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Abstract

Objectives

To assess the diagnostic utility of smartphone-based measurement in detecting moderate

to severe obstructive sleep apnea syndrome (OSAS).

Methods

Six databases were thoroughly reviewed. Random-effect models were used to estimate the

summary sensitivity, specificity, negative predictive value, positive predictive value, diag-

nostic odds ratio, summary receiver operating characteristic curve and measured the areas

under the curve. To assess the accuracy and precision, pooled mean difference and stan-

dard deviation of apnea hypopnea index (AHI) between smartphone and polysomnography

(95% limits of agreement) across studies were calculated using the random-effects model.

Study methodological quality was evaluated using the QUADAS-2 tool.

Results

Eleven studies were analyzed. The smartphone diagnostic odds ratio for moderate-to-

severe OSAS (apnea/hypopnea index > 15) was 57.3873 (95% confidence interval [CI]:

[34.7462; 94.7815]). The area under the summary receiver operating characteristic curve

was 0.917. The sensitivity, specificity, negative predictive value, and positive predictive

value were 0.9064 [0.8789; 0.9282], 0.8801 [0.8227; 0.9207], 0.9049 [0.8556; 0.9386], and

0.8844 [0.8234; 0.9263], respectively. We performed subgroup analysis based on the vari-

ous OSAS detection methods (motion, sound, oximetry, and combinations thereof).

Although the diagnostic odds ratios, specificities, and negative predictive values varied sig-

nificantly (all p < 0.05), all methods afforded good sensitivity (> 80%). The sensitivities and

positive predictive values were similar for the various methods (both p > 0.05). The mean dif-

ference with standard deviation in the AHI between smartphone and polysomnography was

-0.6845 ± 1.611 events/h [-3.8426; 2.4735].
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Conclusions

Smartphone could be used to screen the moderate-to-severe OSAS. The mean difference

between smartphones and polysomnography AHI measurements was small, though limits

of agreement was wide. Therefore, clinicians should be cautious when making clinical deci-

sions based on these devices.

Introduction

Obstructive sleep apnea syndrome (OSAS) is a disorder associated with periodic breathing ces-

sation, significantly reducing the quality of life, and increasing cardiovascular disease and mor-

tality [1, 2]. The prevalence of OSAS is 9 to 38% in the general population and has increased in

recent years [2, 3]. Attended polysomnography (PSG) in a sleep laboratory is currently the

gold-standard tool for OSAS diagnosis. PSG data are used to assess apnea/hypopnea events,

oxygen desaturations, and arousal frequency. The number of apnea and hypopnea events per

hour (the apnea/hypopnea index [AHI]) is a measure of sleep apnea severity [4]. However, the

costs of a special room, monitoring facilities, and specialized personnel limit access for many

potential patients. Furthermore, PSG evaluations are usually limited to one night, associated

with false- negatives; significant variations in OSAS severity have been observed over multiple

nights. OSAS must become easily and cheaply detectable [5]. Today, smartphones can collect

sound, movement, and oximeter data [6–8]. Therefore, there were reports comparing PSG and

portable devices to evaluate the sleep environment in a more patient-friendly environment,

away from the inconvenient and artificial sleep environment of the PSG setting [5–15].

Among portable devices, many recent apps for sleep tests use a smartphone computer and sen-

sors [16–19]. Currently, no meta-analysis either supports or does not support the suggestion

that smartphones could effectively screen for OSA. Therefore, we performed a meta-analysis

that can intuitively compare and evaluate the diagnostic accuracy and utility of smartphones

using various sensing devices in terms of OSAS screening.

Materials and methods

Search strategy and study selection

We retrieved clinical data from PubMed, Embase, the Web of Science, SCOPUS, the Cochrane

Central Register of Controlled Trials, and Google Scholar from the dates of inception to May

2021. The population, intervention, comparison, and outcome (PICO) parameters were: P,

patients with suspected OSA who evaluated sleep disorder with PSG and smartphone; I, biologi-

cal data measured by the smartphone; C, sleep data measured by PSG; and O, the AHI. Only

papers written in English were considered. The search terms were: “sleep disturbed breathing,”

“obstructive sleep apnea,” “smartphone,” “polysomnography,” “mobile,” and “screening.” The

reference lists were checked to ensure that no relevant studies were omitted. The titles and

abstracts of all candidate studies were systematically reviewed by two independent reviewers.

Selection criteria

The inclusion criteria were: 1) a study analyzing sleep with mobile phone device and/or acces-

sories; 2) a cohort study; 3) a comparison between a smartphone and PSG (the reference); and

4) an article containing sensitivity and specificity values data. The exclusion criteria were: 1)

case reports; 2) review articles; 3) diagnosis or screening of OSAS with other portable devices

except smartphone; and 4) insufficient data. The search strategy is shown in Fig 1.
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Data extraction and bias assessment

Two reviewers (SWK and SHH) independently selected and compared eligible studies, then

extracted data using standardized forms. We collected study identification, publication year,

study design, enrolled number of patients, mean AHI, Sex ratio, apnea detecting mechanism,

cut off values of AHI, and 2x2 table outcomes. At each stage, the papers selected by two review-

ers were compared, and if the selected articles were inconsistent, a final decision was made

through panel discussion with the third reviewer (DHK). The bias assessment was performed

in the same way. The search terms and queries were presented in S1 Table.

We analyzed the predictive power of sleep analysis by a smartphone (i.e., the diagnostic

odds ratio [DOR]), then constructed summary receiver operating characteristic (SROC)

curves and measured the areas under the curves (AUCs) [5–15]. Moderate to severe OSAS

(AHI� 15) was defined based on PSG. True-positive, true-negative, false-positive, and false-

negative values were collected for the calculation of AUCs and DORs. To calculate the accu-

racy and precision of smartphone compared to PSG, we extracted mean difference and stan-

dard deviation (SD) of mean differences between the PSG-AHI and smartphone-AHI

measurements from a single study. They were pooled in meta-analysis to yield a summary esti-

mate (weighted mean difference) [5, 6, 13]. The quality of each study was analyzed using the

Quality Assessment of Diagnostic Accuracy Studies ver. 2 (QUADAS-2) tool [20].

Statistical analysis and measurement of outcomes

Meta-analysis was conducted using R statistical software (R Foundation for Statistical Com-

puting, Vienna, Austria [version 3.6.3]). Explore the cause of significant between-study hetero-

geneity among the studies, subgroup analyses were performed (motion, sound, oximetry, and

combinations thereof). We generated forest plots of sensitivities, specificities, and negative

predictive values, as well as SROC curves.

Heterogeneity was calculated with the I2 test: The I2 test describes the rate of variation

across studies caused by heterogeneity rather than probabilistic chance; the measure ranges

from 0 (no heterogeneity) to 100 (maximum heterogeneity). When significant heterogeneity

among outcomes was found (defined as I2 > 50), the random-effects model was used accord-

ing to DerSimonian-Laird. Those outcomes that did not present a significant level of heteroge-

neity (I2 < 50) were analyzed with the fixed-effects model. The fixed-effects model uses the

inverse variance approach, and it is assumed that all studies come from a common population.

Sensitivity analyses were performed to determine the effects of individual studies on the overall

meta-analysis results.

We used Begg’s funnel plot and Egger’s test simultaneously to detect publication bias. The

trim-and-fill method also was done to indicate the significance of publication bias as well as

provide bias-adjusted results.

Results

In total, 11 studies with 1,644 participants were included. Study characteristics and bias assess-

ments are presented in S2 and S3 Tables. Egger’s test (p> 0.05) and Begg’s funnel plot (S1 Fig)

on these measurements suggested that a bias source was not evident in this sample of studies.

Diagnostic accuracy of smartphones in terms of moderate-to-severe

obstructive sleep apnea syndrome

Eleven studies were analyzed. The smartphone DOR for moderate-to-severe OSAS

(AHI > 15) was 57.3873 (95% confidence interval [CI]: 34.7462; 94.7815, I2 = 24.3%) (Fig 2).
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The area under the SROC curve was 0.917 (Fig 3). The correlation between sensitivity and the

false-positive rate was 0.137, indicating that heterogeneity was absent. The sensitivity, specific-

ity, negative predictive value, and positive predictive value were 0.9064 ([0.8789; 0.9282], I2 =

0.0%), 0.8801 ([0.8227; 0.9207], I2 = 61.7%), 0.9049 ([0.8556; 0.9386], I2 = 54.9%), and 0.8844

([0.8234; 0.9263], I2 = 66.3%), respectively (Fig 4). The overall pooled random-effects mean

difference (smartphone—polysomnography) and SD were -0.6845 ([-3.8426; 2.4735], I2 =

92.9%) (Fig 5).

Subgroup analysis was performed according to the mode of detection of apnea severity

(using motion, sound, oximetry, and combinations thereof) because high heterogeneity in

terms of diagnostic accuracy was evident (Table 1). In terms of specificity, motion or oximetry

methods (motion 96%; motion and oximetry 100%; oximetry 88%) were better than the other

Fig 1. Flowchart of article selection (PRISMA).

https://doi.org/10.1371/journal.pone.0268585.g001
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methods (82 and 81%; p = 0.0085). In terms of the negative predictive value, motion or oxime-

try methods (motion 97%; motion and sound 92%; and oximeter 92%) were better than the

other methods (78 and 81%; p = 0.0015). In terms of the DOR, motion or oximetry methods

(motion 464.4033; motion and oximetry 279.2857; and oximetry 92.6667) were better than the

other methods (36.7401 and 35.4208; p = 0.0117). In contrast, the specificity and both negative

and positive predictive values were similar (80–100%, all p> 0.05) for all methods. However,

although only single study used only oximetry, it was clear that smartphones afforded good

diagnostic accuracies (in terms of sensitivity, specificity, negative predictive value, and positive

predictive value; all 80–100%) when screening for moderate-to-severe OSAS.

Sensitivity analyses

We evaluated differences in pooled estimates by repeating the meta-analysis, omitting study

one at a time. All results were consistent with the above results (S2 Fig).

Discussion

In this study, the smartphone diagnostic accuracy exhibited a pooled sensitivity of 0.90, a

pooled specificity of 0.88, a pooled negative predictive value of 0.90, a pooled positive predic-

tive value of 0.88, and an AUC of 0.92. All AUCs under SROC curves were 0.9–1.00, suggesting

excellent diagnostic accuracy. The sensitivity in terms of moderate-to-severe OSA was good

(90%). The specificity in terms of the absence of moderate-to-severe OSA was 88%; the false-

negative rate was thus very low. These results mean that smartphone-based OSAS screening

would be useful for patients with moderate-to-severe OSAS. The high negative predictive

value suggests that only 10% of smartphone-positive patients would have false-positive diagno-

ses, compared with patients diagnosed on the basis of clinical examination or history-taking.

Attended full PSG is the gold-standard tool for OSAS diagnosis. However, the patient must

sleep in an unfamiliar specialized room with 22 wires attached; these collect neurological,

Fig 2. Forest plot of the diagnostic odds ratios of the included studies.

https://doi.org/10.1371/journal.pone.0268585.g002
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cardiac, and respiratory data. The process can cause serious discomfort and anxiety; the patient

may not be able to sleep as usual. Therefore, some clinics prescribe sleeping pills, which distort

analysis. Moreover, few hospitals feature full PSG, particularly in rural areas, and PSG is

expensive [21, 22]. There is an urgent need for portable devices that are accurate, convenient,

and measure only key biological signals [23, 24].

Smartphones feature various apps [25]. Internal sensors and external (connectable) devices

measure blood oxygen, pulse, body movement (using accelerometers or sonars), and breath

sounds during sleep [12]. Studies using oximeter/accelerometer combinations to diagnose

sleep apnea found that body position data aided in respiratory movement assessment [26, 27].

Breathing sounds during sleep also aid in OSAS diagnosis. Snoring differs between healthy

people and sleep apnea patients; the noises alone accurately separate the groups [28]. In addi-

tion, various recent apps feature algorithms analyzing oxygen saturation, body position during

sleep, and sleep breathing sounds [5–10, 12, 14, 15, 29]. Furthermore, because smartphones

use motion, sound, oximetry, and combinations thereof to detect abnormal sleep, we evaluated

the effects of the various methods on diagnostic accuracy; we performed subgroup analysis.

Recent studies have compared the reliabilities of such apps to the reliability of PSG [5, 8,

16–19]. Because moderate-to-severe OSA ([AHI� 15/h) is associated with high risks of car-

diovascular morbidity and mortality, and thus requires treatment [30], many studies have

sought to clinically validate apps by screening for such OSA [5–10, 12, 14, 15, 29].

Fig 3. Area under the summary receiver operating characteristic curves of included studies.

https://doi.org/10.1371/journal.pone.0268585.g003
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Smartphones may usefully screen for OSAS among individuals who may be unaware of a

problem, such as singles with no consistent bed partners. It is thus easy to screen patients with

high risks of cardiovascular and cerebrovascular diseases because of hypoxia during sleep [8].

In addition, smartphones could be useful to follow-up patients wearing oral devices or who

have undergone upper airway surgery. According to the recent development of devices and

algorithms, the Respiratory Event Index (REI), which performs automatic scoring by coupling

Fig 4. Forest plots of the sensitivities (A), specificities (B), negative predictive values (C), and positive predictive values

(D) of the included studies.

https://doi.org/10.1371/journal.pone.0268585.g004

Fig 5. Overall pooled random-effects mean difference of apnea hypopnea index between smartphone and

polysomnography across studies.

https://doi.org/10.1371/journal.pone.0268585.g005
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heart rate variability and oxygen saturation changes using a device such as a smartphone, has a

good correlation with AHI and can be used as a useful tool to evaluate the patient’s hypoxic

burden [31–34]. However, the apps allow only self-problem checking, not counseling. Addi-

tionally, clinicians should be aware that smartphones simply reveal good correlations between

sleep data and the AHI, but do not integrate all of the important PSG findings. For example,

OSAS is a heterogeneous disease that can show multiple phenotypes [35, 36]. When measured

through smartphones, patients with disrupted sleep with insomnia might not be measured

properly.

On subgroup analysis of the detection methods, all approaches exhibited similar (and good)

sensitivities and specificities (80–100%), but methods employing pulse oximetry or motion

detection tended to be more diagnostically accurate. A pulse oximeter measures blood oxygen

levels non-invasively and continuously [37]. A strong correlation between the AHI and oxygen

desaturation was reported in a group of patients with suspected sleep apnea [38]. Moreover,

most movement during sleep reflects the respiratory efforts of the torso, which are critical for

sleep apnea detection; movement-based apnea estimation is strongly correlated with PSG data,

particularly for patients with moderate-to-severe OSA [39]. The use of pulse oximetry or

motion detection is optimal.

Another measurement of this meta-analysis assessed the agreement between smartphone

and PSG AHI measurements. The mean difference was small (around -0.7) but the limits of

agreement was wide (around 6.2). It could mean that smartphone measured AHI seemed sig-

nificantly close to the true value from PSG but the variability of repeated values due to random

error in the smartphone looked considerable. An AHI measured by smartphone may be accu-

rate but imprecise meaning that resultant values are close to the true value but can be inconsis-

tent. Therefore, clinicians need to be cautious when making clinical decision. Also, because

the results were based on only four studies, more work is required to support them.

This study had some limitations. First, we analyzed only a limited number of studies,

despite extensive searching. To our knowledge, there have been few relevant studies. There-

fore, more work is required. Second, high heterogeneity was evident in studies evaluating

whether smartphones could screen for moderate-to-severe OSAS, reflecting the use of differ-

ent detection methods in and OSAS definitions. Also, PSG used as a control group was mostly

type I full PSG, but the type was not specified in three studies. It is possible that an unidentified

PSG may have influenced the results. These must be standardized in future studies.

Table 1. Subgroup analysis according to detection method.

Subgroup Study

(n)

DOR [95% CIs]; I2 Sensitivity [95%

CIs]; I2
Specificity [95% CIs];

I2
NPV; I2 PPV; I2

methods of screening the

moderate to severe OSAS

11 57.3873 [34.7462;

94.7815]; 24.3%

0.9064 [0.8789;

0.9282]; 0.0%;

0.8801 [0.8227;

0.9207]; 61.7%;

0.9049 [0.8556;

0.9386]; 54.9%

0.8844 [0.8234;

0.9263]; 66.3%

Motion 3 464.4033 [100.4086;

2147.9273]; 0.0%

0.9545 [0.8683;

0.9853]; 0.0%

0.9624 [0.9129;

0.9843]; 0.0%

0.9771 [0.9314;

0.9926]; 0.0%

0.9460 [0.7465;

0.9905]; 52.1%

Motion and oximeter 1 279.2857 [13.4406;

5803.3689]; NA

0.9333 [0.8127;

0.9783]; NA

1.0000 [0.0000;

1.0000]; NA

0.7857 [0.5057;

0.9293]; NA

1.0000 [0.0000;

1.0000]; NA

Motion and sound 3 36.7401 [17.6141;

76.6336]; 0.0%

0.8899 [0.8161;

0.9364]; 0.0%

0.8272 [0.7610;

0.8779]; 0.0%

0.9177 [0.8539;

0.9551]; 10.6%

0.7760 [0.6947;

0.8406]; 0.0%

Oximeter 1 92.6667 [42.6548;

201.3163]; NA

0.9205 [0.8653;

0.9543]; NA

0.8889 [0.8285;

0.9298]; NA

0.9189 [0.8627;

0.9534];NA

0.8910 [0.8317;

0.9312]; NA

Sound 5 35.4208 [17.5999;

71.2864]; 0.0%

0.8793 [0.8220;

0.9200]; 0.0%

0.8149 [0.7157;

0.8851]; 24.8%

0.8190 [0.7382;

0.8789]; 0.0%

0.8759 [0.8023;

0.9247]; 28.7%

DOR; diagnostic odds ratio, CI; confidence interval, NPV; negative predictive value, PPV; positive predictive value, AUC; area under the curve.

https://doi.org/10.1371/journal.pone.0268585.t001
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Based on our results, and despite the limitations, smartphones serve as useful adjuncts

when screening for moderate-to-severe OSAS. Smartphones cannot replace PSG. However,

smartphones greatly aid in large-scale screening, thus detecting OSAS patients who are prone

to misdiagnosis and OSAS patients in regions with poor or inaccessible medical facilities; they

can avoid the need for expensive equipment and rooms, as well as specialized personnel.

Conclusion

Smartphone-based OSAS screening would be useful for patients with moderate-to-severe

OSAS. While various OSAS detection methods exhibited similar sensitivity and specificity,

using pulse oximetry or motion detection tended to be more accurate diagnostically. Smart-

phone-based OSAS screening cannot replace PSG, but greatly aids in large-scale screening,

thus detecting OSAS patients who are prone to misdiagnosis and OSAS patients in regions

with poor or inaccessible medical facilities. However, assessing the agreement between smart-

phone and PSG AHI measurements, the wide limits of agreement mean clinicians should be

cautious when making clinical decisions based on these devices. Further studies are needed,

and smartphone detection methods must be strictly standardized.
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