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Abstract

Background Hand motion analysis by video recording during surgery has potential for evaluation of surgical

performance. The aim was to identify how technical skill during open surgery can be measured unobtrusively by

video recording during a surgical procedure. We hypothesized that procedural-step timing, hand movements,

instrument use and Shannon entropy differ with expertise and training and are concordant with a performance-based

validated individual procedure score.

Methods Surgeon and non-surgeon participants with varying training and levels of expertise were video recorded

performing axillary artery exposure and control (AA) on un-preserved cadavers. Color-coded gloves permitted

motion-tracking and automated extraction of entropy data from recordings. Timing and instrument-use metrics were

obtained through observational video reviews. Shannon entropy measured speed, acceleration and direction by

computer-vision algorithms. Findings were compared with individual procedure score for AA performance

Results Experts had lowest entropy values, idle time, active time and shorter time to divide pectoralis minor, using

fewer instruments. Residents improved with training, without reaching expert levels, and showed deterioration

12–18 months later. Individual procedure scores mirrored these results. Non-surgeons differed substantially.

Conclusions Hand motion entropy and timing metrics discriminate levels of surgical skill and training, and these

findings are congruent with individual procedure score evaluations. These measures can be collected using consumer-

level cameras and analyzed automatically with free software. Hand motion with video timing data may have

widespread application to evaluate resident performance and can contribute to the range of evaluation and testing

modalities available to educators, training course designers and surgical quality assurance programs.

Supplementary Information The online version of this article
(https://doi.org/10.1007/s00268-020-05916-1) contains supplemen-
tary material, which is available to authorized users.

& Colin F. Mackenzie

cmack003@gmail.com

1 School of Medicine (UMDSOM) Shock Trauma

Anesthesiology Research Center, University of Maryland, 11

S Paca St, Suite LL-01, Baltimore, MD 21201, USA

2 Department of Basic Sciences, University of Arizona School

of Medicine, Tucson, AZ 85724, USA

3 Department of Surgery, UMDSOM, Baltimore, MD 21201,

USA

4 Anatomy and Neurobiology, UMDSOM, Baltimore,

MD 21201, USA

5 Department of Psychology, Wright State University, Dayton,

OH 45435, USA

6 Department of Surgery, Uniformed Services University of the

Health Sciences, Bethesda, MD 20814, USA

7 Harborview Injury Prevention and Research Center,

University of Washington, Seattle, USA

8 Joint Trauma System, Defense Health Agency Combat

Support, Falls Church, USA

123

World J Surg (2021) 45:981–987

https://doi.org/10.1007/s00268-020-05916-1

https://doi.org/10.1007/s00268-020-05916-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00268-020-05916-1&amp;domain=pdf
https://doi.org/10.1007/s00268-020-05916-1


Introduction

Written or oral examination performances can be unreli-

able indicators of the real-world technical performance of

surgeons. Current assessment of technical skills is based on

subjective opinions of senior colleagues [1, 2]. Surgical

residents’ technical skill is typically evaluated from

observations by experienced mentors during training;

however, this process is time-consuming, labor-intensive

and may include evaluator biases. Three technical perfor-

mance evaluations are currently validated, the most often

used is the objective structured assessment of technical

skills (OSATS) [3]. Procedure-based assessments (PBA)

and direct observation of practical skills (DOPS) are inte-

grated within the Intercollegiate Surgical Curriculum Pro-

gramme online platform and aim to assess trainees’

performance in practical surgical skills [4]. The individual

procedure score (IPS) has been validated for vascular

hemorrhage control and non-vascular trauma procedures

[5–8]. OSATS, PBA and IPS were found to identify sur-

geons, at all levels of seniority, who are in need of reme-

diation of technical skills for open surgery [3–5]; however,

all these evaluations require significant resources and

expense.

Video recording of bariatric surgery [9] and left colec-

tomy laparoscopic procedures [10] linked adverse patient

outcomes of complications, re-operation and death to dif-

ferences in technical skills using OSATS evaluations.

Video recording using IPS evaluation showed low IPS can

predict which surgeons among trainees, practicing sur-

geons and experts will make critical errors when per-

forming vascular control procedures [5, 8]. Video

recording of open surgical procedures in conjunction with

hand motion analysis has potential as an unbiased and cost-

effective alternative to OSATS, PBA and IPS evaluation of

surgeon technical performance. Such video assessment

would assist teaching, enable timing of procedural steps,

allowing technical skill evaluations to be integrated into

residency training. Trainee surgeons could obtain imme-

diate feedback to improve procedural skills and minimize

the reinforcement of errors [11]. The elements of manual

dexterity on which surgical skill depends have been

increasingly well documented over the last decade and are

related to levels of experience [12–24]. However, many

studies of surgeon hand motion rely on synthetic models or

partial tasks [14, 19, 20] to simplify the analysis or focus

on endoscopic/laparoscopic/robotic procedures

[15, 17, 18, 22] where the surgeons hands move through a

limited range of motions around a fulcrum. Few studies

evaluate hand movements occurring during open surgical

procedures because these procedures vary widely, requir-

ing assessment methods that allow for freedom of hand and

instrument movement. Moreover, ideally, these methods

should be sensor-free to avoid interference with hand

motion and surgical performance [12, 16, 21]. Adoption of

electromagnetic [14] optical tracking [19] and sensors

attached to hands to quantitate movements has failed due to

complexity or technical difficulty.

The combination of kinematic data collection and

analysis, and video surgical gesture-recognition has

potential to address these requirements [12, 16, 24]. The

entropy of a random variable such as hand motion mea-

sures the uncertainty of the chaotic movements. Shannon

joint entropy has been used to summarize the systematic

information conveyed by bimanual hand movements, using

computer vision (CV) algorithms derived from measure-

ment of frequency, direction and speed of movement

changes [12, 16, 24]. Entropy should decrease with hand

motion efficiency and has been used to analyze hand

movements in training models of suturing [12] but not to

evaluate open surgical procedures. Our aim in the work

reported here was to identify how performance of technical

skill during open surgery could be measured unobtrusively

by video recording during a surgical procedure on human

cadavers. We hypothesized that entropy of surgeon hand

motion is congruent with a validated measure of surgeon

performance and detects differences between experts, res-

ident surgeons and non-surgeons.

Materials and methods

Axillary artery exposure and proximal control procedures

were performed in the State Anatomy Board laboratories at

the University of Maryland in Baltimore as part of a study

to validate benefits of the Advanced Surgical Skills for

Exposure in Trauma course (ASSET) [25]. The cadaver

laboratories were equipped with consumer-grade video

cameras (Nikon d600) above each table. Shannon joint

entropy analysis was used to quantify and summarize

bimanual motion [24, 26] captured by 50 frames per second

(fps) video using a 50–80 degrees unobstructed field of

view that included the incision and operator’s hands.

Variability and ability to discrimination expertise among

participants were achieved by testing participants with

known differences in skill performing the AA procedure:

Two experienced (more than 20 years) attending trauma

surgeons, surgical residents (one third-year, one fifth-year)

before and immediately after training in AA procedure and

12–18 months later, and two Ph.D. demonstrator/anato-

mists (anatomically knowledgeable, but inexperienced

clinical surgery operators).
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Video was reviewed frame-by-frame using VirtualDub

version 1.10.4 (http://www.virtualdub.org/). Eight metrics

were gathered by trained observers of AA video record-

ings: (1) total time (skin incision to passage of vessel loop);

(2) total idle time [27]; (3) total active time; (4) time from

skin incision to division of pectoralis minor; (5) number of

times instruments changed; (6) blunt dissection time; (7)

sharp dissection time; (8) type and duration of instruments

used. Start and stop times, active and idle times associated

with blunt dissection, and instrument use were recorded

from skin incision to passage of the proximal AA vessel

loop. Start and stop times were recorded when a hand or

surgical instrument made contact with or left contact with

the cadaver. Idle time was determined by summation of the

time instruments spent outside the surgical incision. Active

time was calculated as the duration of the activity of either

or both hands while using instruments or dissecting bluntly.

Ratios of active to idle time and sharp to blunt dissection

were also calculated. The entropy measures were compared

with the individual procedure score for AA procedure

collected by co-located trained evaluators present during

the AA procedures. Individual procedure score evaluations

used a standardized script including checklists and global

rating scales as previously described [5–8]. Measurement

of the individual procedure score for AA by analysis of

video collected during the evaluation took about five times

the duration of the video recorded procedure.

Computer vision algorithm feature extraction

and quantification

Sensor-free hand motion feature extraction by computer

vision algorithms was accomplished using color-coded

surgical gloves: green, dominant hand; orange, non-domi-

nant hand. Left and right hand position for each frame was

extracted using computer vision software to detect glove

colors (Fig. 1). The change of direction h was quantified by

the angle formed by two consecutive movement directions.

Joint entropy was calculated as: H X; Yð Þ ¼
�
P

p x; yð Þlog2ðx; yÞ, where X, Y denote the corresponding

measurements of dominant and non-dominant hand

motion. Entropy measures (speed = pixels/second; accel-

eration = change in speed/second; directional

change = degrees) were compared between operators.

Entropy data could be calculated in near real time with a

basic computer (Windows 7 (64 bit) machine with 16

Gigabyte memory, intel i5 core 1.3 GHz).

Results

As shown in Table 1, experts had the shortest times for all

time measures, the highest ratio of active to idle times and

the fewest instrument changes. Pre-training residents had

highest total time, active time, ratio of sharp to blunt dis-

section and time to pectoralis minor and greatest number of

instrument changes. In general, timing and procedural

metrics for residents were best immediately after training

or when re-evaluated 12 or 18 months later in comparison

with pre-training values. Pre-training residents had the

longest total time[ 1200 s, because neither divided pec-

toralis minor, a key landmark anterior to the axillary artery,

and both failed to expose and encircle the artery with a

vessel loop within the 20 min time limit allowed for the

procedure. These video analysis metrics were in concor-

dance with individual procedure score changes recorded

for the same residents at pre- and post-ASSET and skills-

retention evaluations.

Detection of instrument use by different operators

Duration and type of instrument use also differentiated the

three operator groups. Anatomists used Debakey forceps

much of the time to spread tissue and relied on left- and

right-handed blunt dissection. Anatomists also had greater

duration for placement of the vessel loop and Army-Navy

retractor than the surgeons. Expert surgeons had shorter

duration of blunt dissection than residents but spent a

greater proportion of their operating time using blunt dis-

section. Numbers of instrument changes also differentiated

experts from other operators (Table 1).

Computer vision entropy

Shannon joint entropy data shown as speed, acceleration

and direction were least for experts (7.2/9/7.3) versus

anatomists (9.4/9.5/3.3) and surgical residents (8.5/8.6/3.4)

and aligned with individual procedure score, timing metrics

and with levels of experience and training (Table 1). One

left-handed expert surgeon showed greater acceleration and

directional entropy change with dominant hand but same

speed versus right hand, whereas all the right-handed sur-

geons showed higher speed with right versus left hands but

similar acceleration and directional entropy.
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Discussion

Hand motion entropy differed between levels of training

and was consistent with video-analysis-derived results and

with individual procedure score, a benchmark of compe-

tence and a means to identify surgeons at all levels of

training who are in need of remedial interventions [28].

The entropy finding conforms to the expectation of the

dynamic systems theory of motor development which

emphasizes a reduction in variability as part of the learning

process that would be expected to differ as a result of

training [29]. Our findings are also consistent with cogni-

tive science research on motor learning, which shows

higher levels of motor complexity in trainees than experts,

because learned motor skills are associated with a decrease

in movement complexity [30]. Entropy measures con-

firmed that lower bimanual entropy (equating to smooth-

ness of hand movements with minimal wasted motion) is a

reason why experienced and trained surgeons take less time

to perform open surgical procedures.

The computer vision algorithm performed very well. It

‘locked onto’ the operator’s colored gloves and was not

distracted by a different colored glove or when both of the

operator’s (separately colored) gloves left the operating

field and then one reentered. (See attached multimedia

video.) However, we were unable to glean sufficient data

on fine motor movements—carpal/metacarpal/digital—

versus gross movement of the hand to use these analyses to

explore in greater detail the basis of gestures associated

with particular instruments or particular uses such as

Fig. 1 The centers of the minimum rectangular boxes defined by the

glove colors (shown as red dot) were calculated for each video frame

to define the position of the hand. Shannon joint entropy was used to

calculate speed (pixels/s), acceleration (change in speed/s) and change

of direction (degree) with a resolution of 1 s

Table 1 Metrics derived from observational video analysis and computationally derived hand motion entropy

Anatomists

n = 2

Experts

n = 2

Residents

pre-training n = 2

Residents post-

training n = 2

Residents

retention n = 2

Total time in seconds (range) 1030 (815–1246) 315

(303–328)

Both[ 1200 619 (328–911) 461 (413–509)

Mean incision time to

pectoralis minor

99 64 842 120 120

Active time (range) 968 (785–1152) 307

(294–320)

[ 1200 589 (308–871) 425 (391–460)

Idle time as a percent of active 5.6 2.9 5.1 5.1 8.3

Active/idle time ratio 15:1 33:1 19: 1 20:1 12:1

Number of instrument

changes (range)

67 (45–89) 23 (22–23) 97 (50–143) 35 (25–44) 50 (44–55)

Dissection sharp/blunt 1.6:1 2.4:1 7.3:1 4.5:1 5:1

IPS score [5–8] NA both anatomists were

study evaluators

79% 49% 75% 62%

Joint entropy (speed/

acceleration/direction)

9.15/9.17/3.29 7.29/7.31/

3.25

NA. No colored

gloves worn

8.55/8.62/3.36 8.47/8.63/3.40

Resident retention = data obtained 12 or 18 months after training. Values are shown as means with ranges in parentheses. Timing (ranges) in

seconds and joint entropy measures compared with values of individual procedure score (IPS). NA = not available
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cutting, spreading and clamping or suturing gestures.

Gesture recognition is captured in computer game users

[12], these technologies might have potential for solving

the problem of fine-motor analysis and advancing the

precision surgical hand motion evaluations. In addition,

devices such as Myoband� worn on the forearm can detect

muscle movements associated with individual finger

movements [31] and may assist trainee feedback. Gesture

recognition and finger movements associated with specific

instruments and procedural steps could be measured for

many different surgical procedures. Frequency and timing

of common surgical tasks such as skin incision, cut and

spreading, retractor insertion, clamping and suturing could

be monitored. Imbedding specialized motion detectors and

identifiers into the surgical instruments themselves [32]

would facilitate deconstruction and evaluation of the

motions associated with a variety of procedures, not just

the AA. Video recording with task analysis and hand

motion entropy could be incorporated to make objective

skill evaluations at all levels of surgical expertise. It could

be integrated into routine residency operating-room train-

ing, provide experienced surgeons with valuable immediate

feedback, quantitate inefficiencies (e.g. idle time, repeated

instrument changes) and enable on-site mentored training

to improve procedural skills, assist teaching and minimize

the reinforcement of errors in procedural steps.

Expert performance

Expert performance was characterized by a minimal

amount of idle time and the lowest number of instrument

changes during the procedure. Experts’ calculated joint

entropy was least among all the operators. The idle time

and instrument-change metrics are technical assessments

that can easily be targeted for continuing education/skills-

improvement for individual surgeons and so may represent

a valuable training tool. Although joint entropy will be an

unfamiliar concept to many, our data show that overall

efficiency and smoothness of motion are captured by this

metric, and that it is therefore an important contribution to

targeted skills acquisition and maintenance.

Potential benefits for surgical training programs

Both computer programs used for this work are available

for free: Shannon entropy (https://biomedical-engineering-

online.biomedcentral.com/articles/10.1186/s12938-019-065

0-5) and computer vision algorithms (OpenCV Python

library, Copyright 2013, Alexander Mordvintsev & Abid K.

Revision). High definition video can be collected using

consumer level digital cameras costing $1200 or less. As

noted above, addition of detectors on instruments [32] could

avoid burdensome collection of timing data and enable

other benefits such as timing of start and end of surgery and

implementation of novel performance assessments. Interval

measurements of surgeons performing eligible procedures

in a training program could be a means of assessing resident

performance and identification of need for individualized

remediation. Remediation plans could be tailored to discrete

steps of the procedure and range anywhere from reviewing

anatomy to repeating individual procedures or tasks in a

mentored fashion on a cadaver or a simulator. Use of

Shannon entropy with procedural video-analysis could

provide objective evaluation of sub-tasks in a procedure

such as knot tying and suturing, and assist surgical quality

assurance programs or training course evaluations. With

routine use in training programs of differentially colored

gloves and video recording of the surgeon’s hands and the

operative site of specific procedures, computer vision

algorithms would be an objective means of evaluating

residents. Tools and consent for video recording and anal-

ysis in health care settings are summarized elsewhere [33].

These evaluations are inexpensive, might have applicability

in both sophisticated surgical programs and in countries

where resources and mentors time-availability are limited.

Limitations

Video acquisition requires that the angle and distance of

the camera from the operative site be standardized if

comparative measures are to be made in the same indi-

viduals. The collection of entropy data will not be valid if

the hands cannot be visualized (e.g., intra-abdominal pro-

cedures) or when the operative field is obscured for any

reason (e.g., operating lights). The study experimental

design was based on a convenience sample of videos and

participants, so that only proof-of-concept examples were

obtained from each of the categories of operators. A

prospective study confirming data collection and analysis

methods and their relation to surgical performance is

needed.

Conclusion

In this proof-of-concept study, we show that Shannon joint

entropy analysis, number of instrument changes, total time

and ratios of idle to active and blunt and sharp dissection

times as a proportion of total procedure time, can be used

to discriminate usefully between expert and non-expert

surgeons and non-clinicians, demonstrating the effects of

training on hand motion. Hand motion metrics were con-

gruent with a labor-intensive validated procedure
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performance score, suggesting that video recording with

automated Shannon entropy measures can contribute to the

range of modalities available to educators, training course

designers, and surgical quality assurance programs and be

helpful to surgical trainees by providing feedback of intra-

operative technical skills.
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