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Lab scale studies were conducted to evaluate the performance of two simultaneously operated immobilized cell biofilters (ICBs) for
removing hydrogen sulphide (H

2
S) and ammonia (NH

3
) from gas phase.The removal efficiencies (REs) of the biofilter treating H

2
S

varied from50 to 100% at inlet loading rates (ILRs) varying up to 13 gH
2
S/m3⋅h, while theNH

3
biofilter showedREs ranging from60

to 100% at ILRs varying between 0.5 and 5.5 g NH
3
/m3⋅h. An application of the back propagation neural network (BPNN) to predict

the performance parameter, namely, RE (%) using this experimental data is presented in this paper. The input parameters to the
network were unit flow (per min) and inlet concentrations (ppmv), respectively. The accuracy of BPNN-based model predictions
were evaluated by providing the trained network topology with a test dataset and also by calculating the regression coefficient (R2)
values. The results from this predictive modeling work showed that BPNNs were able to predict the RE of both the ICBs efficiently.

1. Introduction

A typical landfill gas consists of methane (45–60% v/v), car-
bondioxide (40–60%v/v), and other compounds that include
nitrogen, oxygen, sulphides, ammonia, carbon monoxides,
and trace constituents. The amount of landfill gas generated
is proportional to the amount of organic waste present and
is produced by the bacteria during decomposition. These
gases can easily move through the landfill surface to the
ambient air and then to the community with the wind. The
sulphur compounds (mercaptans and hydrogen sulphide)
are the main contributors to the persisting odor problem
from landfills, which are also considered toxic [1]. On the
other hand, ammonia is both a potentially toxic product of
refuse degradation and an essential nutrient for the bacteria
responsible for this. The presence of these pollutants in the
atmosphere has shown to cause significant damage to both
humanhealth andnatural environment [2, 3]. In SouthKorea,
there are a large number of landfills that do not incorporate

suitable strategies to prevent these emissions from reaching
the nearby community.Hence, there arises potential necessity
to adapt worthy control techniques for effectively removing
these emissions from landfills.

Biological treatment systems such as biofilters, and
biotrickling filters have been demonstrated for several
decades to be a cost effective technology for the treatment of
waste gases containing low concentrations of contaminants
at large flow rates [4–6]. The high removal efficiencies (REs)
achieved along with its uncomplicated and flexible design,
low operational, and maintenance costs edges biofilters over
other biological treatment techniques such as biotrickling fil-
ters and bioscrubbers [7–11]. Biofilters can effectively remove
H
2
S and NH

3
emissions from waste-gas streams using a

bed of biologically active material such as compost, peat,
and wood bark. Belatedly, immobilization of microbes in
suitable support matrix such as alginate beads or suitable
polymeric materials has gained popularity in the research
domain of biofiltration.The principal advantages of adopting

http://dx.doi.org/10.1155/2013/463401


2 BioMed Research International

immobilization techniques in biofiltration is to provide high
cell concentrations, improve genetic stability, protecting the
microbes from shear damage, and to enhance favorable
microenvironment formicrobes (nutrient gradients and pH).
Pseudomonas putida CH11 was tested for the removal of H

2
S

in both batch and continuous systems (pH: 6.0–8.0), yielding
maximum removal rate and saturation constant values of
𝑉

𝑚
= 1.36 g S/day⋅kg dry bead and 𝐾

𝑠
= 45.9 ppm, respec-

tively [12]. A biofilter inoculated withNitrosomonas europaea
was used to remove gaseous ammonia, in the concentration
range of 10 or 20 ppm showed 99% RE after 4 days of
operation [13]. The effects of operational factors such as
retention time, temperature, and inlet concentration on the
performance of a biofilter packed withThiobacillus thioparus
immobilized with Ca-alginate pellets were evaluated and
found to have an optimal S-loading of 25 g/m3⋅h, in order
to achieve high removal of that compound [14]. For the
treatment of landfill gas containing H

2
S and NH

3
, they can

be easily treated by two immobilized cell biofilters (ICB) with
different microorganisms in series or single ICB columnwith
mixed microorganisms, as shown in our previous studies
[2, 3].

Traditionally, the performance of biofilters has beenmod-
eled/predicted using process-based models that are based
on mass balance principles, simple reaction kinetics, and a
plug flow of air stream [15–18]. The main advantages of these
process models are that, they are anchored on the underlying
physical process and the results obtained from these process
models generally provide a good understanding and inter-
pretation of the system. However, this depends on numerous
model parameters and obligates selective information on
specific growth rate of microbes, biofilm thickness and
density, values of diffusivity, partition, yield and distribution
coefficients, intrinsic adsorption, and so forth [19–21]. The
accurate estimation of some of these parameters requires
elaborated technical facilities and expertise, the absence of
which hinders the preciseness of the model and limits the
application and reliability of the model.

An alternatemodeling procedure consists of a data driven
approach wherein the principles of artificial intelligence (AI)
is applied with the help of neural networks [22]. The concept
of neural network modeling has widespread applications in
the field of applied science and engineering. An ANN-based
model was developed to simulate different types of biomass
for a gasification process and it was demonstrated that the
model predicted profiles matched closely to the experimental
values [23]. ANN model based on wavelet packet decom-
position, entropy, and neural networks was formulated to
predict the long-term performance of a wastewater treatment
plant [24]. A 3-layered neural network with the standard
back propagation algorithm was used in their study and
the authors reported that the model was able to predict
plant performance better. Recently, an ANN-based software
was developed to predict thermal power plant effluent
temperature that could help in optimizing load generation
among different power generation units and this software
demonstrated its ability to predict the canal temperature
over the normal operating range with high accuracy [25].

With respect to the application of ANN for optimization
purposes, ANNandgenetic algorithm-based techniqueswere
combined together to optimize media constituents, in order
to enhance lipase production by soil microbes [26]. The
results from their study showed that ANN-based model was
able to predict the system behavior clearly showing lipolytic
activity of 7.69U/mL. It has been shown quite recently that
the performance of biofilters and/-or biotrickling filters can
be predicted from prior estimation of easily measurable
operational parameters using ANNs [27–30]. In our previous
studies, ANN-based predictive approach was proposed to
model the performance of individually operated ICBs for
H
2
S and NH

3
removal, respectively [31, 32]. The outputs of

the model were RE and EC, respectively, while the input
parameters to the model were inlet concentration, loading
rate, flow rate, and filter-bed pressure drop, respectively. The
results for the H

2
S operated ICB showed that a multilayer

network (4-4-2) with back propagation algorithm was able
to predict the ICB performance effectively with a 𝑅2 values
of 0.9157 and 0.9965 for removal efficiency and elimination
capacity, respectively [31]. Similarly, for the ICB treating
NH
3
, multilayer network (4-4-2) with error back propagation

predicted the RE and ECwith𝑅2 values of 0.9825 and 0.9982,
respectively [32].

The objectives of this research work were to experimen-
tally evaluate the collective performance of two biofilters
treating H

2
S and NH

3
and to predict the ICBs performance

parameter, namely RE, using one back propagation neu-
ral network (BPNN). Experiment data collected from our
previous studies [2, 3] were thus integrated for predicting
the RE profiles of H

2
S and NH

3
using the BPNN. The

input parameters to the model were unit flow (gas-flow
rate/volume) and inlet concentrations, while the output
parameter was the RE of the ICBs. After model develop-
ment, the input parameters were subjected to sensitivity
analysis in order to understand their effects on the RE
profiles.

2. The Simple Back Propagation
Neural Network Approach

Multilayer perceptron (MLP) using the back propagation
algorithm [26, 33] is the most widely used neural network for
forecasting/prediction purposes [34–36]. Neural networks
acquire their name from the simple processing units in the
brain called neurons which are interconnected by a network
that transmits signals between them. These can be thought
of as a black box device that accepts inputs and produces
a desired output. MLP generally consists of three layers; an
input layer, a hidden layer, and an output layer [36]. Each
layer consists of neurons which are connected to the neurons
in the previous and flowing layers by connection weights
(𝑊

𝑖𝑗
). These weights are adjusted according to the mapping

capability of the trained network. An additional bias term
(𝜃
𝑗
) is provided to introduce a threshold for the activation

of neurons. The input data (𝑋
𝑖
) is presented to the network

through the input layer, which is then passed to the hidden
layer along with the weights. The weighted output (𝑋

𝑖
𝑊

𝑖𝑗
) is
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then summed and added to a threshold to produce the neuron
input (𝐼

𝑗
) in the output layer that can be represented by

𝐼

𝑗
=

𝑖,𝑗=8

∑

𝑖,𝑗=1

𝑊

𝑖𝑗
𝑋

𝑖
+ 𝜃

𝑗
. (1)

This neuron input passes through an activation function𝑓(𝐼
𝑗
)

to produce the desired output 𝑌
𝑗
. The most commonly used

activation function is the logistic sigmoid function which
takes the form;

𝑓 (𝐼

𝑗
) =

1

1 + 𝑒

−𝐼𝑗
. (2)

3. Modeling Methodology

3.1. Model Input-Outputs and Data Division. A combined
neural network-based predictivemodelwas developed for the
two biofilters using unit flow (𝑋

1
) and inlet concentration

(𝑋
2
) as the model inputs and removal efficiency (𝑌

1
) as the

output.The experimental data was divided into training (𝑁Tr,
75%) and test data (𝑁Te, 25%). The test data was set aside
during network training and was only used for evaluating
the predictive potentiality of the trained network. The basic
statistics of the variables for the training and test matrix is
shown in Tables 1 and 2, respectively.

3.2. Error Evaluation. The closeness of prediction between
the experimental and model predicted outputs were evalu-
ated by computing the determination coefficient values as
shown below [27];

𝑅

2
=

[

[

∑

𝑁

𝑖=1
(𝑌model𝑖 − 𝑌model) (𝑌observed𝑖 − 𝑌observed)

(𝑁 − 1) 𝑆

𝑌model
𝑆

𝑌observed

]

2

,

(3)

where 𝑌model𝑖—predictions made by the model, 𝑌observed𝑖—
observed true values from experiments,𝑁—number of cases
analyzed, 𝑌—average value, and 𝑆

𝑌
—standard deviations.

3.3. Data Preprocessing and Randomization. Experimental
data collected from the biofilters during the 67 × 2 days
(2 denotes the two biofilters) of continuous operation was
randomized to obtain a spatial distribution of the data, which
accounts for both steady state and transient (or) quasi-steady-
state operations. The data was also normalized and scaled to
the range of 0 to 1 using (4), so as to suit the transfer function
in the hidden (sigmoid) and output layer (linear)

̂

𝑋 =

𝑋 − 𝑋min
𝑋max − 𝑋min

, (4)

where ̂𝑋 is the normalized value and 𝑋min and 𝑋max are the
minimum and maximum values of𝑋 respectively.

3.4. Network Parameters. The internal parameters of the back
propagation network, namely, epoch size, error function,

learning rate (𝜂), momentum term (𝛼), training cycle (𝑇c),
and transfer function are to be appropriately selected to
obtain the best network architecture that gives high predic-
tions for the performance variables. In this study, the number
of neurons in the input layer (𝑁

𝐼
= 2) and output layer

(𝑁
𝑂
= 1) were chosen based on the number of input and

output variables to the network. A detailed study on the
effect of internal network parameters on the performance of
back propagation networks [37] and the procedure involved
in selecting the best network topology has been described
elsewhere [34, 35]. However, in most instances, literature
suggests the use of a trial and error approach where the
performance goal is set by the user. In this study, the best
values of the network parameters were chosen by carrying
out simulations using a trial and error approach. The best
network was chosen based on the maximum predictability of
the network for the test data by analyzing the determination
coefficient values.

3.5. Software Used. BPNN-based predictive modeling was
carried out using the shareware version of the neural network
and multivariable statistical modeling software, NNMODEL
(Version 1.4, Neural Fusion, NY, USA).

3.6. Experimental Materials and Methods. The details of the
experimental strategy adopted, inoculum, media composi-
tion, preparation of immobilized packing media, experimen-
tal setup, ICB operation, and analytical techniques for data
collection have been detailed in our previously published
work [2, 3].

4. Results and Discussions

4.1. Experimental. The initial inlet loading rates (ILRs)
to both the biofilters were sufficiently low (<1 gH

2
S (or)

NH
3
/m3⋅h), that allowed the immobilized microbes to accli-

matize themselves to the vapor phase pollutant. Once accli-
matized (high removal, RE > 95%), the ICBs were subjected
to a step-wise increase in ILRs by gradually varying the inlet
concentration of eitherH

2
S orNH

3
to the ICBs. During every

step increase in the ILR, it was observed that the biofilter took
about 2 to 4 d to adapt to the new concentration and reached
a new steady state value shortly. Initially, when the loading
rates were <1 g/m3⋅h, the RE increased gradually from 45
to ∼100%, which indicated good activity of the immobilized
cells to treat these pollutants. The removal profiles and EC
achieved for both the biofilters during the entire operational
steps are shown in Figures 1 and 2, as a function of the
ILRs. For the ICB treating H

2
S vapors, the input was changed

in 7 steps up to a ILR of 8 gH
2
S/m3⋅h, during which the

RE remained constant at 82%. It has been shown that H
2
S

metabolism by heterotrophic sulphur oxidizing bacteria is
a detoxification process and high inlet concentrations have
often been reported to decrease the H

2
S removal efficiency

[15]. The EC profiles were almost linear till an ILR of
8 gH
2
S/m3⋅h, which indicates that the biofilter performed

with 100% efficiency till this critical load [9]. For the ICB
treating NH

3
, it is evident that the RE was nearly >95%
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Table 1: Basic statistics of the training data set.

Variable Basic statistics
𝑁 Mean Std deviation Minimum Maximum Sum square

Inputs
Unit flow, per min 102 1.46 0.36 0.93 2.46 148.92
Concentration, ppmv 102 57.92 27.84 10 150 5908

Outputs
RE, % 102 94.33 9.69 52.5 100 9621.8

Table 2: Basic statistics of the test data set.

Variable Basic statistics
𝑁 Mean Std deviation Minimum Maximum Sum square

Inputs
Unit flow, per min 32 1.44 0.33 0.92 2.46 46.15
Concentration, ppmv 32 61 27.01 12 150 1952

Outputs
RE, % 32 94.32 7.31 66.8 100 3018.1
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Figure 1: Effect of inlet loading rate on the elimination capacity and
removal efficiency profiles of the immobilized cell biofilter handling
H
2
S vapors (More details can be seen in [3]).

up to a ILR of 4.5 gNH
3
/m3⋅h. However, when the ILR was

increased significantly by varying both the concentration and
flow rate to values as high as 7.5 gNH

3
/m3⋅h, a noticeable

decrease in the RE values from 100% to ∼60% was observed.
The critical NH

3
loading rate to the biofilter was considered

as 4.5 gNH
3
/m3⋅h. Pressure drop values were sufficiently low

during the operational time for both of the ICBs (0.1–1.7 cmof
H
2
O) and did not cause any significant operational problem.

These values of pressure drop are within the safe operational
range suggested for full-scale biofilter operation [2, 4, 9].

4.2. BPNNModeling

4.2.1. Network Architecture. Artificial neural network-based
models requires the best combinations of network parameters
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Figure 2: Effect of inlet loading rate on the elimination capacity and
removal efficiency profiles of the immobilized cell biofilter handling
NH
3
vapors (More details can be seen in [2]).

such as training cycle (𝑇
𝑐
), neurons in the input (𝑁

𝐼
), hidden

(𝑁
𝐻
) and output layer (𝑁

𝑂
), learning rate (𝜂), momentum

term (𝛼), and a good algorithm for the predictions to be
accurate [2, 3, 36]. In this study, the models for predicting the
RE of ICBswere trained and tested adequately with the exper-
imental data and evaluated by the determination coefficient
values between the measured and predicted outputs from
the network. Table 3 shows the different network parameters
used for training the network.The algorithmused for training
in this study was the standard back error propagation (BEP)
algorithm, which has potentially shown to exhibit high
capability in predicting process variables [38, 39]. The model
was trained using different combinations of these parameters
so as to achieve maximum determination coefficient values
(target value = 1, i.e., 100% correlation between measured
and predicted variables). This was achieved by a vigorous
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Table 3:Network training parameters for choosing the best network
architecture.

Training parameters Range of values Best value
Training cycle 1000–40000 40000
Number of neurons in input layer 2 2
Number of neurons in hidden layer 2–8 2
Number of neurons in output layer 1 1
Learning rate 0.1–0.9 0.9
Momentum term 0.1–0.9 0.3
Fixed parameters during training

Error tolerance 0.0001
Epoch size 25
Training algorithm Standard BEP
Number of training data set 102
Number of test data set 32
𝑅

2 training 0.8716
𝑅

2 testing 0.8484

trial and error approach by keeping some training parameters
constant and by slowly moving the other parameters over a
wide range of values, as suggested in some previous works
[26, 34, 35]. A trial and error approach was followed in
this study to determine the best network topology and the
effect of internal network parameters due to the following
reasons: (i) there were several parameters whose values had
to be varied from low to high values (example: learning rate
from 0.1–1; momentum term from 0.1–1), by keeping other
parameters constant, and (ii) although several literatures have
suggested different heuristic rules for selecting the (best)
parameters, adequate training of the network always remains
a key issue during ANNmodeling, as this largely depends on
the complexity of the process, the quality of data obtained,
and the nature of interpretation done by the user. In this
study, the following observations were made during training:
(i) increasing the number of neurons in the hidden layer from
2 to 8 did not significantly increase the R2 values, and the
value of 2 was finally chosen, (ii) the training cycle appears
to have a tremendous influence in increasing the R2 values
and it was observed that the model predictions were high
and significant when the training cycle was set to 40,000, (iii)
similarly, high learning rates seem to invariably increase the
prediction efficiency, and (iv) low values of momentum term
showed R2 values greater than 0.84 in the test data during the
predictions of RE. The R2 values during training and testing
were 0.8716 and 0.8484, respectively.Thus, only about 13–16%
of the total deviations could not be explained by the model
for predicting the combined removal efficiency profiles in the
ICBs.The best network architecture for this combinedmodel
is 2-2-1.The results from this study indicate high learning rate
(𝜂-0.9), low momentum term (𝛼-0.3), and a training cycle of
40,000 with 2 neurons in the hidden layer (𝑁

𝐻
) are favorable

values of the internal network parameters.

4.2.2. Predictive Potentiality of the Model. The performance
parameter of the ICB treating H

2
S and NH

3
, namely RE,

for the training and test data is shown in Figures 3 and 4,
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Figure 3: Observed and BPNN predicted values of removal effi-
ciency profiles during training.
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Figure 4: Observed and BPNN predicted values of removal effi-
ciency profiles during testing.

respectively. It can be observed that some of the data points
for both H

2
S and NH

3
were not predicted properly by

the BPNN model, thus leading to large errors, ∼13%. This
could be due to the quasi-steady-state attained in the two
ICBs, when the loading rate was step increased from one
level to another. During this stage, the biofilter took some
time (3 to 4 d) to adjust itself to the new concentration,
thereby achieving steady state removals [2, 3]. Moreover,
corroborating these deviations is the less critical load in the
NH
3
biofilter (4.5 g/m3⋅h) in comparison to the H

2
S biofilter

(8 g/m3⋅h). This decrease in critical loads and correspond-
ing removal profiles would have caused an impact in the
networks generalization pattern while predicting the perfor-
mance parameters, a pattern that has been often reported in
biofilter and biotrickling filter operations [7, 9, 12]. However,
the BPNN-based model showed good predictive ability for
performance variables as seen from the closeness of the fit
between the experimental and predicted observations.

Anew, the predictive capacity of the network was also
evaluated in terms of its relative deviation, that is, (REexp−
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removal efficiency in the training data set.
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removal efficiency in the test data set.

REpred)/REexp. These deviations for removal efficiency pre-
dicted by model during network training and testing are
shown in Figures 5 and 6, respectively.The relative deviations
are more significant, that is, >15% in some cases, which can
be attributed to the change in load to the ICBs. This could
be further explained by the EC profiles showed in Figures
1 and 2, respectively. For higher initial concentration and
higher flow rate (high loading rates), the EC of the filter bed
increased at a slower rate, becoming nearly constant at inlet
loads beyond 8 g H

2
S/m3⋅h and 4.5 g NH

3
/m3⋅h, respectively.

This phenomenon could be possibly due to the reaction and
diffusion limitation steps as explained by Ottengraf [38], or
by any one of the following mechanism; (i) smaller pore sizes
in themedia could restrict the accessibility of nutrients on the
pore surface by the microorganisms, while at large pore size
the specific surface areamay be the limiting factor, (ii) at high
cell densities, intra particle pore diffusion limitations have
shown to play a significant role in reducing the elimination
capacities, and (iii) microenvironmental conditions inside
the encapsulated media could also vary with position and
affect the physiology of the cells. The decline in RE at high
loading rates could also be attributed to some complex
mechanisms associated with the removal profiles in the
immobilized media, where the waste air is first scrubbed
and/-or absorbed in the liquid biofilm and then oxidized by
the microorganisms.

Table 4: Weights and bias terms obtained after network training.

(a) Input to hidden layer weights

𝑊

11
𝑊

12

Unit flow, per min −6.61 −8.00
Concentration, ppmv 2.49 −26.6
Bias term −8.19 1.95
𝑊11, 𝑊12: Weights between neurons in input layer and hidden layer.

(b) Hidden to output layer weights

RE, %
𝑊

21
1.56

𝑊

22
2.28

Bias term −1.03
𝑊21,𝑊22: Weights between neurons in hidden layer and output layer.

Table 5: Sensitivity analysis of inputs for the trained network.

Parameters Absolute average sensitivity, AAS
RE, %

Unit flow, per min 0.5628
Concentration, ppmv 0.4371

The weights and bias terms between the hidden layer
connections [39] obtained after network training is given in
Table 4. In order to evaluate the significant effect of the input
parameters on the developedmodel, a sensitivity analysis was
carried out by estimating the Absolute Average Sensitivity
(AAS). The sensitivity is calculated by summing the changes
in the output variables caused by moving the input variables
by a small amount over the entire training set. The AAS
is the absolute values of the change in the input [40]. The
computed AAS value on different input parameters formodel
is shown in Table 5. Unit flow (0.5628) appears to have amore
significant effect in predicting RE profiles in the ICBs than the
concentration term. The results from this analysis reveal the
degree of relevance of the input parameters to the outputs.
Figure 7 shows the contour plot of RE, as a function of the
concentration and unit flow for the ICB. This contour plot
can be interpreted as follows: RE > 93.7% can be consistently
maintained in the ICB, if the following condition is met: inlet
H
2
S or NH

3
concentration is constantly maintained at less

than 120 ppmv, at a unit flow of 2 per min.
The predictive ability of the proposed model using the

concepts of artificial intelligence and the back propagation
algorithm was high and significant, as ascertained from the
R2 value between the measured and predicted outputs in
the training and test data for predicting RE of the ICB.
This work could enable researches to extend and intensify
research in BPNNs for evaluating pilot scale ICBs, besides
helping in optimizing their state variables. For practical
applications, ANNs can be used for real-time identification of
state variables from the biofilter by continuously monitoring
several important (easily measurable) parameters such as,
inlet pollutant concentrations (using a gas chromatograph),
gas flow rate (using a mass flow controller), humidity (using
relative humidity sensors), filter bed pH, and temperature
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Figure 7: Contour plot showing the operating regime to achieve
greater than 93.7% removal efficiency.

(using appropriate sensors). Real-time prediction of pollutant
RE is then possible, wherein the acquired data (after proper
noise filtering) is continuously integrated to an existing
database of information (model inputs and outputs) and the
ANN model can then be trained in either online or offline
mode. Although, ANNs have found widespread application
in real-time control of different industrial (chemical) pro-
cesses and wastewater treatment systems, this research area
still remains unexplored for the monitoring and real-time
control of waste-gas treatment systems.

5. Conclusions

The RE of two individually operated immobilized cell biofil-
ters (ICBs) was modeled using unit flow and inlet concentra-
tion as the input parameters. The best network architecture
(2-2-1), determined by a trial and error approach showed that,
high learning rates (𝜂-0.9), lowmomentum term (𝛼-0.3), with
a training cycle of 40,000, are favorable conditions for high
performance predictions. The developed BPNN model was
able to identify all the peaks and plains of the data under
different operating conditions with much less error (<15%).
High REs (>93.7%) can be consistently maintained in the
ICB, if the inlet H

2
S or NH

3
concentration is maintained at

<120 ppmv, at a unit flow of 2 per min, irrespective of the ICB
operating volume. Furthermore, the results from this study
evoke that neural networks can capture and extract complex
relations among the easily measurable parameters, like unit
flow and concentration, in an ICB process and forebode the
performance in a meaningful manner.
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AI: Artificial intelligence
ANN: Artificial neural network
BPNN: Back propagation neural network
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RE: Removal efficiency, %
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: Output from the neural network model
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𝜂: Learning rate
𝛼: Momentum term
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𝑁
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𝑁

𝑂
: Number of neurons in the output layer
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