniformly match NGS results with therapies
for cancer patients [72].
4. Cellular and molecular tumor heterogeneity

In the following sections we consider tumor-intrinsic and
microenvironmental effects that impact the development and/or
use of predictive tools, along with ongoing research to overcome
such hurdles.

4.1. Intratumoral heterogeneity and difficulties of on- or post-
treatment sample collection

As previously noted, most predictive tools – including 32 out of
37 FDA-approved CDx for solid tumors [36] – are exclusively
tissue-based. The invasive nature of such tests precludes multire-
gional or serial sampling for most indications, meaning that treat-
ment decisions are based on a single diagnostic sample and could
introduce a sampling bias. Many tests also involve bulk, rather
than single cell analyses, and therefore do not assess whether all
or only a proportion of cells (usually tumor cells) are positive for
the marker of interest. Consequently, intratumoral heterogeneity
(ITH) can be a major confounding factor. ITH was originally defined
as the uneven spatial or temporal distribution of genomic alter-
ations within an individual tumor. This has expanded to include
epigenetic, transcriptomic and proteomic diversity within tumor
cells, as well as their interaction with the microenvironment
(TME) and diversity of the TME itself (discussed below).

From a gene-centric viewpoint, tests based on a single tissue
sample may only capture a snapshot of the genomic diversity pre-
sent within the whole tumor [73]. Using multi-region sequencing
of clear cell carcinomas, Gerlinger et al. showed that many driver
mutations are subclonal and ITH increases with the number of
biopsies analysed [74]. Targeted treatments may select for tumor
cells lacking the specific genomic alteration, or those containing
compensatory changes, leading to treatment resistance [75]. The
limitations of single sample-testing and ITH may be further com-
pounded by frequent use of single marker testing. In recent years
there has been a gradual progression from single marker to
multi-locus testing – paralleling the development of NGS technol-
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ogy. This enables ‘one-step’ selection of the most appropriate sin-
gle target. It also facilitates identification of combination
approaches targeting multiple pathways with decreased capacity
for acquired resistance.

Liquid biopsies may help to address both spatial and temporal
ITH. With respect to the latter, such minimally invasive tech-
niques are well-suited to serial sampling, enabling on-treatment
monitoring and post-treatment assessment. Multiple studies have
evidenced the utility of ctDNA to track the temporal heterogene-
ity of resistance mechanisms and acquired mutations in advanced
breast, ovarian, lung and gastrointestinal cancers [76–78]. How-
ever, whilst liquid biopsies have shown high specificity, their sen-
sitivity may be lower than that of tissue-based approaches
[79,80]. It is noteworthy that tissue-based testing is recom-
mended if all test results for the FoundationOne Liquid CDx are
negative [37].

The relative merits of ctDNA versus CTCs to address ITH are not
fully resolved. Several papers have highlighted ctDNA as a more
accurate assessment of disease burden or tumor mutational pro-
file when compared to CTCs [81]. Like bulk tissue-based tests,
ctDNA analysis does not address the proportion of tumor cells
containing specific alterations. Assessment of CTCs, whilst more
technically challenging, enables evaluation of genomic variation
at the single cell level. For example, single-CTC RNA-sequencing
from prostate cancer patients has identified androgen receptor
gene mutations correlated to disease progression [82], predicting
patients who would fail androgen inhibitor treatment. Improve-
ments in CTC sequencing and multi-parameter characterisation
hold promise for predictive biomarker development. The Cell-
Search platform remains the only FDA approved CTC enrichment
device; however, the reliance upon single marker (EPCAM)-
positive cell selection has intrinsic bias which may limit clinical
utility [83]. Cell size/deformability-based technologies, such as
microfluidic enrichment, seek to address this but have their own
limitations, such as lower sample purity [84]. Representing the
latter approach, the Parsortix (Angle Plc) microfluidic CTC enrich-
ment device is currently under FDA review for use with metastatic
BRC patients.
4.2. Tissue microenvironment effects

As noted above, ITH exists at multiple levels, including within
TME components. TME interactions have important roles in tumor
cell survival, proliferation, differentiation, and metastasis. Effects
can be mediated via direct cell-cell contact or the plethora of
cytokines, chemokines and growth factors produced by diverse cell
types within the TME – including pro-tumoral cancer-associated
fibroblasts or suppressive immune subsets (myeloid derived sup-
pressor cells, tumor associated macrophages, regulatory T cells,
etc.) and anti-tumoral immune effector cells (T cells, NK cells, type
I macrophages, etc.). Other variable features of the TME that
impact on treatment response include nutrient and oxygen
availability. As discussed above, hypoxia negatively impacts
radiotherapy response; beyond this, it selectively disadvantages
anti-tumoral immune cells within the TME [85]. Poor vascularisa-
tion – an important contributory factor to tumor hypoxia – also
limits entry of both immune cells and chemotherapy agents.
Although tumor-TME interactions are critical determinants of
treatment response and outcome, they are given minimal consid-
eration by current predictive tools, which often focus on intrinsic
properties of tumor cells. Only for immunotherapy (discussed else-
where in this issue) is due consideration given to the role of the
TME. In vitro model systems – the focus of this special issue –
provide the best opportunity to explore the complexity of
tumor-TME interactions and their effects on treatment response.



Table 2
Outstanding questions and research/clinical needs still to be addressed for successful development of biomarkers and implementation of predictive tools into clinical practice.

Predictive tools the Outstanding questions/needs

� Can effective predictive tools be developed using clinical data/factors that are routinely recorded/measured, e.g. age, gender, T/N/M, blood counts, blood proteins,
scans, BMI, co-morbidities, etc.? – as no/less requirement for high-level technologies and minimal add-on costs, may be more universally applicable.

� Can we establish and support large-scale collaborative projects – especially for rare cancers or subtypes – to generate large, robust datasets for validation of pre-
dictive tools and use of AI-based machine learning for analysis, hence produce simplified outputs to facilitate clinical implementation?

� Are biomarkers and development models population biased, and can biomarkers be universally applied between genetically diverse populations?
� Can licensing agencies demand and enforce the use of companion biomarkers that direct treatment?
� Large datasets and multiple layers of clinical data, in particular NGS, for biomarker discovery and patient clinical assessment pose ethical concerns that need to be
addressed. How we safeguard patient data and minimise the risk of deanonymizing data sets?

� There is a need for development/application earlier in the treatment timeline. Predictive tools are mostly developed in advanced disease settings – is this problem-
atic for wider adoption?
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4.3. Complexity of pathways or processes that are being
therapeutically targeted

Poor response to a targeted agent despite therapeutic biomar-
ker matching is often a reality, as highlighted with EGFR inhibition
in HNSCC [86]. A further example can be drawn from immunother-
apy approaches, where a recent review concluded that across 15
tumor types, tumor PD-L1 expression was predictive of response
to immune checkpoint blockade in less than 30% of cases [63]. Con-
versely, some patients derive benefit from PD-1/PD-L1 blockade in
the absence of PD-L1 expression [87], thus highlighting the need
for more robust predictive biomarkers in certain treatment groups.

The underlying mechanism behind such treatment resistance
may be attributed to several confounding factors including: partial
or incomplete pathway inhibition, biochemical plasticity in
response to drugs, the presence of co-occurring driver mutations
or spatial heterogeneity of tumor cells lacking the targeted marker
[88]. Furthermore, the structure and function of the treatment tar-
get proteins are regulated by multiple molecular factors, such as
posttranslational modification, which are often not assessed with
conventional tests i.e. phosphorylated proteins in their activated
form. Compensatory pathways may explain why certain treat-
ments fail in some cancer types [89]. For example, resistance to
EGFR-inhibitors due to compensatory MAPK, PI3K/ATK and STAT
pathway activation [90] or co-occurring alterations in CTNNB1
and PIK3CA in lung cancer [91]. The ongoing discovery of such
alternative pathways serves to highlight our limited understanding
of complex cellular oncogenic mechanisms. In the NCI-MATCH trial
~38% of patients with actionable alterations were excluded from
treatment due to co-occurring resistance mutations [66].

In many solid tumors, mutations in oncogenes – such as the RAS
family – are the key drivers of survival, proliferation, etc. However,
this is not universal. For example, in HPV-negative HNSCC key
genetic changes involve loss of tumor suppressor function (TP53,
CDKN2A), rather than activation of oncogenes [92]; such changes
may be prognostic but are not actionable. In such situations, the
lack of a therapeutic target makes predictive biomarker develop-
ment particularly difficult.
5. Outstanding questions and future direction

Predictive biomarkers can greatly improve treatment selection
and ultimately patient outcomes, as well as ameliorate side-
effect profiles in cancer therapy. The rapid evolution of clinically
adopted tests and molecular biomarkers, in particular NGS, and
better understanding of cancer biology and disease progression
will allow clinicians to provide treatments that are patient strati-
fied, precise and better tolerated. Oncology practice will increas-
ingly be ruled by cost effectiveness in clinical management and
this is an area where effective predictive tools can come into their
own. For this to materialise predictive tools need to be easy-to-
apply, relatively inexpensive, robust, and reliable. Furthermore,
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clinicians need to be able to interpret the outcomes and to have
treatment selection options that are appropriate and approved.
Moreover, advances in technology would allow for rapid ‘table-
top‘ evaluation of at least some predictive biomarkers to take place
during consultations, speeding up disease assessment and treat-
ment enrolment. Table 2 highlights outstanding questions that
must be considered when future research seeks to develop suc-
cessful predictive tools for clinical translation.

The aforementioned issues of genomic and transcriptomic ITH,
the TME and compensatory pathway activation are all intertwined,
contributing to a multifactorial picture of resistance to conven-
tional and targeted therapy. No single predictive biomarker is
likely to have the appropriate power to direct treatment decisions
with clinical benefit in cancers with such great heterogeneity.
Therefore, the future of cancer predictive tools may require an
amalgamation of several diverse markers that can give a more
actionable molecular staging that will indicate the outcome of
treatment response. As evidence for the utility of liquid biopsies
continues to grow, the evaluation of ctDNA and CTCs will be a
key area of future research to contribute to predictive tools.

Finally, as research continues to address the obstacles of design
and delivery of predictive biomarker trials, the greatest challenge
will be the analysis of vast ‘omics’ datasets derived from high
dimensional tumor characterisation and NGS. To this end, integra-
tive multi-omics and the development of AI algorithms to mine
vast quantities of data is undoubtedly the future of predictive bio-
marker development.
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