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Background: Quantification of myocardium scarring in late gadolinium enhanced (LGE) cardiac magnetic resonance
imaging can be challenging due to low scar-to-background contrast and low image quality. To resolve ambiguous
LGE regions, experienced readers often use conventional cine sequences to accurately identify the myocardium
borders.
Purpose: To develop a deep learning model for combining LGE and cine images to improve the robustness and accuracy
of LGE scar quantification.
Study Type: Retrospective.
Population: A total of 191 hypertrophic cardiomyopathy patients: 1) 162 patients from two sites randomly split into train-
ing (50%; 81 patients), validation (25%, 40 patients), and testing (25%; 41 patients); and 2) an external testing dataset
(29 patients) from a third site.
Field Strength/Sequence: 1.5T, inversion-recovery segmented gradient-echo LGE and balanced steady-state free-preces-
sion cine sequences
Assessment: Two convolutional neural networks (CNN) were trained for myocardium and scar segmentation, one with and
one without LGE-Cine fusion. For CNN with fusion, the input was two aligned LGE and cine images at matched cardiac
phase and anatomical location. For CNN without fusion, only LGE images were used as input. Manual segmentation of the
datasets was used as reference standard.
Statistical Tests: Manual and CNN-based quantifications of LGE scar burden and of myocardial volume were assessed
using Pearson linear correlation coefficients (r) and Bland–Altman analysis.
Results: Both CNN models showed strong agreement with manual quantification of LGE scar burden and myocardium vol-
ume. CNN with LGE-Cine fusion was more robust than CNN without LGE-Cine fusion, allowing for successful segmenta-
tion of significantly more slices (603 [95%] vs. 562 (89%) of 635 slices; P < 0.001). Also, CNN with LGE-Cine fusion showed
better agreement with manual quantification of LGE scar burden than CNN without LGE-Cine fusion (%ScarLGE-cine
= 0.82 × %Scarmanual, r = 0.84 vs. %ScarLGE = 0.47 × %Scarmanual, r = 0.81) and myocardium volume (VolumeLGE-cine
= 1.03 × Volumemanual, r = 0.96 vs. VolumeLGE = 0.91 × Volumemanual, r = 0.91).
Data Conclusion: CNN based LGE-Cine fusion can improve the robustness and accuracy of automated scar quantification.
Level of Evidence: 3
Technical Efficacy: 1
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Myocardium scar quantified by late gadolinium enhanced
(LGE) cardiac magnetic resonance imaging (MRI) has

an important prognostic value in heart diseases and represents
an important risk factor for ventricular arrhythmias,1,2 sudden
cardiac death,3,4 and heart failure.5,6 Currently, computer-
assisted manual segmentation of the myocardium borders and
scarred regions is the reference method for LGE image analy-
sis.3,7 However, extensive manual intervention is a bottleneck
in the image analysis workflow and is prone to reader variabil-
ity.8,9 Automatic image segmentation using deep con-
volutional neural networks (CNN) has been recently proposed
to standardize LGE analysis and mitigate the time and effort
of manual contouring.10-12 With CNN, large annotated
datasets are used to automatically learn how to identify scarred
and normal myocardium pixels in LGE images. One limita-
tion of automatic methods is the unreliable identification of
scars in the vicinity of hyperenhanced blood pool or adipose
tissues.13 This limitation is accentuated further by low-quality
images and cases of uncommon myocardium shapes and scar
patterns (e.g., hypertrophic cardiomyopathy [HCM]).14,15 In
practice, readers resolve this ambiguity by performing side-by-
side reading of LGE and conventional cine image sequences to
determine the correct borders of the scar and myocardium.14

However, this practice entails additional manual processing
and delays an already prolonged image analysis workflow.

Automatic methods for facilitating the integration of cine
and LGE image sequences can be classified into direct16-18 or
indirect19,20 image fusion approaches. In the direct approach, the
myocardium is first delineated in the cine images. The resulting
contours are then copied to the corresponding LGE image dataset
to guide myocardium segmentation. This approach requires accu-
rate registration of the cine and LGE images and involves heuris-
tic design and careful selection of algorithmic parameters.16,17 In
the indirect approach, shape variations among the myocardium
contours are modeled using an annotated set of cine images.
Then, the modeled shapes are used to regularize (or constrain)
the myocardium segmentation in LGE images not necessarily
corresponding to the modeled set of cine images. Deep CNN
based methods have been used to implement indirect integration
of LGE and cine information.19,20 Current methods of both
approaches require a separate processing step to identify scars as
hyperenhanced regions within the segmented myocardium. How-
ever, the accuracy of such intensity-based identification of scars is
limited and vulnerable to imaging artifacts and selection of algo-
rithmic parameters. In this study, we present a deep CNN algo-
rithm for robust segmentation of LGE scars in HCM patients by
allowing fusion of LGE and cine images.

Materials and Methods
MRI Dataset
MRI datasets from three different sites were used to develop and test
the proposed CNN model. All patients signed statements approved by
the Investigational Review boards of the participating institutions,

agreeing to the use of their medical information for research. The
dataset was a subset of cases from a multicenter HCM study,3 in which
patients with implantable cardioverter defibrillators, sustained ventricu-
lar tachycardia or ventricular fibrillation, myocardial infarction, or septal
reduction procedures were excluded. Among these patients, we only
included cases if both short-axis LGE and cine sequences planned using
the same reference scan were available. A set of MRI scans of
162 HCM patients acquired from two medical centers (Tufts Medical
Center and Beth Israel Deaconess Medical Center) were combined and
randomly split (as discussed below) to train, optimize, and test the pro-
posed model. We refer to this image set as the development dataset. To
increase the robustness of testing, we used a set of MRI scans of
29 patients from a third site for testing only. We refer to this image set
as external testing dataset.

All acquisitions were performed on 1.5 T scanners (Philips
Healthcare, Best, The Netherlands). Each patient dataset included
electrocardiogram gated breath-hold inversion-recovery segmented
gradient echo LGE and balanced steady-state free precession (bSSFP)
cine scans. LGE images were acquired 10–20 minutes after intrave-
nous administration of 0.2 mmol/kg gadolinium-diethylenetriamine
penta-acetic acid (Magnevist; Schering, Berlin, Germany).

The typical LGE imaging parameters of the development
dataset were: repetition time (TR) = 3.4–4.9 msec, echo time (TE) =
1.1–2.9 msec, flip angle (α) = 15�–20�, field of view (FOV) = 360–
400 × 360–400 mm2, pixel size = 1.0–1.25 × 1.0–1.25 mm2, num-
ber of slices = 7–24, slice thickness = 8–10 mm, and trigger delay =
332–1040 msec. The imaging parameters for the bSSFP cine
sequences were as follows: TR = 2.6–3.6, TE = 1.2–1.7 msec, α = 15–
60�, FOV = 360–400 × 360–400 mm2, pixel size = 0.97–1.25 ×
1.0–1.25 mm2, and slice thickness = 5–10 mm.

The external testing dataset consisted of 29 patients from a
third site using a 1.5 T scanner (Philips Healthcare, Best, The Neth-
erlands). The acquisition parameters for the external dataset were as
follows. LGE acquisition with TR = 3.3–8.8 msec, TE = 1.2–2.0
msec, α = 15�-60�, FOV = 360–400 × 360–400 mm2, pixel size =
0.7–1.6 × 0.7–1.6 mm2, number of slices = 7–25, slice thickness =
8–12 mm, and trigger delay = 255–838 msec. The imaging parame-
ters for bSSFP cine sequences were: TR = 3.0–4.2 msec, TE = 1.5–
2.1 msec, α = 50–70�, FOV = 360–400 × 360–400 mm2, pixel size
= 0.97–1.25 × 1.0–1.25 mm2, and slice thickness = 8–10 mm.

Data Splitting and Preprocessing
The development dataset was split into training (50%, 81 patients),
validation (25%, 40 patients), and testing (25%, 41 patients) subsets
(Fig. 1a). A stratified (patient-wise) random splitting approach was
used such that a similar ratio of cases with different LGE scar burden
(<1%, 1–10%, and >10%) was maintained in each subset. The exter-
nal dataset (29 patients) was used only for testing. For each LGE slice,
a matched cine slice at the same cardiac phase and closest anatomical
location was selected using the trigger delay and slice location informa-
tion stored in the dicom file (Fig. 1b). In-plane image misalignment
due to different breath-hold levels and/or patient motion between cine
and LGE scans was reduced using in-plane image translation. First,
the center of the left ventricle (LV) was manually selected in the LGE
and cine images. Then, in-plane image translation was used to align
the selected centers. Finally, the operator was able to overlay the trans-
lated LGE and cine images to visually check their alignment and
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repeat the process if needed. All images were normalized to intensity
range from 0 to 1 and spatial resolution of 1.2 mm, and cropped to
160 × 160 matrix.

Reference Segmentation
The reference standard segmentations for all LGE images were
obtained as a part of core laboratory analyses (PERFUSE, Boston,
MA) using manual analysis by a cardiologist (R.H.C., with 3-year
experience in LGE scar analysis in HCM patients). Both datasets
were analyzed by the same reader using a commercial software
(QMASS version 7.4, Medis Inc., Raleigh, NC). First, the endocar-
dium and epicardium boundaries were manually delineated. Then,
the reader manually adjusted a gray-scale threshold to identify all
visually apparent hyper-enhanced areas within the myocardium. If
necessary, the reader used manual drawing to include LGE scars not
identified by the intensity threshold and/or exclude hyper-enhanced
areas representing noise or artifacts.3 These areas were then summed
to generate a total volume of LGE and expressed as a proportion of
the total LV myocardium (%Scar).

Network Architecture
We developed two 2D-CNN models for LGE segmentation (one
with and one without LGE-Cine fusion) based on U-Net architec-
ture.21 The models included four multiresolution processing levels
(image down-sampling factor = 2 per level), 3 × 3 convolutional ker-
nels with maximum pooling at each resolution level, ReLU activa-
tion, batch normalization, and dropout layers. Long and short skip-
connections, typically used for U-Net, were used to improve net-
work performance.22 The input to the CNN model was an LGE
image (size = 160 × 160) or a stack of two matched LGE-Cine
images (size = 160 × 160 × 2) for CNN without or with fusion,

respectively. A softmax layer was used as the output layer of the net-
work to produce four maps representing the probability of each pixel
to belong to scar, normal-myocardium, blood, or background
regions. Background and blood pool regions were then merged into
one background region. During model training, a cross-entropy loss
function was used to measure the error between the CNN based seg-
mentation and the manual segmentation.21 Model training was done
for a fixed number of epochs (N = 250) to minimize the loss func-
tion and the best performing model (i.e., that with highest segmen-
tation accuracy in the validation subset) was selected as the final
model. Image augmentation (using translation, rotation, and up–
down/left–right flipping) was used to increase the training dataset
size and avoid over-fitting.23

Optimization of CNN Model Parameters
Training of each model was repeated using different sets of hyper-
parameters arbitrarily selected from the following ranges: number of
channels at the first processing layer (16, 24, 32, 48, 64), dynamic
learning rate (initial = 0.01 or 0.005; minimum = 0.0005, reduction
factor = 0.8, plateau interval = 30 epochs), dropout probabilities
(0.25 and 0.5), and batch size (2 and 4 patients �20–40 images).
We used the validation dataset to evaluate the performance of each
trained model and the final model was selected as the one with the
smallest number of parameters that yielded the highest myocardium
segmentation accuracy. The architecture of the optimal models with
and without fusion was comprised of 0.58 × 106 and 1.3 × 106

parameters, respectively, with learning rate = 0.005, dropout = 0.25,
and batch size = 4 patients. The number of channels in the four
multiresolution (from high to low) levels were 32/64/128/128 and
48/96/196/196 for the CNN with and without fusion, respectively.
The networks were implemented using Python-V3.6 (Python

FIGURE 1: Flow chart of dataset splitting (a), and convolutional neural network (CNN) based fusion of late gadolinium enhancement
(LGE) and balanced steady-state free precession (bSSFP) cine sequences for myocardium and scar segmentation (b). DICOM = digital
imaging and communications in medicine file format; LV = left ventricle.
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TABLE 2. Evaluation of Convolutional Neural Network (CNN) Based Quantification of LGE Scar Burden, %Scar, and
Myocardium Volume With and Without Image Fusion

Dataset
CNN
Model Successful Segmentationa

%Scar
(Slope/R)b

Myocardium
Volume (Slope/R) Scar Detectionc

All testing (66
patients)

Fusion 603 (95% of 635) 0.82/0.84 1.03/0.96 89/96/77% (N = 22)

No fusion 562 (89% of 635; P < 0.001) 0.47/0.81 0.91/0.91 80/93/57% (N = 22)

Internal testing
(40 patients)

Fusion 298 (95% of 313) 0.80/0.91 1.04/0.92 90/93/80% (N = 10)

No fusion 273 (87% of 313; P < 0.001) 0.40/0.93 0.92/0.90 83/97/46% (N = 10)

External testing
(26 patients)

Fusion 305 (95% of 322) 0.85/0.73 1.02/0.96 88/100/75% (N = 12)

No fusion 289 (90% of 322; P = 0.015) 0.65/0.75 0.90/0.88 77/86/67% (N = 12)

aData are given as number of slices (% of total number of slices).
bData are given as Unitless linear regression slope and coefficient of determination (R).
cData are given as Accuracy/specificity/sensitivity (number of patients with LGE scar burden >1%).

FIGURE 2: Segmentation of late gadolinium enhancement (LGE) in short-axis slices for four different patients (a–d). Myocardium and
scar contours (red and yellow, respectively) overlaid on the LGE slices (columns 2–4) indicate: manual segmentation (Reference,
column 2), convolutional neural network (CNN) with fusion (CNN-Fusion, column 3), and CNN without fusion (CNN, column 4).
Column 1 displays the cine images corresponding to each LGE slice (matched location and cardiac phase).
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Software Foundation, www.python.org) and Tensorflow-V2.1
(Google Inc., Mountain View, CA). Implementation was performed
on both Nvidia DGX-1 workstation and the cloud-based Precision
Medicine Platform (PMP) of the American Heart Association
(AHA). Network implementation, model parameters, and sample
datasets are publicly available at https://doi.org/10.7910/dvn/
w22fya.

Image Postprocessing
The outputs of the CNN models were processed to create categori-
cal images with each pixel labeled normal myocardium, scar, and
background (including blood pool). The segmented myocardium
was first processed to fill small gaps within the myocardium (using a
morphological closing operation, disk with radius = 3 pixels). If mul-
tiple disjoint myocardium regions were segmented, only the largest
one was selected and all others deleted. Morphological dilation with
1 pixel was used to account for eroded boundaries observed in the
segmented images.

Statistical Analysis
Linear correlation (Pearson correlation coefficient, r) and Bland–
Altman analyses were used to evaluate the agreement between
automatic and manual quantification of LGE scar burden and myo-
cardium volume in the testing datasets. Chi-square test was used to
compare sample proportions. LGE scar burden, %Scar (defined as
the ratio of scar volume to the total LV myocardium volume) and
presence of scar (defined as %Scar >1%) were analyzed. Slices with
substantial errors such that <50% of myocardium area was correctly
segmented, were identified and removed from data analysis. Data
analyses were performed using Statistics Toolbox of Matlab-R2018b
(Mathworks Inc., Natick, MA).

Results
LGE scar was present in 10 patients (26% of 41) in the internal
testing datasets and 15 patients (52% of 29) in the external test-
ing datasets, with average burden, %Scar, of 7.1% ± 6.4%
(median = 5.3%) and 7.8% ± 7.5% (median = 5.2%), respec-
tively (Table 1). The number of patients with scar in the com-
bined testing dataset (25% of the development dataset +
external dataset) was 25 (36% of 70) patients with average bur-
den 6% ± 5% (median = 5%). Both CNN models (with and
without fusion) successfully segmented the myocardium in
66 patients (94% of 70 patients of the combined testing dataset)
and showed strong correlation with manual quantification in the
internal (r > 0.91, N = 40), external (r > 0.73, N = 26), and
combined (r > 0.81, N = 66) testing datasets (Table 2). CNN
analysis time was less than 0.05 seconds/slice in both models
while image postprocessing was less than 0.10 seconds/slice. In
four cases, low image quality (N = 1, internal dataset) and severe
anomaly in myocardium shape (N = 3 in external dataset) lead
to substantial errors in both models and thus four datasets were
excluded from further analysis (Fig. S1 in the Supplemental
Material). CNN with LGE-Cine fusion allowed segmentation of
significantly more slices compared to CNN without fusion
(603 [95%] vs. 562 [89%] of 635 slices, P < 0.001) (Fig. 2 and TA
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Table 3). Quantification by CNN with LGE-Cine fusion
showed strong agreement with manual quantification of %Scar
(%ScarLGE-cine = 0.82 × %Scarmanual, r = 0.84; 66 patients, 603
slices) (Fig. 3) and myocardium volume (VolumeLGE-cine = 1.03
× Volumemanual, r = 0.96; 66 patients, 603 slices) (Fig. 4).
Strong correlation was also observed for 2-parameter regression
line (i.e., with an intercept) for both %Scar (%ScarLGE-cine =
0.12 + 0.81 ×%Scarmanual, r = 0.84; 66 patients, 603 slices) and
myocardium volume (VolumeLGE-cine = 18 + 0.91 ×
Volumemanual, r = 0.96; 66 patients, 603 slices). The estimation
bias in Bland–Altman graph was −0.3% for %Scar and 7 mL
for myocardium volume with >90% of measurements within
the limits of agreement for %Scar (±5%) and myocardium vol-
ume (±41 mL) (Fig. 3). In comparison to CNN with LGE-Cine
fusion, in all testing datasets, CNN without fusion showed
greater underestimation of manual quantification of %Scar (%
ScarLGE = 0.47 × %Scarmanual, r = 0.81; 66 patients, 562 slices)
(Fig. 3) and myocardium volume (VolumeLGE = 0.91 ×
Volumemanual, r = 0.91; 66 patients, 562 slices) (Fig. 4). Also,
compared to CNN with LGE-Cine fusion, CNN without LGE-
Cine fusion showed lower accuracy (80% vs. 89%, P = 0.15, N
= 66), specificity (93% vs. 96%, P = 0.54, N = 44), and sensitiv-
ity (57% vs. 77%, P = 0.14, N = 22) of identifying patients
with scar.

Discussion
In this study, we have presented a CNN model for improved
LGE scar quantification using automated LGE-Cine fusion.
The developed model attempts to mimic the common clinical
practice of reading LGE and cine sequences. Our results dem-
onstrated that CNN with LGE-Cine fusion improved the
quantification accuracy of LGE scar burden and myocardium
volume and allowed better detection of LGE scars compared
to CNN without fusion. The results also showed that CNN
with LGE-Cine fusion enabled segmentation of LGE slices in
cases where conventional CNN without fusion failed.

Model Development
The CNN models in our study were trained using a dataset
from two medical centers implementing the same imaging
protocol on 1.5 T scanners from a single vendor. This relative
homogeneity of the dataset allowed effective training of
smaller CNN models compared to what has been presented
in previous studies.10,11 Also, we noted that a more efficient
representation of LGE patterns and image contrast may be
achieved by incorporating cine images into the model. This
was indicated by the smaller size (<50%) of the optimal
CNN based fusion model compared to that of the CNN
model without fusion. To avoid overfitting the model to the

FIGURE 3: Assessment of convolutional neural network (CNN) based quantification of LGE scar burden (%Scar) with (a, c) and
without (b, d) LGE-Cine fusion versus manual quantification. The solid line in the scatter plots (a, b) represents unity-slope regression
line. The solid and dashed horizontal lines in Bland–Altman plots (c, d) represent bias and limit of agreement, respectively.
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training dataset, we employed three techniques: dropout
layers, image augmentation, and selecting the optimal model
based on the accuracy of segmenting a validation dataset.

Model Performance
The developed models were tested using a diverse dataset from
70 HCM patients including an external dataset from a different
imaging center (which used the same scanner and imaging pro-
tocol but with different imaging parameters). Scar quantifica-
tion in HCM patients is highly challenging due to the patchy
multifoci appearance of scars.14,15 Additionally, in HCM, myo-
cardium hypertrophy and changed LV geometry limit the abil-
ity to differentiate hyperenhanced myocardium from the blood
pool.13,14 In both the internal and external test datasets, CNN
with LGE-Cine fusion outperformed CNN without fusion in
terms of segmentation robustness (i.e., number of segmented
slices) and %Scar quantification accuracy (i.e., linear regression
slope closer to 1). Also, in the combined dataset, but not the
internal or the external datasets separately, CNN with LGE-
Cine fusion showed higher correlation coefficient. The robust-
ness and accuracy of segmenting the myocardium by both
models were comparable in the internal and external datasets.
However, a lower correlation coefficient between manual and
CNN based quantification of LGE scar burden was observed in
the external dataset. Additionally, most failed segmentations

(three out of four cases) belonged to the external dataset. A per-
formance drop of pretrained DL models is usually expected
when applied to datasets different from those used during
model development. Although both the internal and external
datasets were from HCM patients and acquired using 1.5 T
scanner from the same vendor, there were differences among
the two datasets that contributed to performance drop in the
external dataset. This discrepancy included differences in
patient characteristics (e.g., scar prevalence), imaging parameters
(e.g., spatial resolution), and other implicit differences in
implementing the imaging protocol (e.g., subjective setting of
inversion delay and injection-to-imaging delay). Our results
highlight the need to develop new methods for improving the
generalizability of deep learning based LGE image analyses.

Image Matching
In our study, LGE and cine image datasets were acquired
with breath-holding and automatically matched based on slice
location and cardiac phase parameters stored in the DICOM
files. However, different levels of breath-holding and volun-
tary patient motion had to be compensated especially with
the relatively long time interval between the cine scans and
the LGE scans. To compensate patient motion, we used a
simple manual image translation (to match the manually
selected centers of the LV in each image) to compensate in-

FIGURE 4: Assessment of convolutional neural network (CNN) based quantification of myocardium volume with (a, c) and without (b,
d) LGE-Cine fusion versus manual quantification. The solid line in the scatter plots (a, b) represents unity-slope regression line. The
solid and dashed horizontal lines in Bland–Altman plots (c, d) represent bias and limit of agreement, respectively.
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plane image shift and improve the alignment of the matched
LGE and cine slices. Also, the multiresolution processing
architecture adopted in our CNN model provided more
robustness to residual misalignment of LGE and cine images.

Limitations
Only one reader did manual segmentation of the LGE images
and we did not compare CNN quantification errors to inter-
observer variability. However, in our study, CNN versus man-
ual scar quantification variability (−0.7 ± 7.4 g corresponding
to −0.3 ± 5.0%) is comparable to the previously reported vari-
ability among expert readers (inter-observer: −1.3 ± 6.5 g and
intra-observer: 0.3 ± 7.8 g).13 Also, we did not employ
advanced transfer learning techniques to improve the model
performance in the external dataset. A dedicated study may be
needed to evaluate the potential advantage of including cine
images in LGE segmentation models when applied to external
datasets. A further limitation is that image mismatching caused
by errors in cardiac gating or through-plane motion are not
corrected for by the in-plane translation implemented to
match LGE and cine images. Although automated nonrigid
image registration has been previously proposed to improve
LGE-Cine image alignment,17 it has several limitations. First,
it is very challenging to automatically achieve accurate registra-
tion of LGE and cine sequences given their substantial differ-
ences in image contrast and characteristics. Also, boundary
and shape deformation introduced by nonrigid registration
algorithms can distort the anatomical information embedded
in the cine images and lead to segmentation errors.

Conclusion
We have presented a CNN based method for LGE-Cine
image fusion that allows robust and accurate quantification of
myocardium LGE scar burden and enhances LGE image
analysis workflow. The developed CNN model outperformed
a conventional CNN model that analyzed only LGE images
without incorporating cine sequences.
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