
The Limits to Estimating Population-Genetic Parameters with

Temporal Data

Michael Lynch* and Wei-Chin Ho

Biodesign Center for Mechanisms of Evolution, Arizona State University

*Corresponding author: E-mail: mlynch11@asu.edu.

Accepted: March 13, 2020

Abstract

The ability to obtain genome-wide sequences of very large numbers of individuals from natural populations raises questions about

optimal sampling designs and the limits to extracting information on key population-genetic parameters from temporal-survey data.

Methods are introduced for evaluating whether observed temporal fluctuations in allele frequencies are consistent with the hy-

pothesis of random genetic drift, and expressions for the expected sampling variances for the relevant statistics are given in terms of

sample sizes and numbers. Estimation methods and aspects of statistical reliability are also presented for the mean and temporal

variance of selection coefficients. For nucleotide sites that pass the test of neutrality, the current effective population size can be

estimated by a method of moments, and expressions for its sampling variance provide insight into the degree to which such

methodology can yield meaningful results under alternative sampling schemes. Finally, some caveats are raised regarding the use

of the temporal covarianceof allele-frequency change to infer selection. Taken together, these results provide a statistical view of the

limits to population-genetic inference in even the simplest case of a closed population.
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Introduction

Most evolutionary features ultimately depend on the magni-

tudes of a few key population-genetic parameters—rates of

mutation, recombination, and migration, the strength and

pattern of selection, and the stochastic noise caused by ran-

dom genetic drift. As the magnitudes of these forces are typ-

ically quite small at the molecular level, most estimates derive

from observations on standing patterns of variation in samples

of multiple individuals acquired at a single time point, which

are typically assumed to reflect cumulative, equilibrium

effects. A diversity of methods relies on such strategies, in-

cluding those focused on variation at genomic sites or on the

magnitude of linkage disequilibrium among sites (Walsh and

Lynch 2018, chapters 2–4).

One limitation of single-sample approaches is that most

patterns of variation are functions of at least two evolutionary

forces. If one desires an estimate of one particular population-

genetic parameter, this then requires a preexisting estimate of

another key parameter. For example, a common procedure

uses silent-site diversity (ps, obtained as an average from a

sample of multiple individuals and nucleotide sites) as an es-

timator of the equilibrium expectation 4Neu, which is equiv-

alent to the ratio of the power of mutation to that of drift,

where Ne is the effective population size (the inverse of which

governs the stochasticity of allele-frequency change) and u is

the mutation rate per nucleotide site per generation.

Extrapolation of an estimate of Ne from ps requires an esti-

mate of u. In the absence of such information, it is often

simply assumed that ps will scale positively with Ne, but this

ignores the fact that the mutation rate varies by at least three

orders of magnitude across the Tree of Life, scaling nearly

inversely with Ne (Lynch et al. 2016; Long et al. 2018).

Additional uncertainties associated with single-sample meth-

ods include the assumptions of drift-mutation equilibrium and

neutrality of the observed polymorphisms.

Similar caveats arise when measures of linkage disequilib-

rium are used to infer the scaled recombination rate 4Nec,

where c is the recombination rate between sites, and when

measures of variation at putatively selected sites are used to

estimate 4Nes, where s is the strength of selection operating

on a nucleotide site. Although some single-sample methods

have been derived for reconstructing historical patterns of Ne

from the information in site-frequency spectra (e.g., Liu and

Fu 2015) or patterns of linkage disequilibrium (Li and Durbin

2011), thereby providing insight into population-size stability,

these are unable to estimate Ne within the past several
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hundred generations, simply because the pool of very young

(and rare) alleles is essentially unobservable unless sample

sizes are enormous. Moreover, such methods typically retain

the assumption of a closed-population structure.

With the field of population genomics now well estab-

lished, the goal here is to evaluate the limits to the information

that can be extracted from temporal sequences of samples of

the genomes of multiple individuals, where 106 or so poly-

morphisms in a sample is in the realm of possibility. An ad-

vantage of sequential-sample estimators of Ne and s is that

they often do not require estimates of mutation or recombi-

nation rates (provided these forces are weak relative to those

being estimated). In principle, for example, it ought to be

possible to estimate the current effective size of a population

from observed temporal fluctuations in allele frequencies,

provided sample sizes are large enough that the true signal

of drift is not overwhelmed by sampling error (Krimbas and

Tsakas 1971; Nei and Tajima 1981; Pollak 1983; Waples

1989). However, because such Ne estimators still rely on the

assumption of neutrality and a closed-population structure,

there is a need for methodology to verify in advance that the

molecular markers under consideration are actually consistent

with such conditions.

Here, we explore three general issues relevant to the esti-

mation of population-genetic parameters using temporal se-

ries of data. First, we develop a simple test for the consistency

of the data with neutrality and closed-population structure, as

these conditions are ultimately required if temporal fluctua-

tions in allele frequencies are to be reliable indicators of Ne.

Second, we explore ways to further evaluate whether poly-

morphisms at individual nucleotide sites are experiencing sig-

nificant directional selection, and if not, whether significant

fluctuating selection, for example, quasi-neutrality in the

sense of Wright (1948) and Kimura (1954) is occurring.

Finally, for situations in which the data appear to be consistent

with the assumptions of the model, we evaluate the chal-

lenges of estimating Ne in large populations by the sequential

sampling method.

As the goal is to determine the limits to the ability to esti-

mate current-day population-genetic parameters, it will be

assumed throughout that accurate estimates of individual

genotypes have been obtained (assured, e.g., with adequate

depth of sequencing coverage per site and application of suit-

able base-call quality screening). All sampling error is therefore

associated with the number of surveyed individuals and nu-

cleotide sites. Polymorphic sites will be assumed to be biallelic,

as is almost always observed in population samples, although

pooling of alleles can be performed with tri- or tetra-allelic

sites. As the focus is on populations of relatively large size, it

will be assumed that the sampling procedure has minimal

effect on the change in population allele frequencies over

time. For purposes of presentation, an even temporal distri-

bution of samples will be assumed throughout. The derived

expressions for the expected sampling variances of estimates

are those for single surveys, but if one had the luxury of

performing g experimental replications, then the expected

sampling variances would be 1/g times the reported expres-

sions, and the standard errors should be multiplied by 1=
ffiffiffi
g
p

:

Validating the Primacy of Random Genetic
Drift

A critical assumption in the application of temporal methods

for estimating Ne is that the series of sequential changes in

allele frequencies across sampling points are consistent with a

random walk. Consider a temporal series of allele frequencies

with population parametric values at nucleotide site i equal to

pi;0; pi;1; . . . ;pi;T over T equally spaced intervals (e.g., gener-

ations) (fig. 1). At each sampling point t ¼ 0; . . . ; T , the gen-

otypes are determined for ni,t individuals (here assumed to be

diploid), yielding a series of allele-frequency estimatesbpi;0; bpi;1; . . . ;bpi;T . In the following, we will drop the subscript

for nucleotide sites for simplicity unless otherwise noted, and

we will assume a constant sample size n. From these data, a

series of allele-frequency change estimates can be obtained

between adjacent samples: bD0;1; bD1;2; . . . ; bDT�1;T . More gen-

erally, allowing for any number of generations separating

samples bD j;k ¼ bpk � bpj:

If random genetic drift is the predominant evolutionary

force, because the process has no memory, there should be

no correlation between the parametric allele-frequency

changes in different intervals, and the interval-specific

changes should be random values with expectations equal

to zero. The expected variance of change between generation

j and jþ 1 is equal to r2ðDj;jþ1Þ ¼ pjð1� pjÞ=ð2NeÞ; (assum-

ing constant Ne across generations), although as discussed

below, additional variance is introduced by sampling of indi-

viduals each generation.

There are a number of ways to test for randomness in

allele-frequency change. For example, one might evaluate

whether the changes in allele frequencies in intervals spaced

by a specific number of generations are correlated, which

would not be expected if random drift were the predominant

evolutionary force (Buffalo and Coop 2019). Even here,

FIG. 1.—Sampling scheme for allele frequencies, with pi denoting the

parametric frequency in the population, bpi denoting the estimated fre-

quency after sampling ni individuals, and bD ij denoting the interval-specific

estimated change in frequency.
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however, a number of subtleties can lead to misleading inter-

pretations. First, even under a pure drift model, changes in

adjacent intervals will be negatively correlated, owing to the

sharing of an intermediate sampling point—if pt is overesti-

mated by investigator sampling error, then bDt�1;t will be over-

estimated and bDt;tþ1 will be underestimated, and vice versa if

pt is underestimated. As this leads to a substantial expected

covariance equal to �ptð1� ptÞ=ð2nÞ, a comparison of

allele-frequency changes in adjacent intervals must be

avoided. One might imagine an efficient use involving the

pairing of changes separated by single intervals, that is, bD0;1

with bD2;3; bD3;4 with bD5;6, etc. However, even in this case,

owing to the sharing of time points 3, 6, and so on, the

expected covariance of pairs of changes has a positive bias

’ pð1� pÞ=ð2nmÞ, where m¼ T/3 is the total number of

paired intervals. Thus, we now focus on three sampling

schemes with minimal to zero bias in the expected values

for the covariance in allele-frequency changes under neutral-

ity, the first two focused on the specific behavior of individual

sites, and the third involving an aggregate measure over mul-

tiple sites.

Sampling Scheme 1

Given the amount of effort invested in a temporal survey, one

will want to use as much of the data as possible, and avoiding

the types of adjacent pairings noted above, this might still be

accomplished by evaluating the covariance of allele-frequency

changes for all pairs of observations separated by single inter-

vals. This can be accomplished by pairing D0,1 with D2,3, D1,2

with D3,4, D2,3 with D4,5, up to DT�3;T�2 with DT�1;T . One

issue with this approach is that some of the D values are used

twice (e.g., D2,3), and most still share a sampling point (e.g.,

D0,1 and D1,2), that is, the terms involved in the analysis are

still not completely independent. The net result is that the

expected covariance is slightly negative, rather than zero.

To see this, note that the unbiased sample covariance es-

timator for m pairs of variables, x and y, is

Covðx; yÞ ¼ mðxy � x � y Þ
ðm� 1Þ : (1)

For this particular sampling scheme, m ¼ T � 2; so that when

T¼ 5 (six samples in total), m¼ 3, and the covariance for the

site-specific changes is obtained by letting

xy ¼ ½ðD0;1 � D2;3Þ þ ðD1;2 � D3;4Þ þ ðD2;3 � D4;5Þ�=3

x ¼ ðD0;1 þ D1;2 þ D2;3Þ=3

y ¼ ðD2;3 þ D3;4 þ D4;5Þ=3:

Generalizing to arbitrary T, taking expectations of all terms,

and noting that all expected cross-products of terms not

sharing sampling points are equal to zero (as they share no

drift or sampling deviations), the expected covariance for this

sampling scheme under neutrality becomes

E½Cov1� ¼ �
Eðd2

d;2 þ � � � þ d2
d;T�3Þ

ðT � 3ÞðT � 2Þ ; (2a)

where d2
d;t ¼ ptð1� ptÞ=ð2NeÞ is the expected squared devi-

ation of allele-frequency change over interval (t, tþ 1) result-

ing from genetic drift. Because the expected heterozygosity

declines by a factor of 1/(2Ne) per generation, the previous

expression reduces to

E½Cov1� ¼ �
p0ð1� p0Þ

2ðT � 3ÞðT � 2ÞNe
�
XT�3

i¼2

ki; (2b)

where k ¼ 1� ½1=ð2NeÞ�: However, for populations with Ne

� T (most practical applications), k ’ 1:0; and

E½Cov1� ’ �
p0ð1� p0ÞðT � 4Þ
2ðT � 3ÞðT � 2ÞNe

: (2c)

This shows that the expected sampling covariance of allele-

frequency changes separated by an interval is negative if all

intervals are used. Although the absolute bias is expected to

be very small in the case of very large populations, the depen-

dency on Ne remains a concern, as this is the parameter that

one wishes to eventually estimate.

Sampling Scheme 2

Now consider the situation in which there is no overlap at all

in the use of time points in different pairings, that is, contrast-

ing D0,1 with D2,3, D4,5 with D6,7, D8,9 with D10,11, up to

DT�3;T�2 with DT�1;T . The expected covariance under neu-

trality is zero with this sampling scheme, although the cost is a

substantially longer experiment. For example, with scheme 1,

three sets of comparisons can be obtained with T¼ 5, but this

requires T¼ 11 with scheme 2. A simple expression for the

expected sampling variance of the covariance under scheme 2

can be obtained by noting from equation (1),

r2½Covðx; yÞ� ¼ m

m� 1

� �2

fr2ðxy Þ � 2r½xy ; ðx � yÞ�
þ r2ðx � yÞg: (3a)

Expanding the terms for xy ; x , and y ; noting that r2ðxyÞ ¼ r2
x

�r2
y for two uncorrelated variables each with expectations

zero, and that in this case, r2ðbDÞ ¼ r2
x ¼ r2

y ’ pð1� pÞ=n

(because bD, whereb denotes an estimate, is derived from two

samples containing 2n genes), leads to the expected sampling

standard error for the covariance of changes at a particular

site

Limits to Estimating Population-Genetic Parameters GBE
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r½Cov2� ¼
p0ð1� p0Þ
n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p ; (3b)

where m is the number of paired D comparisons. Averaging

over L independent sites with different allele frequencies,

r½Cov2 � ¼
p0ð1� p0Þ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðm� 1Þ

p : (3c)

In contrast, for sampling scheme 1, owing to the noninde-

pendence of data and the associated reduction in degrees of

freedom,

r½Cov1 � ’
p0ð1� p0Þ

n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lðm� 1Þ=2

p : (4)

Assuming Tþ 1 consecutive samples, m ¼ ðT þ 1Þ=4 for

scheme 2, and equation (3c) reduces to

r½Cov2 � ¼
2 � p0ð1� p0Þ
n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðT � 3Þ

p ; (5)

and because m� 1 ¼ T � 3 with scheme 1, for equivalent T,

the sampling error associated with scheme 2 is 2=
ffiffiffi
2
p
’ 1:4�

that for scheme 1. Thus, aside from the slight bias, scheme 1

may be viewed as yielding more efficient use of the data. In

either case, the preceding expressions indicate that the

expected standard error of the test statistic is inversely pro-

portional to the number of individuals sampled per time point

(n), but only with the approximate square root of the total

number of nucleotide sites sampled (’ LT for large T).

Note that here and below it is assumed that when estima-

tors are averaged over sites, the vast majority of sites are ef-

fectively in linkage equilibrium, as the L deployed in the

sampling-variance estimators is equivalent to the number of

degrees of freedom. This will generally not be a problem if

unlinked sites are relied upon. However, studies involving spe-

cialized base-population crosses, such as multiparent popula-

tions that initiate with high levels of linkage disequilibrium

(King and Long 2017), could be especially challenging here.

Although the actual degrees of freedom might be approxi-

mated through computational comparison of observed sam-

pling variances with those expected with L degrees of

freedom, this would require prior information on recombina-

tion rates. The key point is that, when applied to composite

estimators based on multiple loci, all expressions derived

herein yield lower-bound estimates of the sampling variance

if L is used as the number of degrees of freedom.

Genome-Wide Survey

Whereas the two preceding sampling schemes consider the

covariance of change within particular loci over multiple inter-

vals, such approaches are strongly limited by the duration of

sampling. An alternative route is to evaluate the average

genome-wide covariance of change across L sites with a

shorter temporal-series duration,

Cov3 ¼
L � ðDijDik � Dij � DikÞ

L� 1
; (6)

where j and k denote two time intervals, and the means in the

numerator are over all i ¼ 1; . . . ; L sites. Under neutrality, as-

suming the time intervals share no samples, Cov3 has expected

value zero, and assuming L� 1, sampling standard error

r½Cov3� ¼
p0ð1� p0Þ

n
ffiffiffi
L
p ; (7)

identical to equation (3c) with m¼ 2. Note that this sort of

analysis can be performed on any pair of intervals over the sam-

plingperiod,provided there isnooverlap in the samplingpoints.

One might, for example, consider the covariance of change

between interval (0,1) and interval (2,3), interval (3,4), etc.

For hypothesis testing, we take advantage of work by

Pearson et al. (1929), where the sampling distribution of a

covariance for a bivariate normal sampling distribution was

derived. Letting brx;y denote a sample covariance, and rx, ry,

and q be the parametric standard deviations of x and y, and

their correlation coefficient, and using the standardized vari-

able v ¼ Lbrx;y=½ð1� q2Þrxry �,

pdfðvÞ ¼ ð1� q2ÞðL�1Þ=2ffiffiffi
p
p
� 2ðL=2Þ�1 � C½ðL� 1Þ=2�

� expðqvÞ � vðL=2Þ�1

� KðL=2Þ�1ðvÞ;
(8a)

where CðxÞ is the gamma function, and KðL=2Þ�1ðvÞ denotes a

modified Bessel function of the second kind. For the special

case in which q¼ 0 (our null hypothesis), Pearson et al. (1929)

found that the preceding expression can be closely approxi-

mated (perfectly to the first four moments) with

pdfðvÞ ¼ C½ðLþ 4Þ=2�
C½ðLþ 3Þ=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðL2 � 1Þ

p 1þ v2

L2 � 1

� ��ðLþ4Þ=2

:

(8b)

In our case, v ¼ Lnbrx;y=½p0ð1� p0Þ�; and with L� 1; equa-

tion (8b) simplifies further to

pdfðvÞ ’ 1ffiffiffiffiffiffiffiffi
2pL
p � exp � v2

2L

� �
; (8c)

showing that the standardized covariance measure v is nor-

mally distributed with variance L.

This suggests a relatively simple test for random allele-

frequency changes across different intervals. Let brðD0Þ be

the covariance of standardized allele-frequency changes for

pairs of intervals, with the change at each site being

Lynch and Ho GBE
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normalized by the expected standard deviation of changes,

that is, using bD0j0;j1 ¼ ðbpj1
� bpj0

Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibpð1� bpÞ=n

p
as the stan-

dardized change between the time points j0 and j1 for interval

j, with bp being the average allele frequency over the two time

samples at the site, with a similar definition for interval k.

Because brðD0Þ ¼ v=L, it follows that

pdf½brðD0Þ� ’ 1ffiffiffiffiffiffiffiffiffiffi
2p=L

p � exp f� ½brðD0Þ�2
2=L

g; (8d)

that is, under the null hypothesis, the sample covariance of

standardized allele-frequency changes has expectation zero

and variance 1=L: (Again, as noted above, if the assayed

loci are linked, L needs to be replaced with the appropriate

degrees of freedom.) A test for random change is then

achieved by comparing the absolute value of brðD0Þ with the

critical two-tail cutoff points of the normal distribution. If the

data are consistent with a model of pure drift, for large L,

there is a 5% probability that the absolute value of brðD0Þ will

exceed 1:96=
ffiffiffi
L
p

by chance, and a 1% probability that it will

exceed 2:58=
ffiffiffi
L
p

by chance. Observed values of jbrðD0Þj be-

yond these critical points imply that sampling heterogeneity

problems, migration, and/or selection have contributed to the

average observed pattern of change.

Estimation of the Mean and Variance of
Selection Intensity

Results from hundreds of single-sample studies in molecular

population genetics suggest that the intensity of directional

selection operating at the single-nucleotide level is often on

the order of the reciprocal of Ne or a factor several-fold larger.

Selection coefficients at the nucleotide level>0.01 are exceed-

ingly rare in studies of natural populations, and as these only

induce an�1% change in allele frequency per generation, the

challenges in estimating selection at the DNA level with tem-

poral data are clear. An additional issue (aside from possible

contributions from nonselective forces) is that temporal

changes in allele frequencies may result from direct selection

on the nucleotide site of interest or indirectly from selection

operating on adjacent sites in linkage disequilibrium. Thus, the

best that we can hope to achieve with a temporal survey is a

measure of the net strength of selection operating on a site.

One way forward is to note that in the absence of

frequency-dependent selection, and assuming additive fitness

effects, the expected change in allele frequency over an inter-

val of t time units is

ft ¼ f0 � lst; (9a)

where

ft ¼ ln
1� pt

pt

� �
; (9b)

and ls is the average interval-specific selection coefficient over

the entire sampling period (Crow and Kimura 1970). It follows

that the slope of a regression of ft on time provides an esti-

mate of ls for the allele designated by frequency p. This es-

timator is only defined when the allele-frequency estimate is

0 < bpt < 1 at all sample points. In principle, the selection

coefficient may also fluctuate in time, one case of special

interest being quasi-neutrality, wherein the long-term average

s is equal to zero with the interval-specific magnitudes of se-

lection wandering randomly around this mean with temporal

variance r2
s (Wright 1948; Kimura 1954).

Estimation of Mean Selection Coefficients

An efficient means of estimating ls for a nucleotide site is to

perform a least-squares regression of ft on time. Allowing for

both selection and drift in a Wright–Fisher framework, fol-

lowed by random sampling, computer simulations indicate

that the regression coefficients provide unbiased estimates

of ls over reasonable sample sizes and allele frequencies, so

long as selection is strong enough to dominate random ge-

netic drift (fig. 2, left). Negative bias occurs, independent of

the experimental duration and sample size, when Nesp0 < 1;

consistent with the view that selection operates in nearly de-

terministic fashion only after an allele frequency exceeds

1=ðNesÞ (Walsh and Lynch 2018, chapter 7), as assumed in

equation (9b). In principle, a more elaborate expression for

allele-frequency change that allows for the influence of drift

might be developed, but this would require an estimate of Ne:

An expression for the expected sampling variance of the

regression coefficient (the sample estimate bs of the popula-

tion parameter ls), the steps of which can be found in the

Appendix, is

r2ðbsÞ ’ 6

ðT � 1ÞðT þ 1Þ

� �
1

Tnp0ð1� p0Þ
þ r2

s

� �
; (10)

where r2
s is the among-generation variance in s. This expres-

sion provides an essentially unbiased estimate of the sampling

variance obtained in computer simulations, for a wide range

of experimental durations (T¼ 5–90), sample sizes (n¼ 100–

1,000), full range of allele frequencies (p0 ¼ 0:05–0.50), and

a range of selection coefficients (s ¼ 10�5 to 10�2), provided

Ne > 105 (fig. 2, right). For weak selection and long experi-

mental durations, equation (10) somewhat underestimates

the sampling variance because it does not account for the

cumulative effects of random genetic drift.

In practical applications, one would ordinarily accept the

estimate of the sampling variance of the regression coefficient

from direct statistical analysis, but the expectation given by

equation (10) provides insight into the optimal design of sam-

pling schemes for estimating ls: Regardless of the average

strength of selection, provided Tr2
s is small relative to the

Limits to Estimating Population-Genetic Parameters GBE
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sampling variance of f, for T> 10 or so, the sampling variance

of bs is inversely related to the product of the sample size and

the cube of the number of temporal samples. Thus, for a fixed

investment in the total amount of genotyping that can be

done, which is proportional to Tn, there is a very strong pre-

mium on extending the experiment in time, as the expected

standard error of bs will be inversely proportional to 1=T .

One can go further and consider the overall design neces-

sary to detect a nucleotide with mean selection coefficient ls:

Assuming r2
s is small relative to the sampling-error term in

equation (10), which seems likely for most reasonable scenar-

ios, the minimum sampling variance reduces to ’ 6=½T3np0

ð1� p0Þ�: To detect a selection coefficient at the 5% signif-

icance level, one then requires 24=½T3np0ð1� p0Þ� < l2
s :

The greatest power is achieved with high allele frequencies,

so letting p0 ¼ 0:5; the critical value for detection in this case

is T3n ¼ 96=l2
s , which implies T3n > 106 for ls ¼ 0:01; and

> 108 for ls ¼ 0:001: Assuming a moderate sample size of

n¼ 100, the critical experimental durations in these two cases

become 21 and 100 consecutive generations of allele-

frequency estimation. For a rarer allele with frequency p0 ¼
0:1; these critical values become 2:8� larger.

The key point here is that when selection is weak, as is

generally the case at the nucleotide level, its detection using

temporal series of data demands very long surveys. Increasing

the sample size helps, but in expanding n to 1,000, the above

critical T values decline by only�50%; and temporal variance

in the selection coefficient will make such an enterprise more

demanding. If one simply desires an estimate of the average

absolute value of ls over a large sample of sites (e.g., partic-

ular sites within codons at particular frequencies), the sam-

pling variance of the mean estimate is given by equation (10)

divided by the number of sites jointly evaluated.

How much accuracy in estimation would be lost if one

simply relied upon a two-point estimate of bs;
bs2 ¼

f0 � fT

T
; (11)

rather than using allele-frequency estimates at each time

point? From Lynch (1987), the expected sampling variance

of the two-point estimate is

r2ðbs2Þ ¼
1

T2n

1

p0ð1� p0Þ
þ 1

pT ð1� pT Þ

� �
: (12)

Assuming r2
s ’ 0 and T � 1; the ratio of the sampling var-

iance in this case relative to that with a full survey is

r2ðbs2Þ
r2ðbsT Þ

’ T

6
1þ p0ð1� p0Þ

pT ð1� pT Þ

� �
: (13)

The minimum improvement gained by the full survey is there-

fore a reduction in the standard error of the estimate bs by a

FIG. 2.—(Left) Mean estimates of the selection coefficient s obtained from the least-squares regression approach. Each point is the average of the results

from 107 simulations based on Wright–Fisher allele-frequency dynamics incorporating selection and drift, followed by random sampling of n¼100 diploid

individuals at each sampling point. Black symbols are for effective population size Ne ¼ 104, and red for Ne ¼ 106, and results are reported for a range of

starting allele frequencies, p0. The horizontal dashed lines denote the expectations for four evaluated selection coefficients (with temporal variance, r2
s , equal

to zero), and the different symbols denote experiments of different durations (T). (Right) Sampling standard deviations for estimates of s for the case of

r2
s ¼ 0, from simulations as noted above for three values of Ne, four of s, and a sample size of 100, compared with the theoretical expectation, equation

(10). The diagonal dashed line denotes points of perfect agreement, and many symbols cannot be seen as they overlie each other on this line.
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factor of ðT=6Þ1=2, that is, 2� with T¼ 24, and 4� with

T¼ 96. In the limit of weak selection and/or short survey du-

ration, such that p0ð1� p0Þ ’ pT ð1� pT Þ; the inflation in

sampling variance with the simpler method is a factor of ’ T

=3; whereas as the allele frequency approaches loss or fixa-

tion, that is, pT ð1� pT Þ ! 0; the inflation factor can exceed

T.

Equation (10) can also be used to evaluate the consequen-

ces of more intermediate sampling schemes. Rather than

sampling each of ðT þ 1Þ consecutive generations, one could

skip various generations, so that the duration of each sam-

pling interval is D (rather than 1 or T) generations. The

expected sampling variance of bs is then obtained by dividing

equation (10) by D and substituting the number of multige-

nerational time intervals, T 0, for T. For T divisible by D, the

inflation in the sampling standard error is ’
ffiffiffiffi
D
p

: As an ex-

ample, for a full survey with T¼ 49 and D¼ 1, from equation

(10), the expected sampling variance is ’ 0:000050=½np0ð1
�p0Þ�: Keeping np0ð1� p0Þ constant, and reducing the over-

all effort by half by skipping single generations, T 0 ¼ 24 and

D¼ 2, and the expected inflation of the standard error ofbs is

1:5�. With T 0 ¼ 12 and D¼ 4 (skipping periods of three

generations), the expected inflation is 2:1�, and with T 0 ¼
6 and D¼ 8, the expected inflation is 2:6�. From equation

(13), the expected inflation in the extreme case of sampling at

just the starting and ending points (equivalent to a 25-fold

reduction in effort) is �
ffiffiffiffiffiffiffiffi
T=3

p
¼ 2:9: The key point here is

that, for a given total survey duration, the improvement in the

accuracy of estimation of ls with increased frequency of sam-

pling is relatively small compared with the increase in effort.

Estimator for the Variance of Selection Coefficients

To estimate the variance in true selection coefficients among

generations, r2
s , we note that the estimated selection coeffi-

cient in interval i can be partitioned asbsi ¼ si þ ei; (14)

where si is the true selection coefficient operating on the site

in generation i, and ei is the estimation error resulting from

finite sample size. From this, it follows that an estimator of the

variance in s among intervals is

br2
s ¼ VarðbsÞ � VarðeÞ; (15)

where VarðeÞ is the average sampling variance of the si. Here,

we focus on the most fine-grained sampling scheme of T

intervals of single-generation duration, as this will yield esti-

mates of r2
s with the highest degree of accuracy. To obtain an

estimate of VarðbsÞ unfettered by nonindependence problems,

we focus on the variance of si estimates obtained for non-

overlapping time intervals, for example, ð0;1Þ; ð2; 3Þ; . . . ; ðT
�2; T � 1Þ: For even T, this yields s ¼ T=2 estimates, with

VarðbsÞ ¼ 1

s� 1

Xs

i¼1

ðbsi � sÞ2 (16)

being the estimated variance among interval-specific sample

estimates of si. From equation (11) with T¼ 1, estimates of si

based on adjacent generations are simply equal to the differ-

ence in estimates of f across the interval.

To estimate the average sampling variance, we utilize all of

the data but allow for nonindependence of adjacent si esti-

mates (owing to allele frequencies at shared time points),

VarðeÞ ¼ 1

T

XT

i¼1

r2ðbsiÞ �
2

TðT � 1Þ
XT

i< j

rðbsi;bsjÞ (17)

(from Lynch and Walsh 1998, p. 845). Note that the second

term, which accounts for nonindependent estimates of the

selection coefficient, has nonzero entries only for pairs of

estimates in adjacent intervals. From Lynch (1987, eq. 12),

r2ðbsiÞ ¼ /i�1 þ /i

rðbsi ;bsiþ1Þ ¼ �/i

(18)

with rðbsi ;bsjÞ ¼ 0 for j 6¼ i þ 1; and /i ¼ 1=½2nibpið1� bpiÞ�;
where ni is the number of diploid individuals in the ith sample

(the two being removed in the case of haploidy). Substituting

into equation (17), for the situation in which a string of T

consecutive estimates of si is available,

VarðeÞ ¼ 1

T
/0 þ /T þ

2T

T � 1

XT

i¼2

/i�1

 !
: (19)

Solving equations (16 and 19), and applying to equation (15)

then provides an estimate of the variance in the selection

coefficient for a nucleotide site.

Computer simulations incorporating generational episodes

of selection and random genetic drift, with ls ¼ 0;were used

to determine the bias and sampling error associated with this

estimator of r2
s (fig. 3). Two points are immediately apparent.

First, the estimates for r2
s tend to be downwardly biased,

particularly when initial allele frequencies are low and sample

sizes are on the order of 100 or smaller. This bias becomes

negligible when sample sizes are as large as 1,000. However,

even in the latter case, and even for the long experimental

durations illustrated, an unbiased estimate of r2
s cannot be

achieved if r2
s < 10�4: Given that the latter implies a stan-

dard deviation of s of 0.01, which may be beyond what

operates at most nucleotide sites, the implication is that

achieving accurate estimates of r2
s at single-nucleotide sites

is nearly unattainable without enormous sample sizes and

survey durations.

Second, of even greater concern is the coefficient of vari-

ation (CV) of estimates of r2
s , which is virtually always >1.0

and often as high as 500. With a sampling CV of 1.0, if one
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wanted an average estimate of r2
s pooled over sites to have a

standard error<0.1 of the mean, 100 sites would need to be

pooled, and with a per-site sampling CV of 500, this same

level of accuracy would require the pooling of 25,000,000

sites.

Estimation of Short-Term Ne

The effective size of a population (Ne) governs a wide range of

evolutionary features, including the probability of fixation,

levels of standing molecular variation, patterns of linkage dis-

equilibrium, and the range of selection coefficients of mutant

alleles that are effectively neutral (Charlesworth 2009; Walsh

and Lynch 2018). Unfortunately, Ne is also an exceptionally

difficult population-genetic parameter to estimate directly.

Almost all direct approaches rely on estimates of allele-

frequency change, which invariably have very high sampling

variances. Nonetheless, as studies of temporal changes in al-

lele frequencies have become increasingly common, there has

been a resurgence of interest in using such data to estimate

Ne.

The motivation for the general approach is that random

genetic drift generates stochastic changes in neutral allele

frequencies to a degree determined by 1=ð2NeÞ in diploids

FIG. 3.—Mean and CV of estimates of r2
s for series of samples taken at Tþ1 consecutive time points, each involving sample sizes of n¼100 or 1,000

diploid genomes. Results are given for a range of initial allele frequencies, each based on 106 simulations with an effective population size of 108 individuals,

ensuring essentially no genetic drift on the time scale of the analyses, and mean selection coefficient ls ¼ 0:0: Closed points refer to situations in which

r2
s ¼ 10�3, whereas open points are for r2

s ¼ 10�4: Data points are excluded for some cases at low allele frequencies where the mean estimates of r2
s were

negative.
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(and 1=Ne in haploids). With suitable correction for the addi-

tional variation in allele-frequency estimates induced by sam-

pling, observed divergence can then be used to infer Ne

provided the variation evaluated is neutral (Krimbas and

Tsakas 1971). Often, a method of moments is used to infer

Ne from the observed allele-frequency changes and the sam-

ple sizes (Nei and Tajima 1981; Pollak 1983; Waples 1989),

although likelihood-based procedures have also been sug-

gested (Wang 2001; Bollback et al. 2008; Malaspinas et al.

2012; Hui and Burt 2015; Ferrer-Admetlla et al. 2016). Almost

all applications have been confined to small populations, with

Ne typically well below 5,000. In this case, with suitable num-

bers of markers and time spans between samples, reasonable

Ne estimates (often within 10% of the expected values) are

obtainable.

Because most natural populations are thought to have Ne

in the range of 104 to 109 (Lynch 2007), it is desirable to know

in advance the joint influence of the numbers of sampled

nucleotide sites, individuals, and generations separating sam-

ples on the ability to achieve a perceptible signal from drift. Is

there an important tradeoff between the size of samples and

the duration of sampling? Are there significant advantages of

incremental sampling, as opposed to simply sampling at the

starting and ending points of a survey? Do the frequencies of

alleles at the sampled nucleotide sites have a substantial de-

gree of influence?

To answer these questions, we proceed under the assump-

tion that the investigator has settled on a set of molecular

markers that suitably fulfill the expectations under neutrality

based, for example, on the types of tests suggested above.

The key indicator variable for estimating Ne is then

/ijk ¼ bF ijk �
1

2nij
� 1

2nik
; (20)

where i denotes the nucleotide site, j and k denote two sam-

pling times, and nij and nik are the associated numbers of

sampled individuals (here assumed to be diploid). bF ijk is a nor-

malized measure of the observed allele-frequency change be-

tween the two time points,

bF ijk ¼
ðbpij � bpikÞ

2

pið1� piÞ
; (21)

where bpit is the estimated allele frequency at time t, and pi

¼ ðbpij þ bpikÞ=2: In essentially all of the following analyses,

simulations show that the ratio of the variance of individualbF ijk estimates to the squared average value is in the range of

1.90–2.00, as expected for a v2-distributed variable (Nei and

Tajima 1981). In the following, it will be assumed that the

sample sizes are constant across time periods, so that

n ¼ nij ¼ nik:

The logic underlying the use of bF ijk is that the expected

value of /ijk is very close to t/(2Ne) provided the number of

generations separating the two samples (t) is much smaller

than 2Ne (Nei and Tajima 1981; Pollak 1983; Waples 1989),

which will generally be the case for a study of natural pop-

ulations. The resultant method-of-moments estimator of Ne

from two temporal samples is then

bNe ¼
t

2/ i

; (22)

where / i is the average value of /i over all sites. (This aver-

aging of the denominator term to obtain a single estimate of

Ne rather than obtaining an estimate for each site and then

averaging minimizes the spurious sampling variation that can

occur with individual ratios.)

Pollak (1983; see also Waples 1989) has usefully found that

the expected sampling variance of bNe is

r2ðbNeÞ ’
8N4

e

L

� �
1

ð2NeÞ2
þ 1

tN~n
þ 1

ðt~nÞ2

" #
; (23a)

where L is the number of sampled polymorphic sites (assumed

to be independent), ~n is the harmonic mean of the sample

sizes (equal to n in all that follows), and N is the actual number

of breeding adults (typically much larger than Ne; Walsh and

Lynch 2018). Although an approximation, this formula pro-

vides immediate insight into the determinants of the precision

of Ne estimates by the temporal method. Because we expect

t~n � 2Ne < N, equation (23a) reduces to

r2ðbNeÞ ’
2

L

� �
2N2

e

t~n

� �2

: (23b)

The coefficient of sampling variation of bNe (the ratio of the

standard deviation of estimates to the expected value) is then

CVðbNeÞ ’
2Ne

ffiffiffiffiffiffiffiffi
2=L

p
t~n

: (24)

The remaining issue is whether the preceding formulae, all of

which involve approximations, do indeed yield reasonable

estimates of Ne and its sampling variance. This was evaluated

by simulating three sources of binomial sampling of allele

frequencies: random genetic drift between points j and k

and individual sampling at the two time points. For any par-

ticular set of conditions, starting with a known allele fre-

quency pj, drift involved the random sampling of Ne ¼ N

individuals to generate pk, and then from these two true pop-

ulation values, the estimated frequencies bpj and bpk were

obtained. For any particular set of Ne; L, t, and n, the mean

and variance of bNe (estimated by eq. 22) was obtained over a

full range of allele frequencies. Over a range of Ne ¼ 103 to

106, the preceding theory is highly consistent with the results

from simulations—equations (22 and 23b) give essentially un-

biased estimates of the mean and variance of Ne estimates,

provided tn
ffiffiffi
L
p
� 5Ne.
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Equation (24) indicates that changing the survey duration t

or the sample size n by the same factor has an equivalent

effect on the accuracy of Ne estimates by the temporal

method. Such a scaling provides a logical basis for the optimal

sampling design constrained by economic considerations and

practicalities with respect to long-term sampling. The CV

scales with Ne=t because the variance of allele-frequency

change resulting from drift (the signal that we wish to detect)

depends on the reciprocal of this quantity. On the other hand,

the CV scales only with the inverse of the square root of the

number of loci sampled, which assuming complete genome

sequencing is an absolute limit that cannot be modified by

sampling.

This sampling theory highlights the difficulties in estimating

Ne in large populations by direct observations of allele-

frequency changes. Nonsensical estimates of Ne can be

expected if tn
ffiffiffi
L
p

< 5Ne, as then CVðbNeÞ exceeds 0.5, and

even negative estimates will be likely. Suppose one desires to

reduce the CV of an Ne estimate to 0.1. According to equa-

tion (24), this requires 0:035tn
ffiffiffi
L
p

> Ne: Further supposing

the luxury of L ¼ 106 sites, the critical point reduces to 35tn

> Ne; which means that with Ne ¼ 106, tn must exceed

28,600, a steep task—sample sizes of nearly 3,000 if one

were to rely on a temporal duration of 10 generations. On

the other hand, with Ne ¼ 104; tn need only exceed 290, an

achievable situation with today’s sequencing costs (e.g., two

samples of size 60, five generations apart).

The preceding estimator is based on a simple two-point

comparison, and one might imagine that more resolution

would be achievable by sampling at multiple intervals during

time span t. There is, however, reason to expect a minimum

payoff of such additional monitoring, the primary being that

there is such a strong covariance in allele frequencies across

generations that most of the information is contained within

the contrast between starting and ending points (Hill 1972;

Lynch 1987). Indeed, an analysis of a multigenerational

maximum-likelihood (ML) procedure for estimating Ne from

temporal data (Hui and Burt 2015, table 1) shows that for the

two-sample situation, the method-of-moments and ML pro-

cedures have almost identical sampling variance, and whereas

the method of moments yields higher sampling variance

when extended to three samples (over an equal total time

span), the sampling error with the ML method is essentially

identical whether two or three samples are applied. Such be-

havior can be understood from the structure of equation

(23b), which shows that the sampling variance of Ne scales

inversely with t2. Subdivision of t into x smaller episodes of

equal length s (t ¼ xs) yields more independent estimates of

Ne, which reduces the sampling variance linearly in x, but the

sampling variance for each episode increases quadratically,

the end result being that the sampling variance scales as

�1=ðxs2Þ ¼ x=t2:

To evaluate this matter more formally, allowing for larger

Ne, the above kinds of analyses were performed three ways

with six samples (providing five intervals of data): 1) using the

simple starting and ending points, 2) performing two two-

generation analyses (intervals 0–2, and 3–5), and 3) perform-

ing three single-generation analyses (intervals 0–1, 2–3, and

4–5). In the limit of Ne � tn; the preceding argument sug-

gests that the sampling standard deviation of Ne for these

three schemes will scale approximately as 1.0:1.4:1.7. The

simulation results indicate that the increase in the sampling

standard deviation is reasonably consistent with the scaling

suggested above, but that the use of multiple estimates also

leads to downward bias in the mean estimate. Both features

may be a consequence of the positive covariance between

seemingly independent samples. An allele-frequency change

resulting from drift causes a correlated change in the denom-

inator of consecutive applications of equation (21) via the

effects on heterozygosity at the site. In principle, computa-

tionally intensive ML techniques might be constructed to al-

leviate this problem, but taken together, these and prior

analyses suggest that there are minimal advantages to doing

so.

Discussion

To ease the presentation, the formulations developed above

assumed a setting in which populations are sampled on a

timescale equal to generation length but are readily extended

to longer intervals. For example, if the sampling interval is

equivalent to D generations, to account for the temporal ac-

crual of selection effects, the estimated s should be divided by

D, and the estimated variance of s should be divided by D2.

Likewise, the estimated Ne would need to be multiplied by D,

as the effects of drift accumulate linearly with the number of

generations. The expressions for the standard errors of these

estimates would all have to be scaled in the same way, leaving

the coefficients of sampling variance unchanged. There are,

of course, alternative sampling schemes such as the fortuitous

acquisition of DNA samples from single individuals at uneven

intervals in the past. However, these do not easily lend them-

selves to the sampling theory outlined above, as there is ad-

ditional uncertainty on the number of generations between

intervals and even on lines of descent.

Our results demonstrate that although population geno-

mics offers opportunities for obtaining relatively accurate esti-

mates of previously elusive but key population-genetic

parameters, the sampling requirements for achieving such

ends remain substantial. As one example, Karasov et al.

(2010) have suggested that the current effective population

size of Drosophila melanogaster exceeds 108; more than an

order of magnitude larger than prior estimates. If one wished

to show by direct estimation that Ne is significantly >107 by

an order of magnitude, a standard error of the estimate of Ne

of about 45,000,000 would be required. From equation

(20b), generously assuming 106 informative neutral sites,

this requires that the product of the duration of the survey

Lynch and Ho GBE

452 Genome Biol. Evol. 12(4):443–455 doi:10.1093/gbe/evaa056 Advance Access publication March 29, 2020



(t, in generations) and the sample size at each point (n) exceed

6� 105, which is equivalent to fully genotyping 60,000 indi-

viduals at two time points separated by 10 generations.

Although such an extreme might be possible in the not too

distant future by pooled population sequencing to�100;000

� depth of coverage, pooled sequencing is compromised by

sequencing errors that obscure small frequency changes, as

well as by likely variation in the contributions of individuals of

different sizes to the pooled DNA. Thus, estimation of large Ne

almost certainly requires information on individual genotypes,

necessary for factoring out contributions from sequencing

errors (Lynch et al. 2014; Maruki and Lynch 2015).

Although the methods outlined above involving temporal

covariance of allele-frequency changes provide a formal basis

for testing whether temporal series of data are consistent with

a random-walk model, it should be noted that violations of

the null model need not imply the action of selection. For

example, in nonequilibrium situations, persistent migration

into a sampling site can lead to consistent directional changes

in allele frequencies across intervals. One of the most likely

problems, perhaps nearly unavoidable in natural settings, is

the presence of spatial heterogeneity within populations.

Owing to physical limitations on all organisms, nonrandom

dispersal can be expected to be the rule even in populations

uninfluenced by migration. Even if neutral, microlocale (spa-

tial) heterogeneity in allele frequencies will manifest as tem-

poral heterogeneity in a series of samples that do not fully

account for such structure. In a test tube of microbes, such

microheterogeneity might be eliminated by thoroughly mix-

ing the sample before sampling, but this is essentially impos-

sible for natural populations. Given that the shifts in allele

frequency generated by random genetic drift are very small

when Ne is large, even a small amount of any of these kinds of

biases can be problematical.

Assuming an absence of these kinds of problems, Buffalo

and Coop (2019) suggested that genome-wide patterns of

selection can be inferred indirectly by estimating the covari-

ance in temporal allele-frequency change of neutral markers.

Their proposed measure is closely related to the genome-wide

covariance method outlined above, except that they normal-

ize the measures of frequency change by dividing by

pð1� pÞ. The motivation of this method is the idea that the

expected covariance of allele-frequency change is zero in the

absence of linked selection, and that when the latter prevails,

alleles with larger frequency changes consistently exhibit such

behavior across intervals because they happen to be stochas-

tically associated with linked variants with greater fitness

effects. The magnitude of such associations depends on the

recombination rate among sites and on the time interval be-

tween surveys.

It is difficult to project the likely values of the scaled covari-

ance of frequency change with linked selection in natural

populations, but preliminary calculations by Buffalo and

Coop (2019) suggest that values well below 10�3 may be

common. This could present substantial challenges.

Rearranging equation (7) indicates that the expected standard

error of the temporal covariance of change in the null situa-

tion of no linked selection is ’ 1=ðn
ffiffiffi
L
p
Þ, where L is the num-

ber of polymorphic sites in the analysis. Assuming a sample

size of n ¼ 100; then if an observed measure of standardized

covariance is 10�3, rejection of the null hypothesis at the 5%

level would require L> 400, and for covariances of 10�4 and

10�5, the minimum number of sites grows to 40,000 and

4,000,000, respectively. These constraints are generous in

that they assume unlinked loci. If analyses were restricted to

bins of strongly linked region of markers, as might be the case

in searches for chromosomal regions under various levels of

selection, to a first-order approximation, L ’ 1; and the

expected standard error is ’ 1=n: The minimum sample

size for rejecting the null hypothesis is then on the order of

twice the reciprocal of the observed measure of covariance of

change. Thus, aside from the physical limitations of obtaining

completely random samples, the method of Buffalo and Coop

(2019) appears to be extremely demanding with respect to

required sampling effort.

There is also an issue with the view that linked selection will

always generate positive covariance of allele-frequency

change across generations. Even assuming that the selection

coefficients of all polymorphisms remain constant in time, it

can be seen from equations (9a and 9b) that for any strength

of selection, there is an inflection point in the rate of allele-

frequency change at p¼ 0.5 such that on opposite sides of

this point the expected rate of change (although always of the

same sign) will go from an acceleration to a deceleration

phase. This behavior, which is a simple consequence of the

frequency dynamics of selected alleles being proportional to

pð1� pÞ, means that even with constant selection, marker

alleles in different frequency classes are expected to yield dif-

ferent covariances of frequency change ranging from positive

to near-zero to negative. The extent to which such complica-

tions will obscure the expected signature of linked selection

will depend on the site-frequency spectrum of selected alleles

and the relative incidence and magnitude of positive and pu-

rifying selection. This raises questions about the interpretation

of the covariance of allele-frequency change, including

whether the neutral expectation of zero overall covariance

of change is also likely to arise emerge under some conditions

of selection.

Computationally intensive methods involving likelihood

and Bayesian frameworks are becoming increasingly popular

routes to estimating population-genetic parameters such as

Ne and s, separately or as the product Nes (Bollback et al.

2008; Malaspinas et al. 2012; Foll et al. 2015; Ferrer-

Admetlla et al. 2016). So far, the utility of these methods

has been primarily confined to situations involving very small

Ne (< 104) and large s (>0.05), conditions that do not com-

monly occur in natural populations of cellular organisms. A

potential advantage of likelihood methods that arises with
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large Nes or t=Ne is that these conditions raise the possibility

of allele-frequency estimates of 0.0 or 1.0, especially if sample

sizes are small. Such extremes lead to undefined method-of-

moment estimators but can in principle be factored into like-

lihood functions that attempt to account for the full sampling

distribution of alleles. Nevertheless, the latter types of meth-

ods do not supersede those outlined above or the statistical

limitations that we have highlighted. Indeed, even when s is

estimated in a Bayesian framework, the background Ne is still

frequently estimated with a genome-wide application of the

method of moments, equations (20–22), often without prior

testing for the neutral behavior of the underlying

polymorphisms.
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Appendix

Sampling Variance of the Mean Selection
Coefficient

As noted in the text, letting

ft ¼ ln
1� pt

pt

� �
; (A1a)

the expected evolutionary trajectory of allele frequencies

driven only by selection can be expressed as

ft ¼ f0 �
Xt�1

i¼0

si; (A1b)

with p0 being the frequency of the allele at time 0 (the first

sampling point) and a positive value of si implying that this

allele is favored in interval i. In the following, it is assumed that

there are T consecutive samples of the allele frequency,

indexed as i ¼ 0; 1; � � � ; T � 1; each based on a sample of n

diploid individuals. Throughout, estimates of parameters are

designated by a b symbol, with the estimate (bs) of the mean

selection coefficient, ls, being obtained by least-squares re-

gression of the observed transformed variables bft on t.

The concern here is with the variance in the estimate bs
resulting from evolutionary variation in nature (which is a func-

tion of r2
s , the variance in s around its expected value, assumed

here to be randomly distributed over time with independent

values across sampling time points) and sampling variance

(which is determined by the number of sample points, T,

and their sample size, n). From Lynch and Walsh (1998; eq.

A1.20a, with a correction for sampling bias that reduces the

effective sample size from T to T – 1), the formula for the

sampling variance of a regression coefficient leads to

r2ðbsÞ ’ r2ðbftÞ½1� q2ðbft ; tÞ�
ðT � 1Þr2

t

; (A2)

where r2ðbftÞ is the variance in the observed values of bft ;

qðbft ; tÞ is their correlation with t, and assuming T consec-

utive samples,

r2
t ¼
ðT � 1ÞðT þ 1Þ

12
: (A3)

As the sample estimate bft is equal to the sum of the pop-

ulation parameter ft and a sampling deviation, its sampling

variance has two components: 1) the evolutionary variance

due to actual changes by selection and 2) the additional var-

iance caused by finite numbers of individuals in the samples.

The evolutionary variance is defined as

r2
eðfÞ ¼ Eðf2Þ � ½EðfÞ�2; (A4)

where E denotes an expectation. Using equation (A1b),

EðfÞ ¼ 1

T

XT�1

t¼0

EðftÞ ¼ f0 �
ðT � 1Þls

2
: (A5)

The expected squared value is

Eðf2Þ ¼ 1

T

XT�1

t¼0

Eðf2
t Þ ¼

1

T

XT�1

t¼0

 
f0 �

Xt�1

i¼0

si

!2

; (A6a)

and allowing for temporal variation in s, this reduces to

Eðf2Þ ¼ f2
0 � f0lsðT � 1Þ þ l2

s ðT � 1Þð2T � 1Þ
6

þ r2
s ðT � 1Þ

2
: (A6b)

Substituting equations (A5 and A6b) into equation (A4),

r2
eðfÞ ¼

T � 1

2

� �
ðT þ 1Þl2

s

6
þ r2

s

� �
: (A7)

Note that this derivation assumes that drift has a negligible

effect on allele-frequency change during the time interval

ð0; T � 1Þ:
To obtain the additional variance inbft associated with finite

sample size, we make use of the fact that for each estimatebft ,

r2
s ðbftÞ ’

1

2nptð1� ptÞ
(A8a)

(Lynch 1987), where 2n is the number of alleles assayed in a

sample of n diploid individuals, so that the average sampling

variance over the time series is

r2
SðbftÞ ’

1

2Tn

XT�1

t¼0

1

ptð1� ptÞ

" #
: (A8b)
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This expression can be further expanded by noting from equa-

tion (A1b) that

pt ¼
1

1þ ft
; (A9)

where ft ¼ ½ð1� p0Þ=p0�e�lst : Using the fact that

1

p0ð1� p0Þ
¼ 1

p0
þ 1

1� p0
(A10)

then leads to

r2
SðbftÞ ’

p0

2Tnð1� p0Þ
XT�1

t¼0

estð1þ ftÞ2: (A11a)

For weak selection such that the allele frequency does not

change dramatically over time interval T,

r2
SðbftÞ ’

T � 1

2Tnp0ð1� p0Þ
: (A11b)

The final component of equation (A2) requiring an expres-

sion involves the covariance between bft and t,

rðbft ; tÞ ¼ Eðbft � tÞ � EðbftÞ � EðtÞ: (A12)

Noting that

Eðbft � tÞ ¼
f0ðT � 1Þ

2
� lsðT � 1Þð2T � 1Þ

6
; (A13)

and using equation (A5) and EðtÞ ¼ ðT � 1Þ=2 leads to

rðbft ; tÞ ¼ �
lsðT � 1ÞðT þ 1Þ

12
: (A14)

One can see from equations (A3 and A14) that the slope of the

regression rðbft ; tÞ=r2
t ; has expected value �ls:

Noting that equation (A2) expands to

r2ðbsÞ ’ 1

ðT � 1Þr2
t

� �
r2ðbftÞ �

r2ðbft ; tÞ
r2

t

" #
; (A15)

and substituting with the above expressions leads to equation

(10) in the main text.
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