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Abstract

Background: Cucumber, Cucumis sativus L., is an economically and nutritionally important crop of the Cucurbitaceae
family and has long served as a primary model system for sex determination studies. Recently, the sequencing of its
whole genome has been completed. However, transcriptome information of this species is still scarce, with a total of
around 8,000 Expressed Sequence Tag (EST) and mRNA sequences currently available in GenBank. In order to gain
more insights into molecular mechanisms of plant sex determination and provide the community a functional
genomics resource that will facilitate cucurbit research and breeding, we performed transcriptome sequencing of
cucumber flower buds of two near-isogenic lines, WI1983G, a gynoecious plant which bears only pistillate flowers, and
WI1983H, a hermaphroditic plant which bears only bisexual flowers.

Result: Using Roche-454 massive parallel pyrosequencing technology, we generated a total of 353,941 high quality
EST sequences with an average length of 175bp, among which 188,255 were from gynoecious flowers and 165,686
from hermaphroditic flowers. These EST sequences, together with ~5,600 high quality cucumber EST and mRNA
sequences available in GenBank, were clustered and assembled into 81,401 unigenes, of which 28,452 were contigs
and 52,949 were singletons. The unigenes and ESTs were further mapped to the cucumber genome and more than
500 alternative splicing events were identified in 443 cucumber genes. The unigenes were further functionally
annotated by comparing their sequences to different protein and functional domain databases and assigned with
Gene Ontology (GO) terms. A biochemical pathway database containing 343 predicted pathways was also created
based on the annotations of the unigenes. Digital expression analysis identified ~200 differentially expressed genes
between flowers of WI1983G and WI1983H and provided novel insights into molecular mechanisms of plant sex
determination process. Furthermore, a set of SSR motifs and high confidence SNPs between WI11983G and WI1983H
were identified from the ESTs, which provided the material basis for future genetic linkage and QTL analysis.

Conclusion: A large set of EST sequences were generated from cucumber flower buds of two different sex types.
Differentially expressed genes between these two different sex-type flowers, as well as putative SSR and SNP markers,
were identified. These EST sequences provide valuable information to further understand molecular mechanisms of
plant sex determination process and forms a rich resource for future functional genomics analysis, marker
development and cucumber breeding.
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Background

Cucumber (Cucumis sativus L.) is an economically and
nutritionally important vegetable crop cultivated world-
wide and belongs to the Cucurbitaceae family which
includes several other important vegetable crops such as
melon, watermelon, squash and pumpkin. Cucumber has
considerable impact on human nutrition and is among 35
fruits, vegetables, and herbs identified by the National
Cancer Institute as having cancer-protective properties.
Cucumber and melon have long served as the primary
model systems for sex determination studies due to their
diverse floral sex types [1]. Sex determination in flower-
ing plants is a fundamental developmental process of
great economical importance. Sex determination occurs
by the selective arrest of either the male stamen or female
carpel during development [2]. Sex expression in cucurbit
species can be regulated by plant hormones and environ-
mental factors [1]. Ethylene is highly correlated with the
femaleness and has been regarded as the primary sex
determination factor [3,4]. Early genetics studies indi-
cated that there are three major sex-determining genes in
cucumber and melon: F, A, and M [5]. Recently, the A
gene in melon and the M gene in cucumber have been
cloned and both encode 1-aminocyclopropane-1-carbox-
ylic acid synthase (ACS), which is a key enzyme in ethyl-
ene biosynthesis [6,7]. In cucumber, a series of evidences
strongly support that the F gene also encodes an ACS
[8,9]. Despite such advances, the molecular mechanisms
of sex expression in cucurbit species still remain largely
unknown.

Cucumber is a diploid species with seven pairs of chro-
mosomes (2n = 14). The cucumber genome is relatively
small, with an estimated size of 367 Mb [10], which is
similar to rice (389 Mb; [11]), and approximately three
times the size of the model species Arabidopsis thaliana
(125 Mb; [12]). Despite its economical and nutritional
importance and the relatively small genome size, cur-
rently available genomic and genetic tools for cucumber
are very limited. These combined with the fact that the
genetic diversity of cucumber is very narrow are major
factors limiting cucumber breeding. For the past 10 years,
the average yields of both fresh and processing cucum-
bers have remained virtually unchanged in the United
States [13]. Therefore, in order to develop improved
crops, it is necessary to develop new resources that can
be used to identify novel molecular markers that are
linked to the trait of interest.

Recently the whole genome sequencing of the domestic
cucumber, C. sativus var. sativus L., has been completed
using a hybrid approach by combining traditional Sanger
and next-generation Illumina GA sequencing technolo-
gies [14]. The completion of cucumber whole genome
sequencing provides tremendous opportunities for evolu-
tionary and comparative genomics analysis and facilitates
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the identification of key genes of economical and biologi-
cal interests. Complementary to the whole genome
sequences, Expressed Sequenced Tags (ESTs) present an
alternative valuable resource for research and breeding as
they provide the most comprehensive information
regarding the dynamics of cucumber transcriptome. It
has been reported that ESTs have played significant roles
in accelerating gene discovery including gene family
expansion [15,16], improving genome annotation [17],
elucidating phylogenetic relationships [18], facilitating
breeding programs for both plants and animals by pro-
viding SSR and SNP markers [19,20], and large-scale
expression analysis [21,22]. In addition, ESTs are a robust
method for rapid identification of transcripts involved in
specific biological processes. Currently there are more
than 64 million ESTs in the NCBI public collection,
dbEST database [23]. However, only around 8,000 EST
sequences are available for cucumber and approximately
150,000 for all the species in the Cucurbitaceae family, of
which ~50,000 are in the dbEST database and ~100,000
recently generated melon ESTs are available in the Cucur-
bit Genomics Database [24], as compared to more than
1.5 and 2 million ESTs available for Arabidopsis and
maize, respectively.

Recent advances in next-generation sequencing tech-
nologies allow us to generate large scale ESTs efficiently
and cost-effectively. In this study, we report the genera-
tion of more than 350,000 high quality cucumber ESTs
from flower buds of two near-isogenic lines, a gynoecious
plant (MMFF) which bears only female flowers and a her-
maphroditic plant (mmFF) which bears bisexual flowers,
using Roche-454 massive parallel pyrosequencing tech-
nology. These ESTs, together with ~5,600 high quality
cucumber EST and mRNA sequences available in public
domains, were clustered and assembled into 81,401 uni-
genes, which were further aligned to cucumber genome
predicted genes and annotated extensively in this study.
We then performed comparative digital expression profil-
ing analysis to systematically characterize the differences
of mRNA expression levels between the two flowers with
different sex types, in an attempt to identify genes playing
roles in cucumber sex determination. Furthermore, puta-
tive SNP and SSR markers were identified from these
ESTs.

Results and discussion

Cucumber EST sequence generation and assembly

We performed a half 454 GS-FLX run on each of the two
flower bud samples which were collected from two near-
isogenic lines, a gynoecious line (WI1983G; MMFF)
which bears only female flowers and a hermaphroditic
line (WI1983H; mmFEF) which bears only bisexual flow-
ers. We obtained a total of approximately 405,000 raw
reads. After removing low quality regions, adaptors and
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all possible contaminations, we obtained a total of
353,941 high quality ESTs with an average length of 175
bp and a total length of 61.9 Mb, among which 188,255
were from WI11983G and 165,686 from WI1983H (Table
1). The length distribution of these high quality ESTs is
shown in Figure 1A. Despite a significant number of ESTs
were very short (<100), more than 80% fell between 100
and 300 bp in length.

The ESTs generated in this study, together with 5,196
high quality ESTs and 420 mRNA sequences available in
GenBank, were subjected to cluster and assembly analy-
ses. A total of 81,401 unigenes were obtained, among
which 28,452 were contigs and 52,949 were singletons.
The unigenes had an average length of 231.5 bp and a
total length of approximately 18.8 Mb (Table 2). The
length distributions of singletons, contigs and unigenes,
respectively, are shown in Figure 1B, revealing that more
than 8,000 contigs are greater than 400 bp, while only
around 400 singletons are greater than 400 bp.

The distribution of the number of ESTs in cucumber
unigenes is shown in Figure 2. From our EST collection,
we were able to identify a number of highly abundant
transcripts in cucumber flowers. Around 4,400 tran-
scripts have more than 10 EST members and these 4,400
transcripts (~5% of all the unigenes) contain ~62% of the
EST reads.

Alternative Splicing in Cucumber

Alternative splicing (AS) is an important regulatory
mechanism in higher organisms and plays a major role in
the generation of proteomic and functional diversities
[25]. In plants, a wide range of processes including devel-
opment, stress response and disease resistance are regu-
lated by AS [26-28]. Currently AS of several model plant
organisms including Arabidopsis and rice has been char-
acterized at the genome scale [29,30] while AS in cucum-
ber has not yet been investigated.

To identify AS events in cucumber genome, we mapped
all cucumber ESTs to the genome predicted gene regions.
We were able to identify a total of 25,917 unique intron-
exon junction sites in 8,355 genes. Among these junction
sites, 20,692 (80%) were consistent with those predicted
from cucumber genome. A total of 530 AS events were
identified in 443 cucumber genes based on the junction
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Figure 1 Length distributions of cucumber ESTs (A) and assem-
bled sequences (B).

sites derived from EST-genome alignments (Additional
file 1). These AS events were further classified into five
different types: alternative 5' splice site (AltD), alternative
3' splice site (AltA), alternative position (AltP), intron
retention (IntronR) and exon skipping (ExonS). Intron
retention is the most prevalent AS type, comprising
55.7% of all AS events and 54.4% of all alternatively
spliced genes identified in cucumber (Table 3). This is

Table 1: Statistics of cucumber ESTs generated by the 454 GS-FLX platform

WI1983G WI1983H Total
No. of reads 188,255 165,686 353,941
Average read length (bp) 178.5 170.6 174.8
Total bases (bp) 33,608,040 28,263,433 61,871,473
No. of reads in contigs 162,737 139,307 302,043
No. of reads as singletons 25,518 26,379 51,898
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Table 2: Statistics of cucumber unigenes
Singleton Contig Unigene
No. of sequences 52,948 28,453 81,401
Average read length (bp) 157.5 369.3 231.5
Total bases (bp) 8,340,006 10,507,878 18,847,884
No. of unigenes only having 454 reads 51,987 25,642 77,629
No. of unigenes only having GenBank sequences 1,051 69 1,120
No. of unigenes having both 454 reads and Genbank sequences 0 2,652 2,652
No. of unigenes aligned to cucumber genome predicted genes 35,117 23,407 58,524

consistent with previous reports in Arabidopsis and Rice
[30,31]. The relatively small number of genes were identi-
fied to have AS events in this study is probably due to the
limited number of ESTs and the short length of 454
sequences, most of which were aligned entirely to single
exons and did not cover the intron-exon junction sites.
More RNA-seq data, especially those from different tis-
sues and conditions, are required in order to obtain a
more complete picture of alternative splicing in cucum-
ber. The alignments of ESTs on the cucumber genome
can be viewed on the cucumber genome browser in the
Cucurbit Genomics Database [24].

Mapping unigenes to cucumber genome predicted genes

We further aligned cucumber unigenes to cucumber
genome predicted genes. Around 72% (58,524) unigenes
could be mapped, allowing 95% sequence identity and
80% length coverage (Table 2). The unmappable unigenes
(22,877; 28%) in cucumber might include non-coding
RNAs, fusion transcripts, relatively short and low quality
singletons, UTR sequences far from the translation start
or stop sites (>1000 bp), and those having incomplete
coverage by the genome. It has been reported that even in
Arabidopsis around 13% of the 454 ESTs can't be aligned
to the predicted genes [32] and in human only 64% of the
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Figure 2 Distribution of number of EST members in each cucum-
ber unigene.

454 reads can be mapped to the RefSeq database of well
annotated human genes [33]. All the mapping results
were provided in the Cucurbit Genomics Database [24]

Out of 26,682 genes predicted from the cucumber
genome [14], approximately 64% (17,087) were repre-
sented by this EST collection. In addition, based on the
transcript assembly described above, we found that
cucumber ESTs generated in this study covered ~70%
(2,625/3,772, Table 2) of genes derived from GenBank
ESTs and mRNAs which were generated from various dif-
ferent tissues including flower, fruit and leaf. Further-
more, we compared the Arabidopsis protein sequences
against cucumber unigenes using the blast program with
an e-value cutoff of 1e-10 and found that ~67% of all the
Arabidopsis protein sequences had at least one matching
cucumber unigene. Microarray analysis in Arabidopsis
indicates that 55-67% genes are expressed in a single sam-
ple [34] and studies in human and mouse also indicate
that around 60-70% genes are expressed in a specific tis-
sue [35]. All the above results indicated that the ESTs
generated under the present study captured the majority
of genes expressed in cucumber flower buds. These ESTs
represented a significant addition to the existing cucurbit
genomic resources.

Functional annotation of cucumber transcriptome

Based on the alignments of unigenes to cucumber
genome predicted genes, a total of 39,964 unique genes
were obtained, including 17,087 that contained cucumber

Table 3: AS events and alternatively spliced genes in
cucumber

AS type Gene (%) Event (%)
AItD (Alternative donor site) 63 (13.2%) 64 (12.1%)
AItA (Alternative acceptor site) 115 (24.1%) 118 (22.3%)
AItP (Alternative position) 12 (2.5%) 25 (4.7%)
IntornR (Intron retention) 260 (54.4%) 295 (55.7%)
ExonS (Exon skipping) 28 (5.9%) 28 (4.7%)
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genome predicted genes and 22,877 unmappable unige-
nes. We named these unique genes as virtual unigenes.
To infer putative functions of cucumber virtual unigenes,
we compared their sequences against GenBank non-
redundant protein database (nr) with an e value cutoff of
le-5. The analysis indicated that 20,023 (50.1%) virtual
unigenes had significant matches in the nr database,
among which 15,126 were cucumber genome predicted
genes (88.5% of the 17,087 EST-matched predicted genes)
and 4,897 unmappable unigenes (21.4% of all unmappable
unigenes). The low percentage (21.4%) of cucumber
unmappable unigenes that can be assigned a putative
function might be mainly due to the short sequence reads
generated by the 454 sequencing technology and the rela-
tively short sequences of the resulting unigenes (Table 1
and 2), most of which probably lack the conserved func-
tional domains. Another possible reason is that some of
these unigenes might be non-coding RNAs.

Gene Ontology (GO) terms were further assigned to
cucumber virtual unigenes based on their sequence simi-
larities to known proteins in the UniProt database anno-
tated with GO terms as well as InterPro and Pfam
domains they contain. A total of 15,901 virtual unigenes
(39.8%) were assigned at least one GO term, among
which 13,620 were assigned at least one GO term in the
biological process category, 13,799 in the molecular func-
tion category and 12,982 in the cellular component cate-
gory. These virtual unigenes were further classified into
different functional categories using a set of plant-spe-
cific GO slims, which are a list of high-level GO terms
providing a broad overview of the ontology content [36].
Figure 3 shows the functional classification of cucumber
virtual unigenes into plant specific GO slims within the
biological process category. Cellular process, metabolic
process, and biosynthetic process were among the most
highly represented groups, indicating the flower buds
were undergoing rapid growth and extensive metabolic
activities. It is worth noting that GO annotations revealed
417 and 129 genes involved in flower development and
the pollination process, respectively. Genes involved in
other important biological processes such as stress
response, signal transduction, and cell differentiation
were also identified through GO annotations.

Biochemical pathways

To further demonstrate the usefulness of cucumber ESTs
generated in the present study, we identified biochemical
pathways represented by the EST collection. Annotations
of cucumber unigenes were fed into the Pathway Tools
[37] and this process predicted a total of 343 pathways
represented by a total of 5,342 unigenes, which belonged
to 1,407 virtual unigenes. These predicted pathways rep-
resented the majority of plant biochemical pathways for
compound biosynthesis, degradation, utilization, and
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assimilation, and pathways involved in the processes of
detoxification and generation of precursor metabolites
and energy. A database containing all the predicted
cucumber pathways has been developed and is available
through the Cucubit Genomics Database [24].

Enzymes catalyzing almost all steps in several major
plant metabolic pathways including Calvin cycle, glycoly-
sis, gluconeogenesis, pentose phosphate pathway, and
several important secondary metabolite biosynthesis
pathways including carotenoid biosynthesis and fla-
vonoid and anthocyanin biosynthesis, could be repre-
sented by unigenes derived from the cucumber EST
collection. Moreover, genes encoding oxidosqualene
cyclase, an enzyme in the cucurbitacin biosynthesis path-
way, were also found in the EST collection. All these evi-
dences supported that the ESTs generated under this
study provided a valuable resource for cucumber gene
discovery and future functional analysis.

Comparison of transcriptomes between gynoecious and
hermaphroditic flowers

Cucumber is a model system for sex determination stud-
ies due to its diverse floral sex types [1]. During the past
several years, significant progresses have been made in
elucidating the mechanisms of plant sex determination,
an important and fundamental developmental process of
flowering plants, as exemplified by cloning several major
sex-determining genes in cucurbit species [6,7,38].
Despite such advances, little is known about transcrip-
tome dynamics of flowers with different sex types. In the
present study, we systematically compared transcriptome
dynamics between flowers of two isogenic lines, a gynoe-
cious plant and a hermaphroditic plant, using a digital
expression profiling approach.

Digital expression profiling, also called tag sampling or
RNA-seq, has been proved to be a powerful and efficient
approach for gene expression analysis at the genome level
[39] and offers several advantages over microarray tech-
nologies (See review in [40]). Due to the rapid advances
in next generation sequencing technologies, the digital
expression profiling approach becomes more and more
widely used. It has been reported that with EST collec-
tions as small as 1,000 reads, quantitative expression data
for numerous moderately and highly expressed genes can
be generated [21,41,42]. SAGE, which is also a tag-count
based gene expression analysis technology and has been
widely used for transcriptome profiling study, usually col-
lects 50,000 to 100,000 short tags for each sample [43]. In
the present study, we collected more than 160,000 tags
for each of the two samples (Table 1), providing sufficient
coverage to identify the majority of genes of interest.

Our digital expression profiling analysis identified a
total of 214 differentially expressed genes, among which
90 showed higher expression in gynoecious flowers and
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124 showed higher expression in hermaphroditic flowers
(Additional file 2). Few transcription factors other than a
maize DELLA protein D8 [44] and a melon zinc finger
protein CmWIP1 [38] have been functionally associated
with the plant sex determination process. In this study we
identified five transcription factors showing significantly
higher expression in gynoecious flowers and six showing
significantly higher expression in hermaphroditic flowers
(Additional file 2).

Recently a C2H2 zinc-finger transcription factor in
melon, CmWIP1, has been cloned and expression of
CmWIPI leads to carpel abortion, resulting in the devel-

opment of unisexual male flowers [38]. In the present
study, two zinc finger transcription factors (CU23681 and
CU13995) were found to have higher expression in her-
maphroditic flowers. They belong to different zinc finger
transcription factor families from that of CmWIP1, as
CU23681 belonging to the C2C2-GATA family and
CU13995 to the VOZ family.

It has been reported that auxin can induce pistillate
flower formation through its stimulation of ethylene pro-
duction [45]. An Aux/IAA transcription factor
(CU29035) was found to have higher expression in her-
maphroditic flowers. Aux/IAA genes are early auxin
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responsive genes and their proteins function as active
repressors of secondary auxin responsive genes [46].
Lower expression of the Aux/IAA gene in gynoecious
flowers could result in higher expression of secondary
auxin responsive genes thus induce femaleness. Consis-
tent with this, an auxin-induced protein (CU23408)
showed higher expression in gynoecious flowers in the
present study.

Brassinosteroids (BRs) can induce femaleness in
cucumber and this induction could be mediated, at least
in part, by brassinosteroid-induced production of ethyl-
ene [47]. In the present study, a gene (CU27987) belong-
ing to the BZR1-BES1 family showed higher expression in
hermaphroditic flowers. BZR1-BES1 family proteins rep-
resent a novel class of plant transcription factors and are
key components of the BR signaling pathway [48]. In Ara-
bidopsis, BZR1 serves as a positive regulator of the BR
signaling pathway, with a role in feedback regulation of
BR biosynthesis [49]. It's worth noting that two additional
genes involved in BR signaling also showed higher
expression in hermaphroditic flowers. One is BRI1
(CU14635), a receptor of BRs [50]. The other (CU3495)
encodes a BRI1-associated receptor kinase. In Arabidop-
sis, the gene has been reported to interact with BRI1 and
modulate BR signaling [51,52].

In Drosophila, a MYC transcription factor, daughterless
(DA), provides an essential maternal component in the
control of sex determination [53]. However, the role of
MYC transcription factors in plant sex determination has
not been documented. We found that a MYC transcrip-
tion factor (CU12949) showed higher expression in her-
maphroditic flowers.

Other putative transcription factors identified in this
study, such as BEL1-like homeodomain protein, bHLH
protein, WRKY DNA-binding protein, and NAC domain
protein, have been found to regulate various processes of
plant development, while a relationship between these
transcription factors and plant sex determination has not
been previously documented. In addition, among the
genes differentially expressed in the two different sex-
type flowers are several protein kinases. The correlation
of transcription factors and protein kinases with sex
determination suggested a pool of putative regulatory
elements for future functional analysis. Furthermore, a
large number of genes that have not associated with plant
sex determination before were differentially expressed,
suggesting additional pool of genes for further analysis.

Over-represented biological processes in differentially
expressed genes

We further identified GO terms in the biological process
category that were over-represented in the lists of genes
showing higher expression in gynoecious and hermaph-
roditic flowers, respectively (Table 4 and 5). These GO
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terms serve as indications of significantly different bio-
logical processes undergoing in flowers of the two differ-
ent genotypes. GO terms including biopolymer
metabolic process, cellular biopolymer metabolic pro-
cess, cellular macromolecule metabolic process, macro-
molecule metabolic process, and primary metabolic
process, were enriched in both lists of genes, indicating
that same biological processes could require different sets
of genes during gynoecious and hermaphroditic flower
development to maintain their activities. However, strik-
ing differences were found between these two lists of
enriched GO terms. It is worth noting that GO terms
related to responses to different kinds of abiotic/biotic
stresses were highly enriched in genes showing higher
expression in gynoecious flowers. It has been reported
that a number of environment variables, such as light,
temperature, water stress, and disease, as well as exoge-
nous treatment of hormones or other growth-regulating
substances, can directly influence plant sex expression
[54,55]. Factors including low temperature, low levels of
light intensity, short-day treatment, low levels of carbon
monoxide in the atmosphere, and exogenous application
of auxins can promote cucumber female and depress
male sex expression [54]. The results obtained from the
present study could provide molecular cues underlying
the effects of environmental factors on cucumber sex
expression. Differences of other enriched GO terms
included translation and system development that were
enriched in genes showing higher expression in gynoe-
cious flowers, and proteolysis and chromatin and chro-
mosome organization that were enriched in genes
showing higher expression in hermaphroditic flowers
(Table 4 and 5). However, further studies are required to
determine whether these biological processes are related
to flower sex determinations.

Identification of Simple Sequence Repeats (SSRs) and
Single Nucleotide Polymorphisms (SNPs)

Both SSRs and SNPs are valuable markers for plant
breeding programs. It has been reported that approxi-
mately 3-7% of expressed genes contain putative SSR
motifs, mainly within the un-translated regions of the
mRNA [56]. SSR markers derived from EST sequences
have been extensively used in constructing genetic maps
of cucurbit species [20,57]. In the present study, we per-
formed a general screen on the cucumber unigene data-
set for the presence of SSRs. A total of 3,130 SSRs were
found in 2,860 unigenes, whereas only 56 SSRs were
found in unigenes containing only GenBank sequences.
We excluded mononucleotide SSRs in our analysis
because of the common homopolymer errors found in
454 sequencing data. The major types of the identified
SSRs were trinucleotide (1,556) and dinucleotide (1,413),
followed by tetranucleotide (89), pentanucleotide (46)
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Table 4: GO terms within the biological process category significantly enriched in genes showing higher expression in

gynoecious flowers

GO term ID description adjusted p value
G0:0008152 metabolic process 0.01664
G0:0044237 cellular metabolic process 0.01664
G0:0010467 gene expression 0.01664
G0:0009651 response to salt stress 0.01778
G0:0009409 response to cold 0.01950
GO0:0006970 response to osmotic stress 0.02555
G0:0044238 primary metabolic process 0.02555
G0:0006412 translation 0.02600
G0:0034960 cellular biopolymer metabolic process 0.02948
G0:0009628 response to abiotic stimulus 0.03021
G0:0044260 cellular macromolecule metabolic process 0.03575
G0:0050896 response to stimulus 0.04116
G0:0006950 response to stress 0.04854
G0:0009266 response to temperature stimulus 0.04854
G0:0043283 biopolymer metabolic process 0.04854
G0:0031537 regulation of anthocyanin metabolic process 0.04854
GO0:0045944 positive regulation of transcription from RNA polymerase Il promoter 0.04854
G0:0034961 cellular biopolymer biosynthetic process 0.04854
G0:0048731 system development 0.04854
G0:0043284 biopolymer biosynthetic process 0.04854
G0:0043170 macromolecule metabolic process 0.04854
G0:0048522 positive regulation of cellular process 0.04854
G0:0048518 positive regulation of biological process 0.04854
G0:0051707 response to other organism 0.04854
G0:0042742 defense response to bacterium 0.04854

and hexanucleotide (26). The most frequent SSR motif is
AAG/CTT (769), followed by AG/CT (726), AT/TA (547)
and AAT/ATT (204). Of the 2,860 SSR-containing unige-
nes, 1,679 (59%) had sufficient flanking sequences for
primer design. The complete list of SSRs and their corre-
sponding primer pair information were provided in Addi-
tional file 3.

Since the ESTs generated under the present study using
the 454 technology are from two different cultivars, we
expect SNPs to be present in our EST collection. We
identified a total of 114 SNPs between WI1983G and
WI1983H, among which 42 were transitions, 16 were
transversions, and 56 were indels (Additional file 4). The
frequency of SNP occurrence in our EST collection is rel-
atively low, which is not unexpected since the sequences
were derived from two near-isogenic lines.

In summary, the SSRs and SNPs identified in this study
provided a valuable resource for future studies on genetic

linkage mapping and the analysis of interesting traits in
cucumber.

Conclusion

In this study, we describe the generation of more than
350,000 cucumber cDNA sequences from flower buds of
two near-isogenic lines with different floral sex types, a
gynoecious line and a hermaphroditic line, using the
rapid and cost-effective massive parallel pyrosequencing
technology. Currently in public domains, only ~8,000
ESTs are available for cucumber and ~150,000 for all the
cucurbit species. The ESTs generated in the present study
represent a significant addition to the existing genomics
and functional genomics resources of cucurbit species.
These ESTs have been used to facilitate the annotation of
cucumber genome [14] and to identify alternatively
spliced genes. In addition, these ESTs can also be served
as a valuable source to derive SSR and SNP markers,
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Table 5: GO terms within the biological process category significantly enriched in genes showing higher expression in

hermaphroditic flowers

GO term ID description adjusted p value
G0:0006508 proteolysis 1.85E-05
G0:0030163 protein catabolic process 1.85E-05
G0:0043283 biopolymer metabolic process 4.39E-05
G0:0043170 macromolecule metabolic process 6.27E-05
G0:0043285 biopolymer catabolic process 8.11E-05
G0:0019538 protein metabolic process 0.00012
G0:0009056 catabolic process 0.00017
G0:0009057 macromolecule catabolic process 0.00017
G0:0034960 cellular biopolymer metabolic process 0.00027
G0:0044260 cellular macromolecule metabolic process 0.00045
G0:0008152 metabolic process 0.00069
G0:0044238 primary metabolic process 0.00077
G0:0050794 regulation of cellular process 0.00078
G0:0050789 regulation of biological process 0.00237
G0:0006278 RNA-dependent DNA replication 0.00237
G0:0044237 cellular metabolic process 0.00237
G0:0019941 modification-dependent protein catabolic process 0.00398
G0:0043632 modification-dependent macromolecule catabolic process 0.00424
G0:0065007 biological regulation 0.00448
G0:0051603 proteolysis involved in cellular protein catabolic process 0.00448
G0:0044257 cellular protein catabolic process 0.00458
G0:0007165 signal transduction 0.00711
GO0:0006325 chromatin organization 0.00775
G0:0006333 chromatin assembly or disassembly 0.01263
G0:0007154 cell communication 0.01430
G0:0044267 cellular protein metabolic process 0.01528
G0:0034962 cellular biopolymer catabolic process 0.01528
G0:0051276 chromosome organization 0.01885
G0:0006357 regulation of transcription from RNA polymerase Il promoter 0.02912
G0:0044265 cellular macromolecule catabolic process 0.03373
G0:0044248 cellular catabolic process 0.03373
G0:0007242 intracellular signaling cascade 0.03548
GO0:0006260 DNA replication 0.03667
G0:0034645 cellular macromolecule biosynthetic process 0.03769
G0:0009059 macromolecule biosynthetic process 0.03769
G0:0034961 cellular biopolymer biosynthetic process 0.04996

which can help to further identify genes linked to inter-
esting traits. A biochemical pathway database containing
more than 300 predicted metabolite pathways was
derived from these EST sequences. Digital expression
analysis by comparing transcriptomes of two sex-type
flowers provided some novel insights into the molecular

mechanisms of cucumber sex determination, as well as a
rich list of candidate genes for further functional analysis.
To facilitate public usages of this EST resource, all the
EST sequences, annotations, their alignments to the
cucumber genome, and the derived pathway database
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have been made available in a searchable manner through
the Cucurbit Genomics Database [24].

Methods

Plant material

Seeds of gynoecious (Cucumis sativus L. var sativus cv
W11983G; MMFF) and hermaphrodite (C. sativus L. var
sativus cv WI1983H; mmFF) nearly isogenic cucumber
lines were kindly provided by Dr J. E. Staub (University of
Wisconsin, Madison, USA). WI1983G originated from a
cross between inbred WI5821 and WI5822 [58]. An
andromonoecious near-isogenic line WI1983A (mmyff)
was developed using a hermaphrodite line as the donor
parent. Five direct backcrosses to WI11983G were made
followed by three subsequent generations of self-pollina-
tion. The hermaphrodite WI1983H line was selected
from a cross between WI1983G and WI1983A [59].
Seeds were germinated and grown in trays containing a
soil mixture (peat: sand: pumice, 1:1:1, v/v/v). Plants were
adequately watered and grown at day/night temperatures
of 24/18°C with a 16-h photoperiod. Flower buds of
approximately 5 mm in diameter, which represents a crit-
ical stage of cucumber sex determination [60], were col-
lected from both lines and immediately frozen in liquid
nitrogen. Frozen flower buds were stored at -80°C till use.

cDNA preparation and sequencing

Total RNA was extracted from cucumber flower buds
using the TRIzol Reagent (Invitrogen, USA). mRNA was
purified from the total RNA using the Oligotex mRNA
Midi Kit (QIAGEN, Germany). Double-strand cDNA was
then synthesized using the SMART cDNA Library Con-
struction kit (Clontech, USA) following the manufac-
turer's protocol. The PCR products of cDNA were
purified using the QIAquick PCR Purification Kit (QIA-
GEN, Germany) and checked for quality using the Agi-
lent 2100 Bioanalyzer. Approximately 10 ug cDNA from
each of the two flower samples were used for sequencing
on a GS-FLX platform. A half-plate sequencing run was
performed for each sample at the Virginia Bioinformatics
Institute Core Laboratory Facility following manufac-
turer's protocols. All the sequences can be downloaded
and queried at the Cucubit Genomics Database [24].

cDNA sequence processing and assembly

The raw 454 sequence files in SFF format were base called
using the Pyrobayes base caller [61]. In addition, around
7,000 EST and mRNA sequences were collected from
GenBank in April, 2009. All these sequences were then
processed to remove low quality regions and adaptor
sequences using programs LUCY [62] and SeqClean [63].
The resulting high quality sequences were then screened
against the NCBI UniVec database and E. coli genome
sequences, as well as cucumber ribosomal RNA and chlo-
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roplast genome sequences, to remove possible contami-
nations. Sequences shorter than 30 bp were discarded.
The processed 454 and GenBank sequences were assem-
bled using the iAssembler program [64], which uses
MIRA [65] and CAP3 [66] as the core assembly engines.
The program performs post-assembly quality checking
and automatically corrected mis-assemblies. The post-
assembly quality checking mainly include 1) aligning each
cDNA sequence to its corresponding unigene sequence
to identify mis-assemblies; and 2) comparing unigene
sequences against themselves to identify sequences from
same genes that were not assembled together.

Mapping ESTs and unigenes to cucumber genome
predicted genes and identification of alternatively spliced
genes

Based on full length cDNA analysis in other plant species,
the majority of plant genes have 5' and 3' UTRs less than
1,000 bp [67]. For each cucumber genome predicted
gene, the gene region was defined as the region from up
to 1,000 bp upstream of the translation start site to up to
1,000 bp downstream of the translation stop site, allowing
no overlap with the neighboring genes. ESTs and unige-
nes were aligned to the gene regions using SPALN [68]
for those longer than 100 bp and BLAT [69] for those
shorter than 100 bp. Alternative splicing events and alter-
natively spliced genes were identified using a custom perl
script based on the alignments of ESTs to the cucumber
genome predicted genes.

Cucumber gene annotation and pathway prediction
Cucumber unigenes were blasted against GenBank non-
redundant protein (nr) and UniProt databases with a cut-
off e value of le-5. The unigene sequences were also
translated into proteins using ESTScan [70] and the
translated protein sequences were then compared to
InterPro and pfam domain databases. The gene ontology
(GO) terms were assigned to each unigene based on the
GO terms annotated to its corresponding homologues in
the UniProt database [71], as well as those to InterPro and
pfam domains using interpro2go and pfam2go mapping
files provided by the GO website [72], respectively. The
GO annotations of cucumber unigenes were mapped to
the plant-specific GO slim ontology using the map2slim
script [36] and the unigenes were classified into different
functional groups based on these GO slims. The annota-
tions of cucumber unigenes were then formatted into the
PathoLogic format and used to predict cucumber bio-
chemical pathways using the Pathway Tools [37].

Identification of differentially expressed genes, SNPs and
SSRs

Following ¢cDNA sequence assembly and unigene map-
ping to cucumber genome predicted genes, transcript
count information for sequences corresponding to each



Guo et al. BMC Genomics 2010, 11:384
http://www.biomedcentral.com/1471-2164/11/384

gene was associated with the corresponding tissue source
to obtain relative expression levels following normaliza-
tion to the total number of sequenced transcripts per
sample. Significance of differential gene expression was
determined using the R statistic described in Stekel et al.
[73] and the resulting raw p values were converted to q
values for multiple test corrections [74]. Genes with fold
change greater than two and q value less than 0.05 were
identified as differentially expressed genes. GO terms
enriched in the set of differentially expressed genes were
identified using GO::TermFinder [75], requiring p values
adjusted for multiple testing to be less than 0.05.

SSRs were identified from the unigenes using the MISA
program [76]. The minimum repeat number was six for
dinucleotide and five for tri-, tetra-, penta- and hexa-
nucleotide and the maximal distance interrupting two
SSRs in a compound microsatellite was 100 bp. Primer
pairs flanking each SSR loci were designed using the
Primer3 program [77]. SNPs in the cDNA sequences
between WI1983G and WI1983H were identified with
PolyBayes [78]. To eliminate errors introduced by PCR
amplification during the cDNA synthesis step and
homopolymer errors introduced by the 454 pyrosequenc-
ing technology, and to distinguish true SNPs from allele
differences, we further filtered the PolyBayes results and
only kept SNPs meeting all the following criteria: 1) at
least 2x coverage at the potential SNP site for each culti-
var; 2) not an indel site surrounded by long stretch (> = 3)
homopolyers; 3) no same bases at the potential SNP site
between the two cultivars.

Additional material

Additional file 1 List of alternatively spliced genes. The table provides
the list of alternative splicing events and alternatively spliced genes identi-
fied from cucumber ESTs.

Additional file 2 List of differentially expressed genes. The table pro-
vides the list of genes differentially expressed in flowers of gynoecious
(WI11983G) and hermaphroditic (WI1983H) plants.

Additional file 3 Cucumber SSRs. The table provides the list of SSRs iden-
tified from cucumber ESTs, their motif sequences and surrounding primer
pair information.

Additional file 4 Cucumber SNPs. The table provides the list of SNPs
identified from the cucumber EST collection.
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