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Genome-wide Analysis of Large-
scale Longitudinal Outcomes using 
Penalization —GALLOP algorithm
Karolina Sikorska1, Emmanuel Lesaffre2, Patrick J. F. Groenen3, Fernando Rivadeneira  4 & 
Paul H. C. Eilers5

Genome-wide association studies (GWAS) with longitudinal phenotypes provide opportunities to 
identify genetic variations associated with changes in human traits over time. Mixed models are 
used to correct for the correlated nature of longitudinal data. GWA studies are notorious for their 
computational challenges, which are considerable when mixed models for thousands of individuals 
are fitted to millions of SNPs. We present a new algorithm that speeds up a genome-wide analysis 
of longitudinal data by several orders of magnitude. It solves the equivalent penalized least squares 
problem efficiently, computing variances in an initial step. Factorizations and transformations are 
used to avoid inversion of large matrices. Because the system of equations is bordered, we can re-use 
components, which can be precomputed for the mixed model without a SNP. Two SNP effects (main and 
its interaction with time) are obtained. Our method completes the analysis a thousand times faster than 
the R package lme4, providing an almost identical solution for the coefficients and p-values. We provide 
an R implementation of our algorithm.

Genome-wide association studies with longitudinal phenotypes create opportunities and challenges. On the one 
hand we can identify genetic variants that are associated with development of traits over time. On the other hand 
statistical analysis gets more complicated, because (linear) mixed models have to be used.

In this paper we discuss the application of the linear mixed model to repeated measures, collected on unre-
lated individuals. We assume that the number of measurements per person is just a handful, allowing to model 
only a linear evolution of the trait over time. In a genome-wide analysis the mixed model has to be fitted for every 
SNP. It contains fixed effects for time, SNP, and their interaction, and possibly other covariates; it has random 
intercept and slope for change over time. Of main interest is the time x SNP effect, but multiple observations per 
individual also increase the power to detect a statistically significant main SNP effect.

A mixed model assumes that some model parameters, in the present case intercept and slope per individual, 
have been drawn from a (normal) distribution with unknown variance. Also unknown is the variance of the 
observation error. Once these variances are known, it is straightforward to estimate individual slopes and inter-
cepts. The hard work for mixed models is estimating the variances. Common software, like SAS PROC MIXED 
and lme4 in R do this efficiently, using special algorithms. It takes approximately 2.0 seconds to fit a mixed model 
for several thousand individuals. For a single application this is fast, but for GWAS it is far too slow. Fitting one 
million mixed models, one for each SNP, would take several weeks of non-stop computation. This assumes that 
the overhead of accessing the SNP data is negligible, which usually is not the case.

We emphasize that analysis of longitudinal data is different from analysis of cross-sectional outcomes where 
mixed models are used either to estimate heritability1,2 or to correct for hidden correlation due to population 
stratification3,4. Extensive work has been done on how to speed up computations in the latter case, see e.g.5,6. 
Unfortunately it does not solve our problem; see the Discussion.

In an earlier effort, we proposed the conditional two-step (CTS) approach7, which summarizes the develop-
mental pattern of a trait as an individual slope, reducing the dimensionality of the data to one pseudo-observation 
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per individual. This allows the use of our fast GWAS algorithm8 to obtain an approximate p-value for the interac-
tion between SNP and time.

Here, we present a new algorithm for Genome-wide Analysis of Large-scale Longitudinal Outcomes using 
Penalization (GALLOP) which swiftly computes coefficients and p-values for cross-sectional and longitudinal 
SNP effects. To arrive at an almost exact solution we exploit several properties of the model. The effect of a SNP 
generally is (very) small. We estimate the variances in the mixed model without any SNP and assume that they 
will not change when a SNP is added. This assumption will lead to conservative p-values in case of non-zero 
SNP-effects. The magnitude of this imprecision is explored in the Results section. Using the equivalence between 
a mixed model and penalized least squares, a large system of linear equations can be set up. This system is very 
sparse (it contains many zeros) and only the last rows and columns change from SNP to SNP. With careful organ-
ization of the computations a solution is obtained very quickly. No special programming tricks are needed, our 
program (about 85 lines) is written in pure R and achieves a speed-up by three orders of magnitude, compared to 
brute-force application of lme4. Thanks to the sparseness of the equations, memory use is modest.

Quick access to SNP data is crucial and we also discuss it. An R implementation of GALLOP algorithm is 
provided. Simulated and real data are used to illustrate performance.

Results
Two characteristics of our method are of main interest: high speed and accuracy as compared to lmer function in 
the R package lme4. We assessed them via a simulation study and using real data.

In the simulation study exploring precision we generated 200 longitudinal data sets on the basis of the mixed 
model (Equation (3) in the Methods section) using the following settings:

•	 n = 2000, k = 4, 3 additional covariates
•	 Measurements occasions (n × k vector of tij’s) drawn from a uniform distribution between 0 and 10
•	 Covariates assumed to be independent, time-varying, and drawn from   (2, 0.5)
•	 Coefficient for fixed effects: β0 = −2.6, β1 = −1.9, β COV independent drawn from  (0, 1)
•	 SNP effects: β2 and β3 independent, 200 equally spaced values between 0 and 1
•	 Variance-covariance matrix of random effects: = − .

− .( )D 1 0 2
0 2 1

 and measurement error σ = 2.5
•	 SNPs drawn from a uniform distribution between 0 and 2

Data sets used to evaluate computation times were generated in a similar manner with sample sizes varying 
from 1k to 10k with increment of 1k. For each sample size 1000 SNPs were analyzed to summarize computation 
time.

Results of the simulation study assessing computation times are shown in Fig. 1. The speed-up is linear in 
the number of individuals. For a genome-wide association study with 5000 individuals our methods finishes the 
analysis a thousand times faster. A genome-wide scan for 1 million SNPs of a phenotype, collected on 5000 indi-
viduals measured on 4 occasions, takes about 30 minutes, instead of 3 weeks when using the package lme4. The 
speed-up depends also on k. This is mainly attributed to the fact that lme4 requires expansion of the SNP vector.

Results of the simulations exploring accuracy are summarized graphically. Based on our theoretical deriva-
tions described in the Methods section we know that a non-zero main SNP effect affects the approximation of the 
variance of the random intercept. Similarly, the size of the interaction influences the variance of the random slope. 
On the other hand, genome-wide association studies typically show only very small SNP effects which barely 
contribute to the improvement of the goodness of fit. We ran simulations to explore the practical dangers and 
consequences of using the approximate variances. Despite the difficulties in defining the variance explained in 
mixed models we used a simple definition quantifying predictive power as the ratio = − || − || || − ||ˆR y y y y1 /2 2 2, 
where ŷ stands for the fitted values and y  for the average of y.

Figure 1. Speed-up compared to the lmer function in R. Results based on the simulated data for 1000 SNPs, 4 
time points and 3 covariates. Performed on a 64-bit Windows running on a laptop with CPU @ 2.3 GHz and 6 
GB RAM.
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The estimates are very accurate throughout the entire range of observed values (Fig. 2). The standard errors are 
somewhat overestimated for the larger values of β, which is expected as variances of random effects are inflated 
due to omitted SNP effects. However, the main interest in GWAS always lies in p-values (Fig. 3). These are almost 
exact (and never too optimistic) in the common GWA-range (0 < −log 10 (p) < 7). That eliminates the danger of 
finding too many false positive results. Due to overestimated standard errors, the −log 10(p) for larger betas are 
too pessimistic. Nevertheless, they increase monotonically with larger effect sizes, just with bias downward with 
respect to the −log 10 (p) from lmer. This loss of power can be solved by lowering the threshold for “GWAS sig-
nificance” and repeating the analysis for promising SNPs with the correct model. In our simulation study, to find 
all SNPs for which −log 10 (plmer) > 7.3 we had to use the threshold −log 10 (pGALLOP) > 7.05. In our simulation 
study the maximum contribution to R2 of the SNP effects around 6%.

To confirm the accuracy of GALLOP on real data, we used the BMD data from the Rotterdam Study9. Details 
on the longitudinal BMD data set are provided in ref.7. For this analysis we used SNP data imputed according to 
the 1000 Genomes Project, which were stored per (part of) a chromosome as DatABEL files. To test our algorithm 
we used one of the files, which contained 97384 SNPs. We performed the association analyses with three methods: 
GALLOP, CTS, and lmer (only for 20 K SNPs). Comparison between p-values is shown in Fig. 4. CTS approach 
gives a good approximation of the p-values for longitudinal SNP effect, which coincide with our previous results 
on the real and simulated data. However, p-values from GALLOP are basically exact for main and longitudinal 
effect, irrespective of minor allele frequency. The analysis took 3.5 minutes for GALLOP, 40 seconds for CTS and 
48 hours (extrapolated time based on the 20 K SNPs) for lmer, respectively.

Discussion
We presented a new algorithm for fast genome-wide analysis with longitudinal data. Our method runs a thou-
sand times faster than lme4, which is the fastest option in R. This speed-up is achieved by combining an accurate 
approximation with a careful implementation. We showed that our method provides practically exact results. In 
case of doubt one can always do a full mixed model analysis for each of the most significant SNPs. Generally this 
is a small number; in case of BMD data 6 genotypes for any MAF reached threshold of −log 10 (p) > 7; so the 
extra computation time is negligible.

Figure 2. Simulation study. Accuracy of the coefficients computed by GALLOP compared to lmer.

Figure 3. Simulation study. Accuracy of the p-values computed by GALLOP compared to lmer.
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Our previous approach, conditional two-step (CTS) method combined with semi-parallel regression, com-
putes p-values for the interaction effect about 15 times faster than the GALLOP. However, for CTS, SNP data 
access is still a bottleneck, 85% of the analysis time is spent on data access (Fig. 5). The genome-wide analysis of 
the BMD data was completed 5 times faster with CTS than with GALLOP. In case of very massive genome-wide 
analysis one could consider running CTS to filter out the least significant SNPs and proceed with GALLOP for 
more precise results.

GALLOP converts a genome-wide analysis with a longitudinal phenotype from a taxing multi-computer task 
to a job that can be run overnight on a single everyday computer. However, this is only true if access to the 
SNP data is fast enough. The memory limit in R depends on available RAM, but will usually not be larger than 
several gigabytes. The size of SNP data, even when split per chromosome, will exceed that size. GALLOP needs 
quick access to reasonably sized data blocks with multiple SNPs for all individuals. This is possible only when 
array-oriented binary files are used to store genotypes. We discussed this problem in detail, and proposed solu-
tions in our previous work on fast analyses of cross-sectional outcomes8.

For correcting population stratification, in cross-sectional GWAS with possibly related individuals, mixed 
models are well established. Several algorithms have been proposed and implemented performing fast mixed 
model analysis in this framework. Multiple publications have proposed that this type of mixed models can be 
tweaked to analyze longitudinal data. Indeed, one may pretend that the repeated outcomes come from different 
pseudo-individuals and induce the correlation by passing the kinship matrix to the software. A quite extensive 
discussion on that topic is found in10. The author concludes that “the proper” longitudinal data analysis is to be 
preferred, but that it is too slow. Similarly, in ref.11. the authors analyzed longitudinal blood pressure data using 
EMMA, which tackles cross-sectional outcomes for related individuals. The authors tricked the software by mim-
icking an autoregressive structure in the kinship matrix. Although both papers study longitudinal data, their 
results touch only upon the main SNP effect. The interaction between SNP and time is not discussed.

Our algorithm assumes that the individuals are independent. An important extension is to adjust it for longi-
tudinal data collected on related individuals, combining two types of mixed models. One approach to population 
stratification uses principal components of correlation matrix of the genotypes as covariates. They can be intro-
duced as fixed effects in our model. The overhead is relatively small, because a large mixed model, without SNPs, 
is fitted once and each SNP is handled as a perturbation as described in the algorithm section.

The preferred approach would be to use multilevel modelling. Two sources of correlation then have to be 
combined: the temporal correlation between the repeated outcomes and the genetic correlation between the indi-
viduals. It would generate an additional random intercept, derived from the kinship matrix, which would destroy 

Figure 4. BMD data. Accuracy of the p-values for the GALLOP and CTS.
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the sparseness of the estimating equations. But still the SNPs can be handled by perturbing a solution obtained 
without SNPs. This would be an interesting and fruitful topic for the future research.

Methods
A linear mixed model for a longitudinal outcome which assumes random intercepts and slopes has the following 
hierarchical form12:

β ε

ε
ε ε
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In (1) Yi is ki dimensional vector of responses for individual i, Xi is ki × p matrix with all predictors, Zi is ki × 2 
dimensional matrix with ones in the first column and ti in the second column, β is a p-dimensional vector of coef-
ficients identical for all individuals and bi is a 2-dimensional vector containing the random effects. Measurement 
error is represented by the ki-dimensional vector εi. Furthermore, D is the 2 × 2 variance-covariance matrix of 
random effects and Σi is ki × ki the variance-covariance matrix of measurement error. Typically, the unknown 
parameters, consisting of variances, fixed and random effects, are estimated using for example Newton-Raphson 
algorithm. However, if the variances are known, the fixed and random effects can be estimated simultaneously by 
solving a penalized least squares problem given by equations:
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In (2) matrices X, Y, and b are build of Xi′s, Yi′s, and bi′s stacked underneath each other. Matrices Z and P are 
block diagonal with Zi and Pi on the diagonals, where Pi = (D/σ2)−1. System (2) is similar to Henderson’s system 
of equations for mixed models.

A typical linear mixed model in a genome-wide association study will have a form:

β β β β β ε= + + + + + + +Y t t C b b tSNP SNP , (3)i i i i i i i i i i0 1 2 3
COV

0 1

where ti is a ki-dimensional vector with measurement occasions, SNPi is a ki-dimensional vector with SNP values 
(constant over time), and Ci is a ki × q-dimensional matrix with constant or time-varying additional covariates 
(such as height, weight, age etc.). We call model (3) a full model. Additionally, the reduced model is constructed 
from (3) omitting the SNP effects, as given in (4)

β β β ε= + + + + + .⁎ ⁎ ⁎ ⁎ ⁎⁎
Y t C b b t (4)i i i i i i i0 1

COV
0 1

The system of equations solving the penalized least squares problem for the reduced model have a special struc-
ture. We illustrate it for the case n= 3:

Figure 5. Time of the genome-wide analysis of the BMD data, 97384 SNPs from chromosome 22. Time spent 
on data access and time spent on computations are separated.
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Note that in (5) matrix =⁎X t C1[ ]i i  and the * distinguishes which components of the model are altered 
(with respect to length and/or values) due to misspecified model (4). The above system has a block structure as 
divided by the solid lines and can be written as
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with the explicit solution given by:
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The P* matrix can be easily obtained by fitting a mixed-effects model excluding SNP in any standard software 
(for example the R package lme4). The software does not explicitly return the P*, but it does return the 
variance-covariance matrix of the random effects (matrix D) and the variance of measurement error (σ2). In R 
matrix P* is obtained by calling solve σD( / )2 .

An additional computational simplification can be obtained by ensuring that A22 in (7) is the identity matrix. 
This goal can be achieved as follows. Any system Ab = q can equivalently be solved by (KAK′)(K−1b) = Kq. 
Applied to (7), we get
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thus, the goal is to choose Φ such that ΦA22Φ′ = I. Fortunately, A22 is block diagonal with each 2 × 2 block being 
equal to Si + P*. Consequently, Φ is also block diagonal with 2 × 2 blocks Φi. Then, we need to find Φi such that 
Φi(Si + P*)Φ′

i = I. Let UiΩI
′Ui  be the eigendecomposition of Si + P*, where Ui is the matrix of eigenvectors with  

′Ui Ui = I and Ωi is the diagonal matrix of positive eigenvalues. Choose Φ = Ω− ′Ui i i
1/2  and it is readily verified that
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The linearly transformed system becomes

      (11)

β
θ



















 =











′ ⁎A A
A I

q

q (12)
11 21

tran

21
tran

1

2
tran

with θ = Ω ′U bi i i i
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Note that the random effects have been transformed, such that θ= Ω−⁎b Ui i i i
1/2 . Usually, the solution for the 

subject-specific effects is not of interest in GWA analyses. Nevertheless, random intercepts and slope from the 
reduced model can be easily obtained from the lme4 package.

We add a SNP to the model, creating a border to the previous system of equations. Two effects, cross-sectional 
and longitudinal are added, so = ∗G t[SNP SNP ] is a Σiki × 2 dimensional matrix, with SNP values repeated 
ki times for all individuals in the first column and the SNP values repeated ki times multiplied time occasions in 
the second column. Repeating SNP data for each individual ki times seems like a time consuming step. However, 
SNP is constant over time and thus Gi = SNPi * Zi. In our implementation the vector replicating SNP vector k 
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times is never created explicitly. Regardless the value of ki SNP values have to be replicated twice per individual 
resulting in additional efficiency. The augmented system of equation has the form:

       (14)

where βSNP = (β2, β3)′. Note that system (14) is just Henderson’s system for the full model, where X = [X*G] and 
the transformations have been used to simplify Z′Z + P. The transformation has been done based on P* and not 
P, assuming that they are the same. This assumption does not strictly hold, but the approximation is very precise. 
In another article13 we showed that D* of the SNP-model equals
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When a SNP is not important in the model, i.e β2 and β3 are practically zero, D* is essentially equal to D. This 
is the case for most of the SNPs in GWAS. In the situation when SNP has an effect (cross-sectional and/or longitu-
dinal), the variances in D* will be inflated. The cross-sectional effect inflates the variance of the random intercept, 
while the longitudinal effect affects the variance of the random slope. The magnitude of this inflation depends on 
the β2 and β3. The covariance in D* is influenced only if both SNP effects are non-zero.

We can write the system (14) as
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Solving system (16) for βSNP gives us
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It may seem that, in (17), −H J22
1

21 and −H H22
1

21 are expensive operations, since they involve inverting (2n + p + 
2) × (2n + p + 2) dimensional matrix. However, the inverse of H22 is not needed explicitly. Note that −H J22

1
21 is a 

matrix with two columns, containing solutions of system (13). It can be computed once and stored. The second 
operation is a solution for the mixed model given in (13) but for a different right hand side, namely H21. Note that 
in this case the RHS of the system is two-dimensional.

Standard errors. To compute the variance-covariance matrix of the estimated fixed and random effects in 
a mixed model we need to invert the LHS matrix of system (2). Standard errors are equal to the square roots of 
the diagonal elements of that matrix. In penalized least squares notation, we need to invert LHS of system (2) and 
multiply diagonal elements by σ2. In our case we are interested only in the inference for SNP effects. They are the 
upper-left part of the expression

σ
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Using the formula for the matrix inverse in block form, the standard errors of βSNP are given by

σ − .′ − −ˆ H H H H(diag ( ) ) (19)11 21 22
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21
1

Note that this diagonal has already been computed in (17) showing that the computation of the standard 
errors is trivial.

Missing phenotype. Mixed models handle unbalanced data with ease; all subjects, whatever their number 
of observations, are taken into the analysis. In this sense the concept of missing data in case of mixed models does 
not exist. However, our algorithm assumes that the phenotype data for every subject consists of k rows and that 
some of the values are missing (coded as NA). To properly estimate the solution of a mixed model the weighting 
matrix has to be introduced

β
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Matrix W is a diagonal nk × nk matrix with 0 or 1 in the diagonal indicating if the observation is valid or not. 
Note that in practice matrix W does not have to be build, since applying weights is equivalent to replacing rows 
with missing data by all zeros.
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Implementation. GALLOP is implemented in one relatively short R program, provided in the Supplementary 
Materials. An important computing challenge was to avoid repeating each SNP value k times, to be able to calculate 
cross products in the border matrices. We achieved this by storing the basis of those matrices, calculated using 
Kronecker products, in a vector instead of a matrix. This way we can summarize the SNP state directly with two 
numbers per individual, regardless of k.

Data availability. The BMD data are a part of Rotterdam Study and are confidential. The scripts used to 
generate the data in the simulation study are available from the corresponding author upon request.
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