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TIMELESS-TIPIN and UBXN-3 promote replisome
disassembly during DNA replication termination in
Caenorhabditis elegans
Yisui Xia , Ryo Fujisawa , Tom D Deegan , Remi Sonneville* & Karim P M Labib**

Abstract

The eukaryotic replisome is rapidly disassembled during DNA repli-
cation termination. In metazoa, the cullin-RING ubiquitin ligase
CUL-2LRR-1 drives ubiquitylation of the CMG helicase, leading to
replisome disassembly by the p97/CDC-48 “unfoldase”. Here, we
combine in vitro reconstitution with in vivo studies in Caenorhabdi-
tis elegans embryos, to show that the replisome-associated
TIMELESS-TIPIN complex is required for CUL-2LRR-1 recruitment
and efficient CMG helicase ubiquitylation. Aided by TIMELESS-
TIPIN, CUL-2LRR-1 directs a suite of ubiquitylation enzymes to ubiq-
uitylate the MCM-7 subunit of CMG. Subsequently, the UBXN-3
adaptor protein directly stimulates the disassembly of ubiquity-
lated CMG by CDC-48_UFD-1_NPL-4. We show that UBXN-3 is
important in vivo for replisome disassembly in the absence of
TIMELESS-TIPIN. Correspondingly, co-depletion of UBXN-3 and
TIMELESS causes profound synthetic lethality. Since the human
orthologue of UBXN-3, FAF1, is a candidate tumour suppressor,
these findings suggest that manipulation of CMG disassembly
might be applicable to future strategies for treating human
cancer.
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Introduction

Eukaryotic chromosomes are copied just once per cell cycle (Bell &

Labib, 2016; Burgers & Kunkel, 2017; Gasser, 2019), dependent

upon a dynamic molecular machine known as the replisome (Bai

et al, 2017). During S-phase, the replisome assembles around the

CMG helicase at nascent DNA replication forks (CMG is named after

its three sub-assemblies, namely the CDC-45 protein, the hexameric

MCM-2-7 motor that encircles DNA and the GINS complex). After

initiation, CMG associates continuously with DNA replication forks

throughout elongation (Labib et al, 2000), until termination occurs

when two DNA replication forks from neighbouring origins

converge, or when a single replisome arrives at a telomere or DNA

nick (Maric et al, 2014; Moreno et al, 2014; Dewar et al, 2015; Vrtis

et al, 2021).

Work with budding yeast and metazoa indicates that the CMG

helicase is ubiquitylated on its MCM7 subunit during termination

(Maric et al, 2014; Moreno et al, 2014; Dewar et al, 2017; Sonne-

ville et al, 2017). This leads to recruitment of the Cdc48/p97/

VCP ATPase via its UFD1-NPL4 adaptor proteins (Franz et al,

2011; Maric et al, 2017; Mukherjee & Labib, 2019; Deegan et al,

2020), which recognise polyubiquitin chains that are linked via

lysine 48 of ubiquitin (Bodnar & Rapoport, 2017, Twomey et al,

2019, van den Boom et al, 2016). Cdc48/p97 then unfolds ubiq-

uitylated MCM7 (Deegan et al, 2020), leading to the irreversible

dissociation of CMG into its component parts and thus to repli-

some disassembly and the dissociation of replisome components

from DNA.

Although metazoa and yeast share common principles of repli-

some disassembly during DNA replication termination, important

differences are also apparent. Disassembly of the budding yeast

replisome has been reconstituted with purified proteins, showing

that the cullin 1 ligase SCFDia2 directs a single E2 ubiquitin-

conjugating enzyme called Cdc34 to initiate and then elongate a

long K48-linked ubiquitin chain on CMG-Mcm7 (Maric et al, 2014;

Deegan et al, 2020). However, SCFDia2 is absent in metazoa. Work

with the nematode Caenorhabditis elegans and the frog Xenopus

laevis has shown that a cullin 2 ligase called CUL-2LRR-1 is recruited

to the terminating replisome and is required for CMG disassembly

during termination (Dewar et al, 2017; Sonneville et al, 2017). The

mechanism of CMG ubiquitylation by CUL-2LRR-1 has yet to be deter-

mined in any metazoan species and until now the reaction had not

been reconstituted in vitro.

The very high efficiency of CMG disassembly in budding yeast is

enforced by two core replisome components called Ctf4 and Mrc1,

which jointly recruit SCFDia2 to the replisome and thereby ensure

that every CMG helicase complex is ubiquitylated during
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termination (Maculins et al, 2015; Deegan et al, 2020). In contrast, a

potential role for metazoan core replisome components in stimulat-

ing CMG helicase ubiquitylation by CUL-2LRR-1 during DNA replica-

tion termination had not previously been explored.

Upon ubiquitylation of yeast CMG, the ubiquitin receptors Ufd1-

Npl4 recruit Cdc48 and support helicase disassembly, provided that

at least five ubiquitin moieties have been conjugated to CMG-

Mcm7 (Mukherjee & Labib, 2019; Deegan et al, 2020). Although

both yeast Cdc48-Ufd1-Npl4 and human p97-UFD1-NPL4 are suffi-

cient to unfold a model substrate comprising a poly-ubiquitylated

fluorescent protein (Blythe et al, 2017; Bodnar & Rapoport, 2017;

Pan et al, 2021), work with C. elegans indicated that the disassem-

bly of ubiquitylated CMG helicase by metazoan p97-UFD1-NPL4 is

more complicated than would have been predicted by the corre-

sponding studies of their yeast orthologues. A further adaptor of

CDC-48/p97 called UBXN-3 was shown to contribute to chromatin

unloading of CMG components in worms with reduced expression

of CDC-48 (Franz et al, 2016). Moreover, UBXN-3 was found to be

required for a second pathway of CMG disassembly that is acti-

vated during mitosis (Sonneville et al, 2017). This mitotic CMG

disassembly pathway requires the TRUL-1/TRAIP ubiquitin ligase

and helps to process sites of incomplete DNA replication (Deng

et al, 2019; Priego Moreno et al, 2019; Sonneville et al, 2019). Until

now, it was not known whether the role of UBXN-3 in the disas-

sembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4 was direct

and the reaction had yet to be reconstituted with purified proteins.

In addition, it was unclear whether UBXN-3 also acts during DNA

replication termination to stimulate CMG helicase disassembly by

CDC-48_UFD-1_NPL-4.

Here, we use C. elegans as a model system to explore the mecha-

nism of replisome disassembly during DNA replication termination

by metazoan CUL-2LRR-1 and CDC-48_UFD-1_NPL-4. Our data show

that the core replisome factors TIMELESS-TIPIN help to recruit CUL-

2LRR-1 to the CMG helicase, in order to promote efficient ubiquityla-

tion of CMG-MCM-7. Subsequently, UBXN-3 directly stimulates the

disassembly of ubiquitylated CMG by CDC-48_UFD-1_NPL-4, not

only during mitosis but also during DNA replication termination.

Lack of both TIMELESS-TIPIN and UBXN-3 causes a synthetic defect

in CMG disassembly both in vitro and also in the C. elegans early

embryo, with the latter defect being associated with a profound loss

of viability.

Results

An RNAi screen for E2 ubiquitin-conjugating enzymes that work
with CUL-2LRR-1 in Caenorhabditis elegans

Relatively little is known about the mechanism of C. elegans cullin

ligases and the identity of their cognate E2 enzymes. Nevertheless,

studies of the equivalent human enzymes have shown that meta-

zoan cullin ligases are considerably more complex than their yeast

counterparts and function together with a complex array of different

enzymes, in order to synthesise K48-linked ubiquitin chains on their

substrates (Baek et al, 2020b; Wang et al, 2020). Firstly, the cullin

scaffold must be modified by the ubiquitin-like protein NEDD8,

which serves as a nexus that contacts multiple elements of the ligase

along with the cognate E2 ubiquitin-conjugating enzyme (Baek et al,

2020a; Wang et al, 2020). Subsequently, specialised “priming”

enzymes are responsible for the initial mono-ubiquitylation of

substrate lysines, whereas distinct E2 enzymes then mediate the

subsequent elongation of K48-linked ubiquitin chains (Kleiger &

Deshaies, 2016). Recent work identified two different classes of

priming enzymes for human cullin ligases (Fig 1A). The first

comprises paralogues of the E2 enzyme UBE2D, which is activated

by the RING subunit of a neddylated cullin ligase (Baek et al,

2020a). The second type of priming enzyme is an RBR (“RING-

between-RING”) E3 ligase of the ARIADNE family, known as

ARIH1, which associates with neddylated cullin ligases and receives

ubiquitin from the cysteine-specific E2 enzyme UBE2L3, before

transferring this ubiquitin to a substrate lysine (Scott et al, 2016;

Horn-Ghetko et al, 2021). Subsequently, K48-linked chains are

extended on the primed substrate by the human orthologues of

yeast Cdc34, known as UBE2R1-2, but these act redundantly with a

further E2 enzyme (Fig 1A) called UBE2G1 (Hill et al, 2019).

The single C. elegans orthologue of UBE2D (LET-70) is essential

for worm viability (Zhen et al, 1996), as is the LRR-1 substrate

adaptor of CUL-2LRR-1 (Merlet et al, 2010). In contrast, we found

that deletion of the sole orthologue of mammalian UBE2R1/R2 in

C. elegans was viable (ubc-3, Appendix Fig S1A–B and G–H), as

was deletion of worm UBE2G1 (ubc-7, Appendix Fig S1C–D and G–

H), or mutation of worm UBE2L3 (ubc-18) at a site predicted to

abrogate its interaction with E1 (Fay et al, 2003). To investigate

which of the C. elegans E2 enzymes might function in vivo with

▸Figure 1. An RNAi screen for candidate E2 enzymes that contribute to CMG-MCM-7 ubiquitylation during DNA replication termination in C. elegans.

A Model for the priming and elongation of ubiquitin chains on substrates of cullin ubiquitin ligases in metazoa. See text for details.
B Family tree for the E2 ubiquitin-conjugating enzymes encoded by the C. elegans genome. For each of the indicated groups, a single plasmid was generated to

express RNAi to the component genes (see Materials and Methods).
C Summary of RNAi screen to detect synthetic lethality, upon combining ubxn-3 RNAi with a plasmid expressing RNAi to lrr-1 or to one of the groups of E2 enzymes

indicated in (B).
D Summary of synthetic lethality data for the screen described in (C). Worms were fed on the indicated proportions of bacteria expressing RNAi to ubxn-3, lrr-1, E2

enzyme groups G1-G6, or else containing empty vector as indicated. The data represent the means and standard deviations from three biological replicates.
E, F Synthetic lethality resulting from the combination of RNAi to E2 group 5 and RNAi to ubxn-3 was deconvolved in similar experiments to those in (D), using plasmids

expressing RNAi to individual E2 enzymes, or pairs of E2 enzymes, as indicated.
G GFP-psf-1 worms were fed on bacteria containing a single plasmid expressing the indicated RNAi treatments, before preparation of embryonic cell extracts and

isolation of GFP-PSF-1 by immunoprecipitation. The indicated factors were monitored by immunoblotting.
H The presence of GFP-PSF-1 on mitotic chromatin (indicated by white arrows) was monitored by spinning disc confocal microscopy (see Materials and Methods), in

GFP-psf-1 mCherry-Histone H2B worms that were fed on bacteria containing a single plasmid expressing the indicated RNAi treatments (“Control” = empty vector).
NEB = nuclear envelope breakdown. The scale bars correspond to 5 µm.

I Analogous experiments to those in (D, E) to deconvolve the synthetic lethality induced by RNAi to ubxn-3 in combination with E2 group 6.
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CUL-2LRR-1 during DNA replication termination, we developed a

genetic screen that was based on our previous observation that

partial RNAi inactivation of lrr-1 is synthetic lethal with RNAi

depletion of UBXN-3 (Sonneville et al, 2017). This indicated that

RNAi depletion of E2 enzymes that act with CUL-2LRR-1 during DNA

replication termination might also cause synthetic lethality in

combination with ubxn-3 RNAi.

We divided the worm E2 enzymes into a series of phylogenetic

groups and constructed RNAi plasmids to inactivate each group

simultaneously (Fig 1B). We then fed worms on bacteria expressing

ubxn-3 RNAi or empty vector (Fig 1C), mixed one-to-one either with

bacteria expressing each of the six groups of E2 RNAi, or with posi-

tive and negative controls (10% lrr-1 RNAi and empty vector,

respectively).

Most of the tested E2 groups had no impact on viability together

with ubxn-3 RNAi, whereas the combination of lrr-1 and ubxn-3

RNAi reduced viability close to zero (Fig 1D). However, E2 group 5

produced a strong synthetic lethal phenotype in combination with

ubxn-3 (Fig 1D), which subsequent deconvolution showed was

dependent upon the combined inactivation of ubc-3 and ubc-7

(Fig 1E and F). Triple RNAi inactivation of ubxn-3, ubc-3 and ubc-7

led to the partial accumulation of the CMG helicase with short ubiq-

uitin chains on MCM-7 (Fig 1G), and the partial retention of CMG

on chromatin during mitosis (Fig 1H). Moreover, co-depletion of

UBC-3 and UBC-7 reduced the ubiquitylation of CMG-MCM-7 in

worms that had been treated with npl-4 RNAi in order to block CMG

disassembly by CDC-48 (Appendix Fig S2). These findings indicated

that UBC-3 and UBC-7 contribute to CMG ubiquitylation and disas-

sembly in the C. elegans early embryo, acting redundantly with each

other.

Whereas deletion of cul-2 or lrr-1 is lethal in C. elegans (Feng

et al, 1999; Merlet et al, 2010), the combination of ubc-3Δ and ubc-

7Δ is viable although the brood size is reduced (Appendix Fig S1G

and H). This indicates that other E2 enzymes must be able to act

with CUL-2LRR-1, in addition to UBC-3 and UBC-7. One candidate for

the latter is the essential LET-70 orthologue of mammalian UBE2D

enzymes. A further possibility was suggested by the ~50% synthetic

lethality produced by RNAi to ubxn-3 plus E2 group 6 (Fig 1D),

which subsequent deconvolution showed was due to the ubc-18

orthologue of human UBE2L3 (Fig 1I). This suggested a role for an

RBR ligase of the ARIADNE family.

Reconstitution of replisome-dependent CMG ubiquitylation by
CUL-2LRR-1 and a suite of ubiquitylation and neddylation enzymes

In order to explore the mechanism by which CUL-2LRR-1 promotes

replisome-dependent ubiquitylation of the C. elegans CMG helicase,

we set out to reconstitute the reaction with purified proteins, taking

advantage of recent findings in addition to the results of the E2

screen described above. Work with budding yeast (Deegan et al,

2020) and Xenopus laevis (Low et al, 2020) has shown that CMG

ubiquitylation is stimulated by release of the helicase from replica-

tion fork DNA, likely reflecting the events that normally lead to

CMG disassembly and the termination of DNA replication, when a

fork reaches a DNA end such as a telomere or a nick in the DNA

template strand upon which the helicase tracks. Based on this obser-

vation, replisome-dependent ubiquitylation of the yeast CMG heli-

case was recently reconstituted with purified proteins in the

complete absence of DNA (Deegan et al, 2020), reflecting the inher-

ently high efficiency of CMG ubiquitylation, which is repressed

throughout elongation by the embrace of the helicase with a replica-

tion fork.

Encouraged by these studies, we expressed and purified recombi-

nant forms of the C. elegans CMG helicase and associated core repli-

some proteins (Fig 2A). We also purified a range of ubiquitylation

enzymes, together with C. elegans NED-8 (equivalent to mammalian

NEDD8) and the worm orthologues of mammalian neddylation

enzymes (Fig 2A, ULA-1_RFL-1, UBC-12 and DCN-1). Both ubiquity-

lation and neddylation require an E1 enzyme to activate ubiquitin/

NEDD8, which is then transferred to the catalytic cysteine residue of

an E2 enzyme (Rennie et al, 2020). Subsequently, E3 enzymes medi-

ate the transfer of ubiquitin or NEDD8 from activated E2 to substrate

lysine residues (Morreale & Walden, 2016; Zheng & Shabek, 2017),

either by bringing E2 and substrate into close proximity and stabilis-

ing the active conformation of the E2-Ub or E2-NEDD8 conjugate

(e.g. RING E3 ligases including the cullin family), or by transfer of

ubiquitin onto a cysteine residue of the E3 and thereafter onto a

proximal substrate lysine (e.g. HECT or RBR E3 ligases).

Guided by the analysis of C. elegans E2 enzymes described

above, we compared the ability of UBC-3, UBC-18 and LET-70 to

support the ubiquitylation of recombinant C. elegans CMG in recon-

stituted in vitro reactions, which also contained E1, CUL-2LRR-1, the

worm neddylation machinery and other replisome factors (Fig 2A).

In reactions containing UBC-3 as the only E2 enzyme, ubiquitylation

of CMG-MCM-7 was not observed (Fig 2B, compare lanes 1 and 5).

In contrast, UBC-18 together with the RBR ligase ARI-1 supported

the addition of 1–3 ubiquitins to MCM-7 (Fig 2B lane 2; Fig EV1B

lanes 9–12 show that both UBC-18 and ARI-1 were required for

MCM-7 ubiquitylation). This represented mono-ubiquitylation of

multiple sites on MCM-7, since the same ubiquitylation pattern was

observed with lysine-free ubiquitin (Fig EV1A, compare lanes 2–3).

LET-70 also supported CMG ubiquitylation, with up to ~8 ubiquitins

being conjugated to MCM-7 (Fig 2B, lane 3). This predominantly

represented the conjugation by LET-70 of a single ubiquitin chain

on CMG-MCM-7, since mono-ubiquitylation was the major product

in reactions containing LET-70 and lysine-free ubiquitin (Fig EV1A,

▸Figure 2. In vitro reconstitution of replisome-specific ubiquitylation of CMG-MCM-7 by CUL-2LRR-1 and an array of associated ubiquitylation enzymes.

A Purified C. elegans proteins (see Materials and Methods).
B Ubiquitylation of CMG-MCM-7 was reconstituted with the indicated factors as described in Materials and Methods. “Neddylation” indicates addition of the C. elegans

ULA-1_RFL-1 E1 enzyme, the UBC-12 E2 enzyme, the DCN-1 E3 enzyme and NED-8.
C Equivalent reactions to those in (B) but using lysine-free (K0) ubiquitin.
D Similar reactions comparing wild-type ubiquitin to the indicated ubiquitin mutants.
E Reactions containing CMG and either CUL-2LRR-1 or CUL-2VHL-1 were performed in the presence or absence of other replisome factors as indicated. CMG was then

isolated by immunoprecipitation of SLD-5 and the indicated factors were monitored by immunoblotting.
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compare lanes 6–7). Moreover, the chains formed by LET-70 were

largely independent of lysine 48 of ubiquitin (Fig EV1A, compare

lanes 6 and 8). These findings indicated that UBC-18_ARI-1 and

LET-70 are both able to prime ubiquitylation of CMG-MCM-7, but

cannot synthesise the K48-linked ubiquitin chains that are the

preferred substrate of p97-UFD1-NPL4 (Bodnar & Rapoport, 2017,

Tsuchiya et al, 2017, van den Boom et al, 2016).

We then performed similar reactions containing CUL-2LRR-1 with

combinations of UBC-3, LET-70 and UBC-18_ARI-1. These experi-

ments showed that UBC-3 is able to synthesise long ubiquitin chains

on CMG-MCM-7, dependent upon the chains having been initiated

by either LET-70 or UBC-18_ARI-1 (Fig 2B, lanes 6–7). MCM-7 ubiq-

uitylation in the presence of UBC-3 predominantly takes the form of

K48-linked ubiquitin chains (Fig 2D). Moreover, the major product

in reactions containing all three E2 enzymes, together with the E3

ligases CUL-2LRR-1 and ARI-1, is a single polyubiquitin chain on

MCM-7, since reactions containing lysine-free ubiquitin only

supported the conjugation of a single ubiquitin moiety to most

MCM-7 molecules (compare Fig 2B lane 8 with Fig 2C lane 8).

Therefore, these data indicate that LET-70 is the predominant prim-

ing enzyme under these reaction conditions (Fig 2C, compare lane 3

with lanes 6–8), whereas UBC-3 is the predominant E2 that extends

K48-linked ubiquitin chains on CMG-MCM-7. Consistent with the

in vivo results of the RNAi E2 screen, we observed in similar in vitro

reactions that UBC-7 was also able to elongate K48-linked ubiquitin

chains that had been primed by LET-70, although UBC-7 was less

efficient than UBC-3 (Fig EV1C). In contrast, the more distantly

related E2 enzymes UBC-1 and UBC-14 were unable to promote

CMG-MCM-7 ubiquitylation (Fig EV1C), as predicted by the RNAi

E2 screen (Fig 1C–E).

CMG-MCM-7 ubiquitylation by both UBC-18_ARI-1 and UBC-3

was stimulated by neddylation of conserved lysine residues on CUL-

2 (Fig EV1D–F), consistent with previous studies of human CUL-2

(Bandau et al, 2012; Sonneville et al, 2017). This contrasts with the

action of yeast SCFDia2 for which neddylation is dispensable

(Mukherjee & Labib, 2019; Deegan et al, 2020). Interestingly, CMG-

MCM-7 ubiquitylation by C. elegans LET-70 did not require neddyla-

tion (Fig EV1B, compare lanes 1–4). We found that this was because

LET-70 is able to ubiquitylate the neddylation sites on CUL-2

(Fig EV1B lanes 1–2), indicating that cullin ubiquitylation can func-

tionally substitute for cullin neddylation. Correspondingly, mutation

of K719 and K749 of CUL-2 abrogated the ubiquitylation or neddyla-

tion of CUL-2 and also blocked CMG ubiquitylation (Fig EV1D–F;

Fig EV1E shows that CUL-2-2RLRR-1 and wild-type CUL-2LRR-1 are

equally active at promoting free chain formation by UBC-3 in the

absence of neddylation).

To assess the importance of the LRR-1 substrate adaptor in the

reconstituted CMG ubiquitylation system, we expressed and puri-

fied recombinant CUL-2VHL-1, in which the worm orthologue of the

human Von Hippel-Lindau tumour suppressor (VHL) replaces

LRR-1 in the five-subunit E3 ligase (Lisztwan et al, 1999). Both

CUL-2VHL-1 and CUL-2LRR-1 were able to stimulate the formation of

free ubiquitin chains by UBC-3 (Fig EV1E). However, only CUL-

2LRR-1 supported the ubiquitylation of CMG-MCM-7 (Fig 2E,

compare lanes 4–5). These data show that the ability of LET-70,

UBC-18_ARI-1 and UBC-3 to ubiquitylate CMG-MCM-7 is comple-

tely dependent upon the LRR-1 substrate targeting component of

CUL-2LRR-1.

By isolating the CMG helicase at the end of the reconstituted

ubiquitylation reactions, we found that CUL-2LRR-1 but not CUL-

2VHL-1 co-purified with the worm CMG helicase (Fig 2E, CUL-2,

lanes 4–5). However, the association of CUL-2LRR-1 with CMG was

abrogated in reactions that lacked other replisome components

except CMG (Fig 2E, CUL-2, compare lanes 4 and 6). Moreover, the

efficiency of CMG-MCM-7 ubiquitylation was impaired under such

conditions (Fig 2E, MCM-7, compare lanes 4 and 6). These findings

indicated that the association of CUL-2LRR-1 with the worm CMG

helicase is stabilised in the context of the replisome, thereby

promoting the efficient ubiquitylation of the CMG-MCM-7 subunit.

Nevertheless, residual CMG-MCM-7 ubiquitylation in the absence of

other replisome components is still dependent upon CUL-2LRR-1

(Fig 2E, MCM-7, compare lanes 5 and 6), likely reflecting a dynamic

interaction between LRR-1 and CMG under such conditions.

TIMELESS-TIPIN links CUL-2LRR-1 to the replisome and
promotes efficient priming and extension of ubiquitin chains
on CMG-MCM-7

The major partners of CMG within the replisome have been best

defined in budding yeast (Baretic et al, 2020) and comprise Tof1-

Csm3 (TIMELESS-TIPIN in mammals; TIM-1_TIPN-1 in C. elegans),

Ctf4 (CTF-4/AND-1/WDHD1 in mammals, CTF-4 in C. elegans) and

Mrc1 (CLASPIN in mammals; CLSP-1 in C. elegans). Using purified

proteins (Fig 2A), we found that the worm equivalents of these

factors also interact with the CMG helicase (Fig EV2A), consistent

with the co-purification of such factors with CMG from extracts of

C. elegans early embryos (Sonneville et al, 2017). To test the role of

these factors in promoting the high efficiency of CMG ubiquitylation

in the reconstituted ubiquitylation system, we compared the effects

of omitting TIM-1_TIPN-1, CTF-4 or CLSP-1. Strikingly, reactions

omitting TIM-1_TIPN-1 had an equivalent defect to reactions that

lacked all replisome components apart from CMG (Fig 3A, MCM-7,

compare lanes 2–3). In contrast, removal of CTF-4 or CLSP-1 had no

impact on the efficiency of CMG-MCM-7 ubiquitylation (Fig 3A,

MCM-7, compare lane 1 with lanes 4–5). These findings contrasted

with studies of CMG ubiquitylation in budding yeast (Maculins

et al, 2015; Deegan et al, 2020), in which Ctf4 and Mrc1/CLASPIN

were found to be crucial for action of the cullin 1 ligase SCFDia2

during DNA replication termination.

Subsequently, titration experiments indicated that the ability of

CUL-2LRR-1 to mediate the priming of ubiquitin chains on CMG-

MCM-7 was stimulated several-fold in the presence of TIM-1_TIPN-1

(Figs 3B and Fig EV2B and C, K0 = lysine-free ubiquitin). More-

over, TIM-1_TIPN-1 stimulated priming by both ARI-1_UBC-18

(Fig EV2D lower panels) and LET-70 (Fig EV2E lower panels). Simi-

larly, the elongation of K48-linked ubiquitin chains on CMG-MCM-7

was stimulated in the presence of TIM-1_TIPN-1 (Figs 3C and EV2D

and E upper panels). These data suggested that TIM-1_TIPN-1 func-

tions by stimulating CUL-2LRR-1 function, which in turn is required

for all aspects of CMG-MCM-7 ubiquitylation.

To test whether the TIM-1_TIPN-1 complex is required for stable

association of CUL-2LRR-1 with the C. elegans replisome, we isolated

the CMG helicase from a mixture of CUL-2LRR-1 and replisome

proteins and observed that the co-purification of the cullin ligase

with CMG was dependent upon TIM-1_TIPN-1 but not CTF-4 or

CLSP-1 (Fig 3D, CUL-2). Moreover, glycerol gradient analysis of
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mixtures of purified CMG, TIM-1_TIPN-1 and CUL-2LRR-1 indicated

that the co-migration of CUL-2LRR-1 with either CMG or TIM-

1_TIPN-1 was dependent upon the presence of all three factors

(Fig EV2F). These data likely reflect a direct interaction of CUL-2LRR-

1 with both CMG and TIM-1_TIPN-1, which normally occurs in the

context of the replisome. Consistent with the notion that CUL-2LRR-1

interacts with both CMG and TIM-1_TIPN-1, we found that although

MCM-7 was the preferred substrate of CUL-2LRR-1 amongst the 11

subunits of CMG and a range of other replisome factors, both subu-

nits of TIM-1_TIPN-1 were also detectably ubiquitylated at a low

level (Figs 3E and F, and EV2G). Moreover, the ubiquitylation of the

TIM-1_TIPN-1 complex was detectable in the absence of CMG and

other replisome factors, further indicating a direct interaction

between CUL-2LRR-1 and TIM-1_TIPN-1. Nevertheless, ubiquitylation

of TIM-1_TIPN-1 was further stimulated in the presence of CMG

(Fig EV2H; note that the presence of other replisome factors did not

affect ubiquitylation of TIM-1_TIPN-1), probably aided by the

formation of a ternary complex between the ligase, helicase and

TIM-1_TIPN-1 (as described above and shown in Fig EV2F).

TIMELESS-TIPIN drives CMG over the “ubiquitin threshold” for
disassembly by CDC-48

To explore the functional significance of enhanced CMG ubiquityla-

tion by CUL-2LRR-1 in the presence of TIM-1_TIPN-1, we reconsti-

tuted disassembly of the ubiquitylated helicase with purified

proteins. Ubiquitylation reactions were performed in the presence of

TIMELESS-TIPIN and other replisome factors, before isolating ubiq-

uitylated CMG on beads that were coated with antibodies to the

GINS subunit SLD-5. The ubiquitylated helicase was then incubated

with purified C. elegans CDC-48, UFD-1_NPL-4 and UBXN-3 (Fig 4A

and B). Successful CMG disassembly was indicated by CDC-48

dependent release of CDC-45 and MCM-2-7 into the supernatant,

whilst GINS remained bound to antibody on the beads (Fig 4C,

compare lanes 3 and 4). Notably, MCM-7 with less than ~five

attached ubiquitins was retained on the beads, indicating that heli-

case disassembly was dependent upon the conjugation of around

five or more ubiquitin moieties to the helicase (Fig 4C, compare

lanes 3–4). These findings indicate that metazoan CDC-48_UFD-

1_NPL-4 is governed by an analogous “ubiquitin threshold” to its

yeast counterpart (Bodnar & Rapoport, 2017; Twomey et al, 2019;

Deegan et al, 2020).

Importantly, the proportion of CMG-MCM-7 above this ubiquitin

threshold was much reduced and CMG disassembly was corre-

spondingly less efficient, when reactions were performed in the

absence of TIM-1_TIPN-1 (Fig 4D, compare lanes 3–4). Together

with the data presented above, these findings indicate that the

TIMELESS-TIPIN complex promotes efficient CMG disassembly, by

stimulating the priming and elongation of K48-linked ubiquitin

chains on CMG-MCM-7.

UBXN-3 stimulates disassembly of ubiquitylated CMG by
CDC-48_UFD-1_NPL-4

The reconstituted CMG disassembly reaction was dependent upon

the UFD-1_NPL-4 complex (Fig 4C, compare lanes 3 and 5), which

is predicted by studies of its yeast counterpart to recognise K48-

linked ubiquitin chains and stimulate the initial unfolding of a

substrate-linked ubiquitin moiety by CDC-48 (Bodnar & Rapoport,

2017, Twomey et al, 2019, van den Boom et al, 2016). The mecha-

nism of substrate unfolding by CDC-48/p97 in association with

UFD1-NPL4 has not previously been shown to involve any addi-

tional factors. Strikingly, however, the disassembly of ubiquitylated

CMG was very inefficient in reactions that lacked UBXN-3 and only

contained CDC-48 and UFD-1_NPL-4 (Fig 4C, compare lanes 3-4

with lanes 7-8). Moreover, the same was true in reactions where

C. elegans CDC-48 and adaptors were used to disassemble ubiquity-

lated yeast CMG helicase (R. Fujisawa and K. Labib, unpublished

data), indicating that the importance of UBXN-3 was not dependent

upon specific interactions with components of the worm replisome.

The stimulation of CMG disassembly was dependent upon the

UBX domain of UBXN-3 (Fig EV3, compare lanes 5 and 7), which

interacts directly with CDC-48 (Franz et al, 2016). In addition, CMG

disassembly by CDC-48_UFD-1_NPL-4 and UBXN-3 was dependent

upon the presence of a K48-linked ubiquitin chain on CMG, since

disassembly did not occur in reactions containing lysine-free ubiqui-

tin (Fig EV3, lane 9) or K48R ubiquitin (Fig EV3, lane 11). Overall,

these data indicate that UBXN-3 directly stimulates the disassembly

of poly-ubiquitylated CMG by C. elegans CDC-48_UFD-1_NPL-4.

Consistent with UBXN-3 playing an important role in the biology of

C. elegans CDC-48_UFD-1_NPL-4, we found that fertility and embry-

onic viability were extremely low upon deletion of the ubxn-3 gene

by CRISPR-Cas9 (Appendix Fig S1E–H). RNAi depletion of UBXN-3

is not lethal (Sasagawa et al, 2010; Sonneville et al, 2017), presum-

ably due to the presence of residual protein. Nevertheless, previous

work showed that ubxn-3 RNAi causes synthetic lethality in worms

with reduced expression of CDC-48 (Franz et al, 2016), further indi-

cating the importance of UBXN-3 for CDC-48 biology in C. elegans.

TIMELESS-TIPIN is important for efficient CMG ubiquitylation
during DNA replication termination in Caenorhabditis elegans
early embryos

To begin to investigate the in vivo significance of the reconstituted

CMG ubiquitylation and disassembly reactions, for CMG ubiquityla-

tion and replisome disassembly during DNA replication termination,

◀ Figure 3. TIMELESS-TIPIN stimulates the priming and elongation of ubiquitin chains on CMG-MCM-7 by stabilising the association of CUL-2LRR-1 with the
C. elegans replisome.

A–C Reconstituted CMG-MCM-7 ubiquitylation reactions were performed as above in the presence of the indicated factors. “Neddylation” indicates addition of the
C. elegans ULA-1_RFL-1 E1 enzyme, the UBC-12 E2 enzyme, the DCN-1 E3 enzyme and NED-8.

D The indicated factors were assembled in the absence of ubiquitin and then incubated as for (A) before isolation of CMG via immunoprecipitation of SLD-5. The
association of CUL-2 with the CMG-replisome was monitored by immunoblotting.

E, F In reactions analogous to those in (A), ubiquitylation of the indicated factors was monitored by immunoblotting. Reactions were performed in sets of three as
indicated (1 = dropout of CUL-2LRR-1; 2 = wt ubiquitin; 3 = lysine-free or K0 ubiquitin).
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we used RNAi to deplete the major CMG partner proteins in the

C. elegans early embryo. These experiments used worms in which

the PSF-1 subunit of GINS was modified either with the tandem

affinity purification (TAP) tag to allow for immunoprecipitation of

CMG, or with green fluorescent protein (GFP) to monitor the pres-

ence of CMG on condensed chromatin during mitosis.

We first examined the importance of core replisome proteins for

CMG-MCM-7 ubiquitylation during DNA replication termination.

Since ubiquitylated CMG is disassembled very rapidly during DNA

replication termination by CDC-48_UFD-1_NPL-4 (Sonneville et al,

2017), we co-depleted NPL-4 along with the CMG partner proteins.

Depletion of NPL-4 in TAP-psf-1 worms led to the accumulation of

post-termination CMG helicase with a mixture of ubiquitylated and

non-ubiquitylated MCM-7 subunit (Fig 5A, lane 5; the fraction of

non-ubiquitylated CMG likely results from partial depletion of the

pool of free ubiquitin upon inactivation of CDC-48_UFD-1_NPL-4).

CMG-MCM-7 ubiquitylation in worms lacking NPL-4 was unaf-

fected by additional depletion of either CTF-4 or CLSP-1 (Fig 5A;

compare lanes 5-7). To exclude the potential contribution of residual

protein after RNA interference, we deleted the ctf-4 gene by CRISPR-

Cas9 (Fig EV4A and B and Materials and Methods; note that dele-

tion of clsp-1 is lethal in C. elegans, precluding a similar approach).

Upon exposure to npl-4 RNAi, the accumulation of ubiquitylated

CMG helicase and the replisome association of CUL-2LRR-1 was

comparable in control and ctf-4Δ worms (Fig EV4C, compare lanes

5 and 7), even upon additional RNAi depletion of CLSP-1 (Fig EV4C,

compare lanes 7 and 8). Therefore, CTF-4 and CLSP-1 are dispens-

able for the efficiency of CMG-MCM-7 ubiquitylation in the

C. elegans early embryo.

In contrast, exposing TAP-psf-1 worms to tim-1 RNAi produced a

dramatic reduction in CMG-MCM-7 ubiquitylation and abrogated

the association of CUL-2LRR-1 with the replisome (Fig 5A and B).

Moreover, depletion of TIPN-1 produced a similar though slightly

milder defect compared to tim-1 RNAi (Fig 5B, tipn-1 RNAi, lanes

4 + 8). For multiple reasons, the effect on CMG ubiquitylation of

depleting TIMELESS-TIPIN is unlikely to be due to arrested progres-

sion of DNA replication forks, such as produced by RNAi inactiva-

tion of ribonucleotide reductase or DNA polymerase alpha

(Sonneville et al, 2017). Firstly, tim-1 RNAi only had a mild impact
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Figure 4. UBXN-3 stimulates disassembly of ubiquitylated CMG by CDC-
48_UFD-1_NPL-4.

A CDC-48, UFD-1_NPL-4 (U_N) and UBXN-3 (full-length and UBXN-3-ΔUBX)
were purified as described in Materials and Methods and analysed by
Coomassie blue staining of SDS–PAGE gels.

B Ubiquitylation and disassembly of the C. elegans CMG helicase was
reconstituted in vitro as indicated (see Materials and Methods for further
details).

C CMG was isolated by immunoprecipitation of SLD-5, after ubiquitylation in
the presence of TIM-1_TIPN-1, before incubation with the indicated factors.
“Neddylation” indicates addition of the C. elegans ULA-1_RFL-1 E1 enzyme,
the UBC-12 E2 enzyme, the DCN-1 E3 enzyme and NED-8. CMG
disassembly was monitored by release of CDC-45 or MCM-2-7 proteins into
the supernatant, whilst SLD-5 and other GINS subunits remained on the
beads. Asterisks indicate non-specific bands in the anti-MCM-7 and CDC-45
immunoblots.

D Equivalent reactions to (C) involving ubiquityation of CMG in the absence
of TIM-1_TIPN-1. For (C) and (D), the bands corresponding to MCM-7
conjugated to 1–5 ubiquitins are indicated in lane 4.
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on embryonic viability (Fig 6A) and did not reduce the total amount

of the CMG helicase in early embryos (Fig 5A, lanes 5-8, compare

PSF-1, CDC-45 and MCM-2). Furthermore, tim-1 RNAi did not

impair chromatin condensation during mitosis (see Fig 6B below)

and did not cause the single-strand DNA binding protein RPA to

accumulate on chromatin (Appendix Fig S3). Instead, these findings

support the in vitro reconstitution data described above (Fig 3) and

indicate that TIMELESS-TIPIN is important in vivo for the normally

high efficiency of CMG helicase ubiquitylation during DNA replica-

tion termination in the C. elegans early embryo.

Co-depletion of TIM-1 and UBXN-3 causes synthetic CMG
disassembly defects during DNA replication termination and loss
of embryonic viability

In the reconstituted CMG disassembly system described above,

removal of either TIMELESS-TIPIN or UBXN-3 produced defects in

CMG helicase disassembly (Fig 4C and D), reflecting the respective

contributions of TIMELESS-TIPIN to CMG ubiquitylation and UBXN-

3 to CMG disassembly. To test whether combined RNAi inactivation

of TIMELESS-TIPIN and UBXN-3 in vivo would produce an additive

defect in CMG helicase chromatin extraction, during DNA replica-

tion termination in the C. elegans early embryo, we used spinning

disc confocal microscopy to assay for persistence of a CMG subunit

(GFP-tagged PSF-1) on condensed mitotic chromatin. As reported

previously, RNAi depletion of lrr-1 was used a positive control for

defective CMG disassembly during DNA replication termination

(Sonneville et al, 2017).

Individual depletion of either TIM-1 or UBXN-3 did not lead to

detectable accumulation of GFP-PSF-1 on chromatin during mitotic

prophase (Fig 6B, tim-1 RNAi or ubxn-3 RNAi), in contrast to RNAi

inactivation of lrr-1 (Fig 6B, lrr-1 RNAi). This indicated that any

defect in CMG disassembly upon RNAi depletion of either TIM-1 or

UBXN-3 was partial or transient. However, GFP-PSF-1 persisted on

chromatin throughout mitosis after co-depletion of TIM-1 and

UBXN-3 (Fig 6B, tim-1 ubxn-3 RNAi), as seen upon co-depletion of

LRR-1 and UBXN-3 (Fig 6B, lrr-1 ubxn-3 RNAi). The presence of

GFP-PSF-1 on chromatin during prophase under such conditions

indicated that the combined absence of TIM-1 and UBXN-3

produced a synthetic defect in CMG disassembly during DNA repli-

cation termination. Subsequently, CMG then persisted on chromatin

throughout mitosis, due to the additional role of UBXN-3 in the

mitotic CMG disassembly pathway, which also requires TRUL-1 and

CDC-48_UFD-1_NPL-4 (Sonneville et al, 2017; Sonneville et al,

2019). Notably, tim-1 RNAi did not lead to the persistence of GFP-

PSF-1 on mitotic chromatin in trul-1Δ worms that lacked the mitotic

CMG disassembly pathway (Fig EV5A and B). These findings indi-

cated that UBXN-3 is important for chromatin extraction of CMG
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Figure 5. The TIMELESS-TIPIN complex is required in C. elegans early
embryos for efficient CMG helicase ubiquitylation and the association of
CUL-2LRR-1 with the post-termination replisome.

A TAP-psf-1 worms were fed on bacteria containing a single plasmid
expressing the indicated RNAi treatments, before preparation of embryonic
cell extracts and isolation of TAP-PSF-1 by immunoprecipitation. The bound
material was released from beads by cleavage of the TAP tag with TEV
protease, before detection of the indicated factors by immunoblotting.

B Similar experiment comparing the impact of RNAi inactivation of lrr-1, tim-
1 and tipn-1 upon CMG-MCM-7 ubiquitylation and the association of CUL-
2LRR-1 with the worm replisome. Asterisks indicate non-specific bands in the
immunoblots.
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during DNA replication termination in worms depleted for TIM-1,

distinct from the previously characterised role of UBXN-3 during

mitosis (Sonneville et al, 2017).

Since co-depletion of TIM-1 and UBXN-3 produced a synthetic

defect in the CUL-2LRR-1 pathway of CMG disassembly during DNA

replication termination, and LRR-1 is essential for the production of

viable offspring in C. elegans (Merlet et al, 2010), we investigated

the impact on embryonic viability of combined RNAi to tim-1 and

ubxn-3. As discussed above, viability remained high when worms

were exposed to increasing doses of tim-1 RNAi, and the same was

true for ubxn-3 RNAi (Fig 6A). This likely reflected imperfect deple-

tion of the target protein, since CRISPR-Cas9 deletion of tim-1 is

lethal (R. Sonneville, Y. Xia, Y. Hong and K. Labib, unpublished

data) and ubxn-3Δ also produces a dramatic loss of viability as

noted above (Appendix Fig S1E–H).

However, even partial depletion of TIM-1 produced a complete

loss of viability in combination with partial depletion of UBXN-3

(Fig 6C), analogous to the effects of RNAi co-depletion of UBC-3,

UBC-7 and UBXN-3 (Fig 1E and F). In contrast, RNAi depletion of

TIM-1 or UBC-3+UBC-7, or partial RNAi depletion of LRR-1, did

not cause an equivalent loss of viability in trul-1Δ worms that

lack the mitotic pathway for CMG disassembly (Fig EV5C). These

findings indicated that the strong synthetic lethal phenotype that

is produced by co-depletion of TIM-1 and UBXN-3 likely reflects

the associated defect in CMG helicase disassembly during DNA

replication termination.

Discussion

Through a combination of in vitro reconstitution and in vivo analy-

sis in the C. elegans early embryo, we have identified an important

role for the TIMELESS-TIPIN complex in the CUL-2LRR-1 pathway for

CMG helicase ubiquitylation during DNA replication termination.

This contrasts with the situation during replication termination in

budding yeast, where the efficiency of CMG ubiquitylation is

enforced by recruitment of the unrelated E3 ligase SCFDia2 by the

replisome factors Ctf4 and Mrc1.

Our data show that C. elegans TIMELESS-TIPIN stimulates CMG

ubiquitylation several-fold, by stabilising the association of CUL-
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Figure 6. Co-depletion of TIMELESS and UBXN-3 impairs CMG
disassembly during DNA replication termination in C. elegans and causes
loss of viability.

A Embryonic viability was monitored as described in Materials and Methods,
after feeding worms on the indicated proportions of bacteria expressing
RNAi (“% RNAi”) to the denoted genes, mixed with bacteria containing
empty vector (to make a total of 100%).

B The presence of GFP-PSF-1 on mitotic chromatin (indicated by white
arrows) was monitored by spinning disc confocal microscopy (see Materials
and Methods), in embryos derived from worms that were fed on bacteria
containing a single plasmid expressing the indicated RNAi
(“Control” = empty vector). The scale bars correspond to 5 µm.

C Analogous experiment to that in (A), but with worms fed on the indicated
proportions of bacteria expressing ubxn-3 RNAi, in combination with 20%
bacteria expressing tim-1 RNAi specific for tim-1, plus the required
remainder of bacteria containing empty vector (to make a total of 100%).

Data information: The data in (A) and (C) represent the means and standard
deviations from three biological replicates.
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2LRR-1 with the replisome complex that assembles around the CMG

helicase (Fig 3). Cryo-electron microscopy of the yeast replisome

has shown that yeast TIMELESS-TIPIN binds to the amino-terminal

tier of the Mcm-2-7 component of CMG, as well as to duplex DNA

just ahead of the replisome (Baretic et al, 2020). As the LRR-1

substrate adaptor of CUL-2LRR-1 is essential for CMG ubiquitylation

(Fig 2E), and TIMELESS-TIPIN itself is ubiquitylated by CUL-2LRR-1

(Figs 3F and EV2G and H), it is likely that LRR-1 binds directly to

TIMELESS-TIPIN in the context of the replisome, as well as binding

to components of CMG. We propose that these contacts jointly posi-

tion the ligase in order to direct efficient ubiquitylation of CMG-

MCM-7. Structural biology will play a key role in exploring this

model further in future studies.

In both yeast and metazoa, the TIMELESS-TIPIN complex

governs multiple aspects of DNA replication fork biology. For exam-

ple, TIMELESS and TIPIN are important for the rate of fork progres-

sion and are required for activation of the S-phase checkpoint

pathway that helps cells to survive DNA replication stress (Tourriere

et al, 2005; Unsal-Kacmaz et al, 2007; Smith et al, 2009; Westhorpe

et al, 2020). In addition, the TIMELESS-TIPIN complex recruits addi-

tional factors to forks, such as the DDX11 helicase that unwinds G4

motifs that can form on the parental DNA template during the

course of replication (Lerner et al, 2020). Thus, TIMELESS and

TIPIN are important genome stability factors at replication forks.

Our work identifies a new mechanism by which the metazoan

TIMELESS-TIPIN complex preserves genome integrity, namely by

stimulating CMG helicase ubiquitylation and disassembly during

DNA replication termination in the C. elegans early embryo.

Using purified C. elegans proteins to reconstitute the action of

metazoan CDC-48/p97 and its adaptor proteins in vitro, we found

that UBXN-3 greatly stimulates the disassembly of ubiquitylated

CMG by CDC-48_UFD-1_NPL-4 (Fig 4). Such a role would not have

been anticipated from past studies of yeast or human Cdc48/p97,

which showed that the Ufd1-Npl4 adaptor proteins are necessary

and sufficient to recognise and unfold a model ubiquitylated

substrate based on a poly-ubiquitylated fluorescent protein (Blythe

et al, 2017; Bodnar & Rapoport, 2017; Twomey et al, 2019; Pan

et al, 2021). Moreover, yeast Cdc48-Ufd1-Npl4 processes ubiquity-

lated CMG with high efficiency in vitro, unfolding the ubiquitylated

Mcm-7 subunit and disrupting the integrity of the helicase, without

requiring an additional adaptor of Cdc48 (Maric et al, 2017; Mukher-

jee & Labib, 2019; Deegan et al, 2020). Worm UBXN-3 co-purifies

from worm cell extracts with both CDC-48 and UFD-1_NPL-4 (Sasa-

gawa et al, 2010; Franz et al, 2016), and studies of recombinant

human FAF1 have shown that it can bind directly to p97-UFD1-

NPL4 (Hanzelmann et al, 2011). In future work, structural

approaches will be important to further elucidate the mechanism by

which UBXN-3/FAF1 co-operates with UFD1-NPL4 to direct the

disassembly of ubiquitylated complexes by CDC-48/p97.

UBXN-3 is critically important in vivo for CMG disassembly upon

RNAi inactivation of TIMELESS-TIPIN (Fig 6B) that reduces the effi-

ciency of CMG ubiquitylation during DNA replication termination

(Fig 5). Correspondingly, even partial co-depletion of TIMELESS and

UBXN-3 induces synthetic lethality. These findings are potentially of

interest in the context of human cancer, for two main reasons.

Firstly, TIMELESS and TIPIN are co-ordinately over-expressed in

many human cancer cells (Bianco et al, 2019), where they are impor-

tant to combat the inherent DNA replication stress that is a feature

of the cancerous state. Secondly, the FAF1 human orthologue of

C. elegans UBXN-3 is a candidate tumour suppressor (Menges et al,

2009; Bonjoch et al, 2020). It will be important in future work to

characterise the p97 adaptors that are required for CMG helicase

disassembly in mammalian cells, in addition to UFD1-NPL4. Should

mammalian FAF1 play an analogous role during CMG helicase disas-

sembly to C. elegans UBXN-3, it would then be interesting to explore

whether partial inactivation of TIMELESS-TIPIN, for example via

Proteolysis Targeting Chimeras or PROTACs (Maniaci & Ciulli, 2019;

Verma et al, 2020), might induce synthetic lethality in cancer cells

that lose the FAF1 gene during their development.

Materials and Methods

Strains and plasmids

The C. elegans strains used in this study were derived from the

“Bristol N2” wild type and are described in Appendix Table S1. Alle-

les generated via the CRISPR-Cas9 genome editing system (InVivo

Biosystems & Suny Biotech) were subsequently out-crossed eight

times with the N2 wild-type C. elegans strain. The strain KAL55 was

generated by crossing KAL17 with KAL21. KAL92 was made by

crossing KAL90 with KAL3.

For expression of proteins in budding yeast, and as detailed in

Appendix Tables S1–S3, one of the three Saccharomyces cerevisiae

strains yJF1 (MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-

100 bar1Δ::hphNT pep4Δ::kanMX), YSS3 (MATa ade2-1 ura3-1 his3-

11,15 trp1-1 leu2-3,112 can1-100 pep4Δ::ADE2) or YSS4 (MATa
ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 pep4Δ::ADE2)

was transformed with the indicated linearised plasmids using stan-

dard procedures. The codon usage of the expression constructs was

optimised for high-level expression in Saccharomyces cerevisiae, as

described previously (Yeeles et al, 2015). The codon optimised DNA

sequences were synthesised by GenScript.

For expression of proteins in bacteria, the plasmids listed in

Appendix Table S1 and S3 were transformed into the E. coli strain

RosettaTM (DE3) pLysS (70956, Novagen).

Caenorhabditis elegans maintenance

Worms were maintained according to standard procedures and were

grown on “Nematode Growth Medium” (NGM: 3 g/l NaCl; 2.5 g/l

peptone; 20 g/l agar; 5 mg/l cholesterol; 1 mM CaCl2; 1 mM

MgSO4; 2.7 g/l KH2PO4; 0.89 g/l K2HPO4).

RNA interference

RNAi was performed by feeding worms with bacteria containing

plasmids that express double-stranded RNA. RNAse III-deficient

HT115 bacteria were transformed with an indicated L4440-derived

plasmid. For microscopy experiments, worms were fed on 6-cm

plates containing the following medium: 3 g/l NaCl, 20 g/l agarose,

5 mg/l cholesterol, 1 mM CaCl2, 1 mM MgSO4, 2.7 g/l KH2PO4,

0.89 g/l K2HPO4, 1 mM IPTG and 100 mg/l Ampicillin. For

immunoprecipitation experiments, worms were fed on 15 cm plates

containing NGM medium supplemented with 1 mM IPTG and

100 mg/l Ampicillin.
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The plasmids expressing dsRNA were either derived from a

commercial RNAi library (SourceBioscience, UK; ctf-4, clsp-1 and

pola-1), or else were made by cloning PCR products into the vector

L4440. In the latter case, we either amplified 1 kb products from

cDNA (npl-4.2 isoform a, lrr-1, ubxn-3, tim-1, tipn-1, ubc-3

isoform a, ubc-7, ubc-26, ubc-15 isoform f, ubc-6 isoform a, ubc-

22, ubc-25, ubc-23, ubc-13, ubc-21, ubc-20, ubc-17, ubc-16, ubc-14,

ubc-1, ubc-9, ubc-12, ubc-8, ubc-19, ubc-18), or amplified full-

length cDNA for open reading frames shorter than 1 kb, using a

cDNA library that was kindly provided by Sarah-Lena Offenburger.

Details of sequences used in the RNAi vectors are provided in

Appendix Table S1.

To target more than one gene simultaneously by RNAi, as indi-

cated above we either fed a mixture of bacteria expressing the

corresponding dsRNA or else cloned contiguous 1 kb fragments

for each gene into a single L4440 plasmid. Empty L4440 vector

was used as the control for RNAi experiments throughout this

study.

When screening the set of E2s by RNAi, we generated L4440-

derived vectors containing contiguous combinations of DNA frag-

ments to target multiple genes simultaneously in groups (Group 1:

ubc-26 + ubc-15 isoform f + ubc-6 isoform a; Group 2: ubc-22 + ubc-

25 + ubc-23; Group 3: ubc-13 + ubc-21 + ubc-20; Group 4: ubc-17 +

ubc-16; Group 5: ubc-14 + ubc-3 isoform a + ubc-7 + ubc-1; Group 6:

ubc-8 + ubc-19 + ubc-18).

Microscopy

Worms at the larval L4 stage were incubated on 6-cm RNAi feeding

plates for 48 h at 20°C. Adult worms were then dissected in M9

medium (6 g/l Na2HPO4, 3 g/l KH2PO4, 5 g/l NaCl, 0.25 g/l MgSO4)

and five embryos were transferred onto a 2% agarose pad and

recorded simultaneously from the one-cell stage to four cells. Time-

lapse images were recorded at 24°C as described previously (Son-

neville et al, 2017) taking images every 10 s, either using an Olym-

pus IX81 microscope (MAG Biosystems) with a CSU-X1 spinning

disc confocal imager (Yokogawa Electric Corporation) and a

Cascade II camera (Photometrics), or using a Zeiss Cell Observer SD

microscope with a Yokogawa CSU-X1 spinning disc and a HAMA-

MATSU C13440 camera, fitted with a PECON incubator. Both micro-

scopes utilised a 60×/1.40 Plan Apochromat oil immersion lens

(Olympus). A single optical section (z-layer) was imaged for each

time point.

Images were captured using MetaMorph software (Molecular

Devices) or using the ZEN blue software (Zeiss) and analysed with

ImageJ software (National Institute of Health). For each time-lapse

experiment depicted in the figures, the raw images for selected

time points were rotated in order to orient the anterior of the

chosen embryo to the left and then cropped to focus on a particu-

lar nucleus or nuclei, or on the entire embryo. Each series of

images was then combined into a contiguous sequence, and the

images were subjected to Gaussian Blur with a radius of 1 pixel.

Subsequently, the “levels” were adjusted, the pixel density was

adjusted to 300 dots per inch and the “bit depth” was changed

from 16-bits to 8-bits per channel. Images were processed in a

similar manner in order to generate videos, except that time points

were not combined into a sequence and the pixel density was not

adjusted to 300 dpi.

Synthetic lethality analysis in Caenorhabditis elegans

RNAse III-deficient HT115 bacteria were transformed with an

L4440-derived plasmid, corresponding to the required RNAi treat-

ment. For the experiment in Fig 6A and C, the RNAi dose was

titrated by mixing the indicated proportion of bacterial cultures

expressing tim-1 and ubxn-3 double-stranded RNA or containing an

empty plasmid. For the E2 screening experiment in Fig 1, the indi-

cated proportion of bacterial cultures expressing each E2 group was

mixed as indicated with bacteria expressing ubxn-3 double-stranded

RNA or containing an empty plasmid. For the experiment in

Fig EV5, bacterial cultures expressing lrr-1 or tim-1 RNAi was used

as indicated to feed trul-1Δ worms. For the experiment in

Appendix Fig S1G and H, bacterial culture containing an empty plas-

mid was used as indicated to feed ubc-3Δ, ubc-7Δ, ubc-3Δ ubc-7Δ or

ubxn-3Δ worms. All cultures were grown to OD600 = 1, and worms

were then incubated on RNAi feeding plates for 48 h at 20°C. For

each condition, triplicate experiments were performed, in each of

which 5 adult worms were allowed to produce embryos on a plate

during a period of 180 min, after which the adults were removed,

and the embryos were counted. Two days later, the number of

embryos that had developed into viable adults was determined (be-

tween 50 and 120 embryos for each set of embryos from 5 worms).

Embryonic viability was expressed as the ratio between the number

of viable embryos and the total number of embryos, and the average

and standard deviation were then determined for each triplicate set.

Brood size analysis in Caenorhabditis elegans

To determine the number of progeny per adult, worms were grown

at 20°C. For each genotype, five L4 larvae were singled on NGM

plates with “OP50 bacteria” and the worms were transferred onto a

new plate every 24 h for 3 days and then removed. Adult progeny

were counted 2–4 days after being laid. The number of viable

progeny for each genotype was determined as the sum of the

progeny on three plates. The average brood size was then deter-

mined for each genotype in three independent experiments, together

with the standard deviation from the mean.

Protease inhibitor cocktails

The following cocktails of protease inhibitors were used as indicated

in the sections below:

Protease inhibitor cocktail 1
One Roche EDTA-free protease inhibitor tablet (000000011873580001,

Roche) per 25 ml of buffer (one tablet dissolved in 1 ml water

makes a 25× stock solution), plus 1 ml of Sigma protease inhibitor

cocktail (P8215, Sigma-Aldrich) per 100 ml of buffer.

Protease inhibitor cocktail 2
One Roche EDTA-free protease inhibitor tablet (000000011873580001,

Roche) per 25 ml of buffer (one tablet dissolved in 1 ml water

makes a 25× stock solution), plus 1 ml of Sigma protease

inhibitor cocktail (P8215, Sigma-Aldrich) per 100 ml of buffer,

together with 0.5 mM PMSF, 5 mM benzamidine HCl, 1 mM

AEBSF (A8456, Sigma-Aldrich) and 1 mg/ml Pepstatin A (P5318,

Sigma-Aldrich).
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Protease inhibitor cocktail 3
One Roche EDTA-free protease inhibitor tablet (000000011873580001,

Roche) per 25 ml of buffer (one tablet dissolved in 1 ml water

makes a 25× stock solution), plus 0.5 mM PMSF.

Extracts of worm embryos and immunoprecipitation
of worm replisome

RNAse III-deficient HT115 bacteria were transformed with an

L4440-derived plasmid, corresponding to the required RNAi treat-

ment. A 10 ml pre-culture was then grown overnight and used to

inoculate a 450 ml culture in “Terrific Broth” (12 g/l Tryptone,

24 g/l yeast extract, 9.4 g/l K2HPO4, 2.2 g/l KH2PO4, adjusted to pH

7). After 7 hours of growth in a baffled flask at 37°C with agitation,

expression of dsRNA was induced overnight at 20°C by addition of

3 mM IPTG. The bacteria were then pelleted and resuspended with

one-fifth volume of buffer (M9 medium supplemented with 75 mg/l

cholesterol; 100 mg/l ampicillin; 50 mg/l tetracycline; 12.5 mg/l

amphotericin B; 3 mM IPTG).

For each experiment, 1 ml of a synchronised population of L4

worms expressing GFP-PSF-1 or TAP-PSF-1 were fed for 50 h at

20°C on a 15-cm RNAi plate (see above), supplemented with 10 g of

bacterial pellet for the required RNAi treatment, prepared as

described above. After feeding, the adult worms were washed in M9

medium and resuspended for 2 min at room temperature in 14 ml

of “bleaching solution” (for 100 ml: 36.5 ml H2O, 45.5 ml 2 M

NaOH and 7 ml ClNaO 10%), then pelleted for 1 min at 300 g. This

bleaching procedure was repeated two more times, corresponding

to a total of 12 min in bleaching solution, in order to lyse the adult

worms and release embryos (about 0.6–0.8 g). After bleaching, the

embryos were washed twice with M9 medium.

The remaining steps were performed at 4°C and are modified

from our previously described methods (Sonneville et al, 2017).

Embryos were washed twice with lysis buffer (100 mM HEPES-KOH

pH 7.9, 100 mM potassium acetate, 10 mM magnesium acetate,

2 mM EDTA, 0.02% IGEPAL CA-630, 10% glycerol) and then resus-

pended with three volumes of lysis buffer that was supplemented

with 2 mM sodium fluoride, 2 mM sodium b-glycerophosphate
pentahydrate, 1 mM dithiothreitol (DTT), 1× Protease Inhibitor

Cocktail 1 and 5 µM Propargylated ubiquitin to inhibit de-

ubiquitylase enzymes (kindly provided by Axel Knebel and Clare

Johnson; DU49003, MRC PPU reagents and services). The mixture

was transferred dropwise into liquid nitrogen to prepare “popcorn”,

which was stored at �80°C. We then ground ~2.5 g of the frozen

popcorn in a SPEX SamplePrep 6780 Freezer/Mill. After thawing,

we added one-quarter volume of lysis buffer (with additional 1 mM

DTT, 2 mM sodium fluoride, 2 mM sodium b-glycerophosphate
pentahydrate, plus 1× protease inhibitor cocktail 1). Chromosomal

DNA was digested with 1600 U of Universal Nuclease (PierceTM,

88702, Thermo Fisher Scientific) for 30 min at 4°C. Extracts were

centrifuged at 25,000 g for 30 min and then for 100000 x g for 1 h.

For immunoprecipitation of GFP-PSF-1 (Figs 1G and EV1), the

extract was pre-incubated with agarose beads (0.4 ml slurry;

Protein G agarose Fast Flow, PCA-G1000, Generon) for 30 min.

Immunoprecipitation of TAP-SLD-5 (Figs 5 and EV5C) did not

require such a pre-depletion step. At this point, 50 µl of extract

was added to 100 µl of 1.5× Laemmli buffer and stored at �80°C.

The remaining ~2 ml of extract was then incubated for 90 min

with 40 µl slurry of GFP-Trap_A beads (gta-20, Chromotek) or

200 µl slurry of magnetic beads (Dynabeads M-270 Epoxy;

14302D, Thermo Fisher Scientific) coupled to rabbit immunoglobu-

lin G (S1265, Sigma-Aldrich) as described below. The beads were

washed four times with 1 ml of wash buffer (lysis buffer supple-

mented with 1 mM DTT, 2 mM sodium fluoride, 2 mM sodium b-
glycerophosphate pentahydrate, plus 1× protease inhibitor cocktail

1) and the bound proteins were eluted at 95°C for 5 min in 100 µl

of 1× Laemmli buffer and stored at �80°C. Alternatively, proteins

associated with TAP-SLD-5 were eluted from the beads by incuba-

tion with 80 µl of wash buffer (without protease inhibitors) plus

20 units AcTEV protease (12575015, Thermo Fisher Scientific) at

20 °C for 1 h, before addition of 40 µl 3× Laemmli buffer and heat-

ing at 95°C for 5 min.

Summary of protein purification and associated buffers

Proteins purified in this study are listed in Appendix Table S1. Ubiq-

uitin (and mutated variants), TEV protease (DU6811, MRC PPU

Reagents and Services) and PreScission (DU34905, MRC PPU

Reagents and Services) protease were kindly provided by Dr. Axel

Knebel. The other proteins were produced as described in

Appendix Materials and Methods, using the buffers below:

Buffer A: 25 mM Hepes-KOH pH 7.6, 10% glycerol, 0.02% IGEPAL

CA-630, 1 mM DTT.

Buffer B: 25 mM Hepes-KOH pH 7.6, 10% glycerol, 0.02% IGEPAL

CA-630, 1 mM TCEP.

Buffer C: 25 mM Tris-Cl pH 8.6, 10% glycerol, 0.02% IGEPAL CA-

630, 1 mM TCEP.

Buffer D: 25 mM Bis-Tris-Cl pH 6.8, 10% glycerol, 0.02% IGEPAL

CA-630, 1 mM TCEP.

Buffer E: 25 mM Hepes-KOH pH 7.6, 10% glycerol, 0.02% Tween

20, 1 mM DTT.

Buffer F: 25 mM Hepes-KOH pH 7.6, 10% glycerol, 1 mM CHAPS,

1 mM TCEP.

Buffer G: 25 mM Hepes-KOH pH 7.6, 40% glycerol, 0.02% IGEPAL

CA-630, 1 mM DTT.

Buffer H: 50 mM Tris–HCl pH 8.0, 0.5 mM TCEP.

Expression of proteins in budding yeast

The Saccharomyces cerevisiae strains used in this study are shown

in Appendix Tables S1–S2. Yeast cells were grown at 25°C in YP

medium (1% Yeast Extract, 21275, Becton Dickinson; 2% bacterio-

logical peptone, LP0037B, Oxoid) supplemented with 2% Raffinose.

In each case, a 12-litre exponential culture was grown to 2-3 x 107

cells / ml and then induced for 6 h at 20°C by addition of galactose

to a final concentration of 2%. Cells were collected by centrifugation

and washed once with lysis buffer (indicated below for each purifi-

cation) lacking protease inhibitors. Cell pellets (~ 30 g) were then

resuspended in 0.3 volumes of the indicated lysis buffer containing

protease inhibitors. The resulting suspensions were then frozen

dropwise in liquid nitrogen and stored at – 80°C. Subsequently, the

entire sample of frozen yeast cells were ground in the presence of

liquid nitrogen, using a SPEX CertiPrep 6850 Freezer/Mill with 6

cycles of 2’ at a rate of 15. The resulting powders were then stored

at �80°C. Details for each protein are given in Appendix Materials

and Methods.
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Expression of proteins in bacterial cells

The plasmids for bacterial expression used in this study were

shown in Appendix Tables S1 and S3. Each plasmid was trans-

formed into Rosetta (DE3) pLysS (70956, Novagen), which was

grown in LB medium supplemented with 50 µg /ml ampicillin

(pET15b based plasmids) or 50 µg/ml kanamycin (pK27SUMO

based plasmids). Subsequently, a 10 ml culture was grown over-

night at 37°C with shaking at 200 rpm. The following morning, the

culture was diluted 50-fold into 500 ml of selective medium and

then left to grow at 37°C until an OD600 of 1 was reached. At this

point, 1 mM IPTG was added and expression was induced over-

night at 18°C. Cells were harvested by centrifugation for 10 min in

a JLA-9.1000 rotor (Beckman) at 5,180 g. The cell pellets were then

stored at �80°C. Details for each protein are given in

Appendix Materials and Methods.

In vitro CMG ubiquitylation assays

Reactions (typically 10 µl in volume) containing 25 mM Hepes-KOH

(pH 7.6), 0.02% IGEPAL CA-630, 0.1 mg/ml BSA, 1 mM DTT,

10 mM Mg(OAc)2, 10 µM ubiquitin, 5 mM ATP and 3.3 µl protein

mix were assembled on ice. The protein mix contained 300 mM

KOAc, so that the final KOAc concentration of the reaction was

100 mM. The components of the protein mixture are indicated for

each experiment in the figures, and unless specified otherwise, the

final concentration of each protein was 50 nM UBA-1, 300 nM LET-

70, 300 nM UBC-18, 50 nM ARI-1, Neddylation enzymes (50 nM

ULA-1_RFL-1, 300 nM UBC-12, 100 nM DCN-1a and 500 nM NED-

8), 300 nM UBC-3, 15 nM CMG, 20 nM CTF-4, 30 nM MCM-10,

30 nM POLe, 30 nM CLSP-1, 60 nM TIM-1_TIPN-1, 60 nM CTF-

18_RFC and 15 nM CUL-2LRR-1/CUL-2_K719R_K749RLRR-1/CUL-

2VHL-1. Ubiquitylation reactions were conducted at 20°C for 20 min.

Reactions were stopped by addition of 20 µl 1.5× Laemmli buffer

and heating at 95°C for 5 min.

For the experiments in Figs 2C and D, 3B, E, F, EV2A, Fig EV3B,

D, E, G, wild-type ubiquitin was replaced as shown with 10 µM of

the indicated mutant ubiquitin proteins.

For the experiments in Fig EV1C, 300 nM of the indicated E2s

(UBC-3, UBC-7, UBC-1 and UBC-14) were used as shown with

10 µM of the indicated mutant ubiquitin proteins.

For the experiment in Fig EV1E, the reactions only contained the

following proteins: 50 nM UBA-1, 300 nM UBC-3, 15 nM of the indi-

cated E3 ligases (CUL-2LRR-1, CUL-2-2RLRR-1 and CUL-2VHL-1) and

10 µM of FLAG-ubiquitin. Polyubiquitin chains were detected by

immunoblotting with anti-FLAG antibodies.

Immunoprecipitation of reconstituted replisomes

Reactions (typically 20 µl in volume) containing 25 mM Hepes-KOH

(pH 7.6), 0.02% IGEPAL CA-630, 0.1 mg/ml BSA, 1 mM DTT,

10 mM Mg(OAc)2, 5 mM ATP and 6.6 µl protein mix were assem-

bled on ice for 30 min. The protein mix contained 300 mM KOAc,

so the final KOAc concentration of the reactions was 100 mM. Each

sample was then incubated at 4°C with 2 µl magnetic beads (Dyn-

abeads M-270 Epoxy; 14302D, Thermo Fisher Scientific) that had

been coupled to anti-SLD-5 antibody as described below. After

1 hour, protein complexes bound to the magnetic beads were

washed twice with 1 ml of buffer containing 25 mM Hepes-KOH

(pH 7.6), 0.02% IGEPAL CA-630, 0.1 mg / ml BSA, 1 mM DTT,

10 mM Mg(OAc)2 and 100 mM KOAc. The bound proteins were

eluted at 95°C for 5 min in 30 µl of 1× Laemmli buffer.

For the experiment in Fig 2E, a 10 µl volume of the standard

in vitro CMG ubiquitylation assay was used for the subsequent

immunoprecipitation step. The experiments in Figs 3D and EV3A

also involved a 10 µl reaction, with the indicated components corre-

sponding to 15 nM CMG, 20 nM CTF-4, 30 nM MCM-10, 30 nM

POLe, 30 nM CLSP-1, 60 nM TIM-1_TIPN-1, 60 nM CTF-18_RFC

and 15 nM CUL-2LRR-1.

In vitro CMG disassembly assays

As described above, CMG ubiquitylation reactions (20 µl in total

volume) were assembled at 20°C for 20 min, followed by immuno-

precipitation of CMG via 2 µl magnetic beads coupled to anti-SLD-5

antibody. The magnetic beads were then washed twice with 1 ml of

buffer containing 25 mM Hepes-KOH (pH 7.6), 0.02% IGEPAL CA-

630, 0.1 mg/ml BSA, 1 mM DTT, 10 mM Mg(OAc)2 and 100 mM

KOAc. Subsequently, a quarter of the beads (0.5 µl) were resus-

pended in 15 µl of buffer containing 25 mM Hepes-KOH (pH 7.6),

0.02% IGEPAL CA-630, 0.1 mg/ml BSA, 1 mM DTT, 10 mM Mg

(OAc)2, 5 mM ATP, 30 mM KOAc and “unfoldase protein mix”

(200 nM CDC-48 with 50 nM UFD-1_NPL-4 and 50 nM UBXN-3/

UBXN-3-ΔUBX as indicated in Figs 4C and D, and EV4). Disassem-

bly reactions were then conducted at 20°C for 20 min, with shaking

at 1,000 rpm. Subsequently, the beads and associated proteins were

isolated using a magnetic rack. The supernatant was removed and

combined with 7 µl of 3× Laemmli buffer before heating at 95°C for

5 min. Meanwhile, the beads were washed twice with 0.5 ml of

buffer containing 25 mM Hepes-KOH (pH 7.6), 0.02% IGEPAL CA-

630, 0.1 mg/ml BSA, 1 mM DTT, 10 mM Mg(OAc)2 and 100 mM

KOAc. Finally, the bead-bound proteins were eluted at 95°C for

5 min in 20 µl of 1× Laemmli buffer.

Glycerol gradient analysis

Reactions in Fig EV2F (typically 5 µl in volume) containing

25 mM Hepes-KOH (pH 7.6), 200 mM KOAc, 0.02% IGEPAL CA-

630, 1 mM DTT, 10 mM Mg(OAc)2, 5 mM ATP, 500 nM DNA

substrate (comprising 46 bp double-strand DNA and a 39nt “3’-

flap” of single-strand DNA – the sequences are shown in

Appendix Table S1) and “protein mix” (100 nM CMG, 50 nM TIM-

1_TIPN-1 and 50 nM CUL-2LRR-1 were used as indicated) were

assembled on ice for 15 min. To assemble glycerol gradients, five

different concentrations of glycerol buffers were used (10%, 15%,

20%, 25%, 30%), each containing 25 mM Hepes-KOH (pH 7.6),

200 mM KOAc, 0.02% IGEPAL CA-630, 1 mM DTT, 10 mM Mg

(OAc)2, 5 mM ATP. Gradients were assembled by consecutively

layering 40 µl of each of the five concentrations of glycerol buffers

(30% to 10%) in an ultra-centrifuge tube (P200915MGSG, Beck-

man). Subsequently, 5 µl of reaction was added to the top of

gradient, before spinning for one hour at 249,000 g in a Beckman

TLS55 rotor at 4˚C. Ten fractions of 20 µl each were then collected

from top to the bottom of the gradient. After addition of 10 µl 3×

Laemmli buffer, the samples were analysed by SDS–PAGE and

immunoblotting.
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Immunoblotting

Protein samples were resolved by SDS–PAGE using the following

systems: NuPAGE Novex 4 - 12% Bis-Tris gels (NP0321 and

WG1402A, Thermo Fisher Scientific) with NuPAGE MOPS SDS

buffer (NP0001, Thermo Fisher Scientific) or NuPAGE MES SDS

buffer (NP0002, Thermo Fisher Scientific); NuPAGE Novex 3 - 8%

Tris-Acetate gels (EA0375BOX and WG1602BOX, Thermo Fisher

Scientific) with NuPAGE Tris-Acetate SDS buffer (LA0041, Thermo

Fisher Scientific). The resolved proteins were either stained with

colloidal Coomassie blue dye (“Instant Blue”, ab119211, Abcam), or

else transferred onto a nitrocellulose iBlot membrane (NRO11020-

01, Thermo Fisher Scientific) with the iBlot Dry Transfer System

(IB1001, Invitrogen), according to the manufacturer’s instructions.

The antibodies used for immunoblotting in this study are

described in Appendix Table S1. Chemiluminescent signals were

detected on Hyperfilm ECL (Amersham, 66601, GE Healthcare)

using ECL Western Blotting Detection Reagent (17039552, GE

Healthcare). New antibodies that were generated in this study are

validated in Appendix Fig S4.

Preparation of antibody-coated magnetic beads

A slurry of activated magnetic beads (Dynabeads M-270 Epoxy;

14302D, Thermo Fisher Scientific) was prepared by resuspending

300 mg beads in 10 ml dimethyl formamide. Each coupling reac-

tion involved 425 µl slurry of activated magnetic beads, which

corresponded to ~ 1.4 × 109 beads. After removing the super-

natant, the beads were washed twice with 1 ml of 0.1 M NaPO3

pH7.4. Subsequently, the beads were incubated with 300 µg of

rabbit immunoglobulin G (S1265, Sigma-Aldrich) or C. elegans

SLD-5 antibody (SA419, MRC PPU Reagents and Services), 300 µl

of 3 M (NH4)2SO4, plus 0.1 M NaPO3 pH 7.4 up to a total volume

of 900 µl. The mixture was then incubated at 4 °C for 2 days with

rotation.

Subsequently, the supernatant was removed and the beads were

washed four times with 1 ml PBS. The beads were then incubated

for 10 min in 1 ml PBS/0.5% IGEPAL CA-630 with rotation at room

temperature, before washing twice with 1 ml PBS. Finally, the

washed beads were resuspended with 900 µl PBS containing 5 mg/

ml BSA.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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