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We developed a two-level statistical model that addresses the question of how properties

of neurite morphology shape the large-scale network connectivity. We adopted a

low-dimensional statistical description of neurites. From the neurite model description

we derived the expected number of synapses, node degree, and the effective radius,

the maximal distance between two neurons expected to form at least one synapse. We

related these quantities to the network connectivity described using standard measures

from graph theory, such as motif counts, clustering coefficient, minimal path length, and

small-world coefficient. These measures are used in a neuroscience context to study

phenomena from synaptic connectivity in the small neuronal networks to large scale

functional connectivity in the cortex. For these measures we provide analytical solutions

that clearly relate different model properties. Neurites that sparsely cover space lead to

a small effective radius. If the effective radius is small compared to the overall neuron

size the obtained networks share similarities with the uniform random networks as each

neuron connects to a small number of distant neurons. Large neurites with densely

packed branches lead to a large effective radius. If this effective radius is large compared

to the neuron size, the obtained networks have many local connections. In between

these extremes, the networks maximize the variability of connection repertoires. The

presented approach connects the properties of neuron morphology with large scale

network properties without requiring heavy simulations with many model parameters.

The two-steps procedure provides an easier interpretation of the role of each modeled

parameter. Themodel is flexible and each of its components can be further expanded.We

identified a range of model parameters that maximizes variability in network connectivity,

the property that might affect network capacity to exhibit different dynamical regimes.

Keywords: network connectivity, neuron morphology, theoretical model, neurite density field, graph theory, motifs

1. Introduction

We analyze how the low-resolution properties of single neuron morphology constrain the
connectivity within a large population of neurons. We develop a two-level framework that includes
details of single cell morphology while allowing the analysis of large populations of neurons as
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well as the derivation of compact analytical expressions for
most of the considered aspects of morphology and connectivity.
The presented framework can further be extended to take
into account additional aspects of neuronal morphology and
additional properties of connectivity.

In this work, single neurons and neurites are modeled
statistically. Each axon and each dendrite is represented by a
single neurite field, the probability distribution that describes
the density of the neurite branches within a limited area of the
neurite. This way each neuron consists of one neurite field for the
dendrite, one for the axon, and the parameter that determines
the average distance between the dendrite and axon centers. The
adopted neurite field model is discussed in the literature. The
studies in Snider et al. (2010) and Teeter and Stevens (2011)
propose a universal method to describe different neuronal types
based on the description of neurite fields of dendrites. A study in
Cuntz (2012) demonstrates how realistic neuronal morphologies
arise when dendrite segments, distributed according to Snider
et al. (2010), get connected using the optimal wiring principle.
In van Pelt and van Ooyen (2013) the realism of the obtained
synaptic distributions and connectivity probabilities was tested
for neurons modeled using density fields.

The use of graph theoretic measures to quantify neuronal
connectivity is a methodology adopted from the classical studies
of network theory. In various studies and different contexts,
it has been demonstrated how such measures can distinguish
between functionally different network types. The methodology
has been applied to very different networks, from computer
networks to social networks, and from gene regulatory networks
to neuroanatomy (Boccaletti et al., 2006). Theoretical studies,
on the other hand, focus on analysis of generic networks
of coupled oscillators demonstrating how statistical properties
of network connectivity change the overall dynamics of the
complex system. A particularly interesting question in such
studies is the search for connectivity that optimizes some aspects
of network functionality. Some commonly addressed concepts
include small-world networks that minimize the average distance
between network nodes while maximizing the cooperation
across the node neighborhood. Another concept is the scale-
free network that installs system dynamics on the edge between
order and disorder, thus maximizing the repertoire of dynamical
regimes that a system can exhibit as well as the information
diversity in the system (Boccaletti et al., 2006; Mäki-Marttunen
et al., 2011). Small-world networks were first introduced in
Watts and Strogatz (1998), and then addressed in other studies,
also in the neuroscience context (Boccaletti et al., 2006; Herzog
et al., 2007; Kriener et al., 2009; Voges et al., 2010; Sporns,
2011; McAssey et al., 2014). They were often examined in the
context of the large-scale recordings of whole-brain activity, or
the anatomical large-scale connectivity between brain regions
(Sporns, 2011). For the smaller-scale networks of individual
neurons it is relatively difficult to estimate the small-world
property as it requires tracking the synaptic connectivity between
neurons in large populations (particularly in order to estimate
path lengths). Most of the studies present in the literature
examine theoretical concepts through mathematical models,
or analyze functional connectivity estimated from recordings.

In our previous study, we examined a large repertoire of
connectivity measures aiming to find a consistent descriptor of
connectivity that has implications on network dynamics (Mäki-
Marttunen et al., 2013). Two measures were distinguished, the
clustering coefficient for networks with binary distribution of
node degrees, and maximal eigenvalue for networks with more
variability in the in-degree distribution.

In this study, we primarily focus on the estimation of
motif counts (Milo et al., 2002). Motifs represent minimal
networks with structured connectivity and are as such suitable for
experimental studies. In three previous studies, the non-random
distribution of motifs was demonstrated in small networks of
pyramidal cells (Song et al., 2005; Perin et al., 2011), and
also in networks of interneurons (Rieubland et al., 2014). The
implications of these non-random features of connectivity are
yet to be explained. Using a theoretical model we derived closed-
form expressions for motif counts that do not depend on the
network size, but only on the average density of neurons. In
addition, the clustering coefficient, that was already found to
significantly affect the network activity (Mäki-Marttunen et al.,
2013), can be straightforwardly computed from motif counts, as
demonstrated in what follows.

A relatively large part of the paper is dedicated to
analytical approach to solving the considered two-level model
as well as the obtained closed-form solutions. Understanding
different levels of organization in neuronal systems and the
interaction between those levels is a frequently discussed
issue in computational neuroscience literature (Frégnac et al.,
2007; Deco et al., 2008). Even the detailed single-level models
can become computationally exhaustive and complex, and
combining them into multilevel models leads to an explosion in
complexity that can obscure the interactions between particular
model components. A suggested alternative is the mean-field
approximation of each level before linking it to higher-levels
of organization (Deco et al., 2008; Sompolinsky, 2014). The
presented study complies with this methodology.We first analyze
the level of neurons in order to derive simple properties relevant
for the network level in themodel. In this way, the dimensionality
of that level is compressed, which provides the possibility of
deriving simpler expressions for the second level characteristics.

Several approximations were adopted when constructing the
model of this paper. The neurite structure is described statistically
and the fine details of neurite structure are lost. The fine patterns
of synaptic distribution are also averaged out. The organization
of neurons in the space is chosen to be simple and corresponds
to cell cultures more so than to the cortical tissue. Finally,
the activity-dependent synaptic reorganization is not considered
in this study. Synapses are formed solely based on geometry,
and the obtained connectivity corresponds more to potential
connectivity as defined in Stepanyants and Chklovskii (2005).
In the discussion, we will address some relevant properties of
neuronal systems that are not part of the model, and propose a
way to incorporate them in the presented framework.

The main result of this study are the analytical expressions for
several frequently addressed network measures, including motif
counts, clustering coefficient, and path length between network
nodes. We particularly addressed motif counts, as they represent
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the smallest possible networks with structured connectivity. As
they capture only the local properties of connectivity, they can
be measured experimentally, as demonstrated in Song et al.
(2005), Perin et al. (2011), and Rieubland et al. (2014). In
addition, the clustering coefficient can be straightforwardly
computed from motif counts. From the clustering coefficient
and path length, we computed small-world coefficients using
two definitions from the literature (Watts and Strogatz, 1998;
Telesford et al., 2011). The addressed connectivity measures
depend on several model parameters. Some of the parameters
contribute as multiplicative constants, while others show non-
linear relations to the considered measures. The most interesting
parameter is the ratio between the effective radius of a neurite and
the distance between the axon and dendrite centers of the same
neuron. The effective radius is the maximal distance that permits
a connection between two neurons. Depending on this ratio,
a network can have a connectivity similar to uniform random,
or similar to locally coupled network. The most interesting
situations are in between these two extremes, where the network
increases variability in its connectivity repertoire.

2. Methods

To address the principal goal of this study, in other words, to
analyze how neuronal morphology can affects connectivity in
large networks, we constructed a two-level model. The first level
specifies the anatomic properties of each neurite statistically,
by defining a probability distribution of neurite branches.
The probability distribution is non-zero only within a limited
area, the support of neurite distribution. This low-resolution
description of neurites was already analyzed in several studies
(Snider et al., 2010; Teeter and Stevens, 2011; van Pelt and van
Ooyen, 2013). It depends on a small number of parameters, four
for the two-dimensional neurites, and is suitable for the analysis
of large-scale network connectivity. The second level defines the
properties of the neuronal population. In order to emphasize
neuron morphology we selected the simplest network model, a
two-dimensional virtually infinite-size network with a uniform
distribution of neurons. Every pair of sufficiently close axon-
dendrite branches forms synapses, the number of synapses is
proportional to the axon-dendrite overlap (Peters’ rule, Peters
and Feldman, 1976; Peters et al., 1991). The obtained synapses
correspond to potential connectivity as defined in Stepanyants
and Chklovskii (2005). Activity dependent synapse formation
and pruning was not considered in this study, although it has
been shown to play an important role in remodeling synaptic
patterns. Including the activity-dependent mechanisms would
require a dynamical model with a more complex synapse
formation rule, eventually also described statistically. Activity-
induced modifications of neurite distribution might also be
considered. In this study, we wanted to analyze a simpler model
where the role of morphology was emphasized, as it is the most
stable among several properties that shape the connectivity in
large networks. The concepts presented here can be combined
with models of other relevant mechanisms, including the models
of network activity, e.g., the one described in Mäki-Marttunen
et al. (2013).

The first part of Methods Section gives a detailed description
of the analyzed model. The second part presents the analysis
of neurite distribution and shows how its properties determine
first-order connectivity statistics under the adopted synapse
connectivity rule. In the third part, we present closed-form
analytical expressions for the two network measures and an
iterative method to obtain another measure frequently addressed
in the literature (Sporns, 2011).

2.1. Model Description
The model consists of several components, including a neuronal
population description, single neuron and single neurite
description, and the rule for establishing contacts between
neurons (i.e., potential synapses). All these components are
illustrated in Figure 1.

2.1.1. Population of Neurons (Figure 1A)
Neurons are distributed randomly in the two-dimensional space
of the size L × L, where L is chosen to be much bigger than
the neuron size, thus making the space around each neuron
virtually infinite. The population of neurons is homogeneous, all
of the neurons have identical properties and they are randomly
oriented in space. The neurons are uniformly distributed in
space with the density equal to 1

l2
, i.e., a square of the size

l × l contains on average one neuron, which gives a total

of N = L2

l2
neurons. To avoid boundary conditions, the

edges of the surface are wrapped to form a torus and provide
virtually infinite space (which is illustrated in Figure 1A). The
model corresponds to the arrangement of neurons in dissociated
neuronal cultures. A model of the cortical tissue, on the other
hand, requires a non-uniform arrangement of neurons that
should follow the distribution of the considered cell types across
layers. In addition, the non-random orientation of neurons could
be imposed.

2.1.2. Neuron and Neurite Models (Figure 1B)
All of the neurons in the model are identical and consist of
two neurite fields, one for the (basal) dendrite and one for
the axon. The dendrite is centered in the soma and the axon
center is at a distance 1ad from the soma. For the uniform
distribution of somata and the random orientation of axons,
the distribution of axon centers becomes equal to the one of
somata. The neurites are modeled statistically, as a distribution
of neurite segments on a finite area, the distribution support. In
this study, we considered circular supports with a radius Ra for
axons and Rd for dendrites, where Ra ≥ Rd. We analyzed cases
with uniform and truncated Gaussian distributions of neurites,
described by density functions pa(x, y) for axons and pd(x, y) for
dendrites. The expression for the uniform distribution is given
by Equation (1) and for the truncated Gaussian by Equation (2),
with parameters (xa/d, ya/d)—the coordinates of the axon and
dendrite centers, σd, σa—the variances along both axes.

Ca/d = 1− exp

(

−
R2
a/d

2σ 2
a/d

)
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FIGURE 1 | (A) Population of neurons. Each neuron is illustrated as an

8-shaped surface (to make it more visible, one such surface is colored

blue). The population of neurons is homogenous, all of the neurons have

identical properties and they are randomly oriented. The population lays in

the planar space of the size L× L. The dimension L is chosen to be much

bigger than the size of the neurons. To avoid boundary conditions, the

plane is projected on a torus (indicated by four arrows). (B) Neuron and

neurite models. The axon (a) and dendrite (d) are modeled as density

distributions pa/d (x, y) on a limited circular support with radii Ra/d . The axon

and dendrite centers are at a distance 1ad . The example in (B) shows the

neurites modeled as truncated Gaussians with the parameters: (axon)

Ra = 500µm, σa = 0.9Ra, (dendrite) Rd = 200µm, σd = 0.7Rd , and the

distance between neurite centers 1ad = 400µm. The x and y axes are in

[µm], the z axis shows the value of density distribution for the given

coordinates (x, y). (C) Neurite segments and density fields. Each neurite

is divided into segments of length 2D, and a circle of radius D can be

circumscribed around the middle of the segment. For a dendrite with Nd
segments, the total dendrite length is Ld = 2DNd . Neurite distribution

describes the probability of finding individual segments within the neurite

support. It is derived by superimposing many neurites of the same type. (D)

Potential synapse formation rule. An axon-dendrite pair can form a

synapse if an axon segment crosses the near neighborhood of a dendrite

segment, the near neighborhood is a circle of radius D circumscribed

around the dendrite segment (blue circle in the figure). The dendrite

segment can form at most one synapse with the considered axon, but it

can at the same time form a synapse with every other axon that crosses its

near neighborhood (a dendrite segment with two synapses shown in the

figure, the two arrows indicate synapse positions).

are the normalization coefficients that compensate for the cut off
part of Gaussians. The presented results can be extended to more
general forms of density distributions and elliptic distribution
supports.

pa/d(x, y) =
{

1
R2
a/d
π
, (x− xa/d)

2 + (y− ya/d)
2 ≤ R2

a/d

0, else
(1)

pa/d(x, y) =



























1
2πσ 2

a/d
Ca/d

exp

(

− (x− xa/d)
2 + (y− ya/d)

2

2σ 2
a/d

)

,

0,

(x− xa/d)
2 + (y− ya/d)

2 ≤ R2
a/d

else

(2)

2.1.3. Neurite Segments and Density Fields

(Figure 1C)
We introduce the maximal number of neurite segments, Na for
axons and Nd for dendrites, for two reasons. First, this concept
allows us to compute the expected number of synapses between
an axon-dendrite pair, which is an important first step in the
derivation of the considered connectivity measures. Second, it

connects the individual neurites with the statistical description
of neurite fields, which is illustrated in Figure 1C. Each neurite
is discretized into segments of length 2D. In what follows we
will call D the unit length of a neurite, so each neurite segment
is two units long. If the total length of a neurite is La/d, then
La/d = 2DNa/d. The neurite field describes the probability of
finding every neurite segment inside the neurite support, and it
can be obtained by superimposing many neurites. We assume
that the dendrite center coincides with the soma center as we
represent all dendrite branches with the same density field.

2.1.4. Potential Synapse Formation Rule (Figure 1D)
We adopted a simple rule that forms synapses between a pair of
neurons independently from other neurons in the population,
the number of obtained synapses is proportional to the overlap
between the two neurites (Peters’ rule, Peters and Feldman,
1976; Peters et al., 1991). Consider a dendrite-axon pair, for
each dendrite segment we examine its near neighborhood, a ball
of radius D centered in the segment center (delineated with a
blue circle in Figure 1D). If there is any axon segment present
in this ball, the potential synapse between these segments is
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established. If there is more than one axon segment, only one,
randomly selected, of them will form a potential synapse with
the dendrite segment. Consequently, every dendrite segment
can form at most one potential synapse with the considered
axon, but it can simultaneously form potential synapses with
other axons that cross its near neighborhood. In the example
in Figure 1D, the near neighborhood of a dendrite segment is
crossed by two axons and two potential synapses are formed (the
blue arrows indicate positions of the potential synapses). This is
a rather mild constraint on the number of synapses and in a large
population of neurons the number of synapses per neurite can
become unrealistically high. Still, it is a reasonable assumption
when analyzing potential connectivity, as we are interested in
estimating the number of all possible contact places, which
is much bigger than the number of actually formed synapses.
Alternative rules that take into account all the available segments
from all the proximal axons can also be defined.

2.2. The Methodology Used to Analyze Neurites:
Connectivity between Axon-dendrite Pairs
2.2.1. Expected Number of Synapses per Neurite
From the neurite description and the adopted synapse formation
rule we derived the expression for the expected number of
synapses per neurite (S, Equation 3). The details of the derivation
of the expression are given in the Supplementary Material 1.
The same expression was already proposed in the literature to
estimate the number of synapses from neurite density fields
(Peters et al., 1991; Liley and Wright, 1994; van Pelt and van
Ooyen, 2013). In van Pelt and van Ooyen (2013), an equivalent
equation was derived using less strict assumptions about the
distribution of axonal field than the one adopted in our study.

S = NaNdD
2π

∫ ∫

�a∩�d

pa(x, y) pd(x, y) dx dy (3)

Replacing the expressions for neurite field distributions into this
equation gives the final formula for the expected number of
synapses

S =
NaNdD

2

R2π
· φ(ρ, η,M) =

4NaNdD
2

12π
ρ2φ(ρ, η,M). (4)

Here, R = Ra +Rd
2 is the average neurite radius, 1 is the

distance between the considered axon-dendrite pair of two
proximal neurons, ρ = 1

2R = 1
Ra +Rd

is the normalized

distance between the axon-dendrite pair, η = Ra −Rd
Ra +Rd

is the

asymmetry index that accounts for the different size of the axons
and dendrites, and M is the set of parameters that determine
the distribution of neurite segments. M is an empty set for a
uniform distribution andM =

{

σ, kσ
}

for the considered case of
truncated Gaussian distribution. Here, σ = σd

2R is the normalized
dendrite distribution variance, and kσ = σd

σa
is the ratio

between the dendrite and axon variances. In what follows, the
function φ(ρ, η,M) will be called distance-dependent expected
number of synapses as it describes the dependency between the
expected number of synapses and the axon-dendrite distance.
This function can be evaluated analytically for the uniform

distribution and numerically for the truncated Gaussians, all
relevant derivations are given in Supplementary Material 1
and the function is further discussed in Results Section. The
only requirement for this function is to be reversible, at least
partially. Similarly, the function ρ2φ(ρ, η,M) will be called
size-dependent expected number of synapses as it describes the
dependency on the average neurite size.

2.2.2. Computation of Node Degree and Effective

Radius from Neurite Field Distributions (Figure 2A)
Two neurons are expected to connect if their axon-dendrite
pair has S ≥ 1. The expected number of synapses depends
on the model parameters (Na,Nd,D,1,R) and the normalized
parameters ρ, η, and M. First we fix all the parameters except 1
(and ρ), and then we find themaximal axon-to-dendrite distance
1max (and ρmax) which satisfies the condition S ≥ 1. This
maximal distance is called the effective radius of a neurite and
its computation is illustrated in Figure 2A. The circle centered
in the neurite with the radius equal to the effective radius is
called the connectivity area. The effective radius integrates the
properties of both, the axon and the dendrite, and is consequently
equal for both types of neurites. Once it is computed, it
simplifies the analysis of network connectivity. Every neuron
can be represented as two circles of radius 1max with the
distance between the circle centers being 1ad. Different network
connectivity measures are computed from the intersection of
pairs of circles for several neurons.

S ≥ 1 ⇒
NaNdD

2

R2π
φ(ρ, η,M) ≥ 1

⇒ ρ ≤ φ−1
(

R2π

NaNdD2
, η,M

)

⇒ 1 ≤ 2R · φ−1
(

R2π

NaNdD2
, η,M

)

⇒ 1max = 2R · φ−1
(

R2π

NaNdD2
, η,M

)

(5)

The function φ(·) has to be invertible with respect to the first
argument. Here, φ−1(x, η,M) means the inverse of φ with
respect to argument x and with η andM considered as constants.
In case of uniform distribution, the function φ is monotonic
without discontinuities only for η ≤ ρ < 1. The analysis of
this case, shown in Results Section, confirms that the general
conclusions still apply.

Finally, the node degree, equal for all the neurons, can be
computed as a function of the effective radius. The average
number of output connections for a neuron is equal to the
average number of dendrite centers within the connectivity area
of its axon

ndegree =
12

maxπ

l2
=

4R2π

l2
ψ

(

R2π

2NaNdD2
, η,M

)

, (6)

where ψ(x, η,M) =
(

φ(x, η,M)−1
)2
.

2.2.3. Constraints on Model Parameters
So far, no constraints on model parameters were imposed,
but obviously a random choice in the 8-dimensional space
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FIGURE 2 | (A) Definition of the effective radius and the connectivity

area. The effective radius is the distance between an axon center A1 and a

dendrite center BX that satisfies the condition S̄(1) = 1. Every point within

the connectivity area of A1 is at a distance smaller than 1max from A1.

(B) Normalized coordinate system. The polar coordinate system is fixed

to the representative neuron N1 defined by its axon center A1 and dendrite

center B1. The coordinate center is in the axon center A1, and the

coordinate axis goes from A1 to the dendrite center B1. The angular

coordinate is measured counterclockwise from the coordinate axis. All radial

coordinates are normalized, i.e., divided by 1ad , so that B1 has coordinates

(0,1) and BX coordinates (αX , rmax ), where rmax =
1max
1ad

. (C) 2-Node motif

counts. The panel illustrates two steps in the computation of the expected

numbers of 2-node motifs. In the first step, the position of the dendrite center

B2 is chosen within the connectivity area of axon A1. In the second step,

axon A2 is chosen on the circle of radius 1 around B2 (the red dashed line).

The function κ1 gives the probability that A2 falls within the connectivity area

of B1, κ1 is determined by the angle between points B2, I and J. (D) 3-Node

motif counts. In the first step, the positions of two dendrite centers, B2 and

B3, are chosen within the connectivity area of axon A1. The second step

defines the position of axon center A2, placed on the circle of radius 1

around B2 (the dashed red line). Intersections of this circle with the

connectivity areas of dendrites B1 and B3 define functions κ1 (the red line), κ

(the orange line), and λ (the purple line), which are determined by the angles

∠B2IJ, ∠B2KL, and ∠B2JK, respectively. The expected number of motifs for

all three-node motifs can be computed considering different positions of A2

with respect to the connectivity areas of B1 and B3, and as a combination of

functions κ1, κ, and λ. (E) M2 and M9 counts: Computation of the

expected numbers of M2 and M9 requires additional steps. In the first step,

the axon center A3 is chosen within the connectivity area of B1. In the

second step, the dendrite center B2 is chosen in the connectivity area of A1

but outside the connectivity area of A3 (dark green area). In the third step, the

dendrite center B3 is chosen on the circle of radius 1 around A3 (the dashed

red line), but outside of the connectivity area of A1 (unshaded part of the

dashed red line). The fourth step is identical as the second step in (D).

{

D,Na,Nd,R, η, ρ, σ, kσ
}

can lead to unrealistic morphologies.
In this work, we will not search for biologically realistic
parameters using reconstructed neurons or detailed simulations

of neurites, e.g., using NETMORPH toolbox (Koene et al., 2009).
This will be addressed in our future work. Here, we only give a set
of weak conditions necessary for having feasible morphologies.

Frontiers in Neuroanatomy | www.frontiersin.org 6 June 2015 | Volume 9 | Article 76

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive


Aćimović et al. Neuron morphology and connectivity measures

Condition 1: Upper bound for the number of neurite

segments. Figure 1C illustrates the discretization of neurites into
segments of length 2D. A circle of radius D is circumscribed
around each such segment. As shown in Figure 1C, these circles
overlap only immediately after their branching points. As we
assume thatD is small compared to the average segment between
two branching points, we can also assume a small number of
overlapping circles compared to the total number of circles
covering a neurite. If, in addition, we assume that the number of
neurite segments should not be too dense, and that the neurites
tend to avoid self-intersections, we derive the following upper
bound for the number of neurite segments:

Nd ≤
R2
d
π

D2π
, Na ≤

R2aπ

D2π
.

Right sides of the equations give the approximate number of
circles of radius D inside the neurite of radius Rd/a. For the
truncated Gaussian we have an additional relation:

Na ≤ Na · f
(

Ra√
2σa

)

≤
R2aπ

D2π
, Nd ≤ Nd · f

(

Rd√
2σd

)

≤
R2
d
π

D2π
.

If we replace the parameters (Ra,Rd, σa, σd) with the normalized
parameters (R, η, σ, kσ ) the relation becomes:

Na ≤ Na · f
(

(1+ η)kσ
2
√
2σ

)

≤
(

(1+ η) R
D

)2

,

Nd ≤ Nd · f
(

1− η
2
√
2σ

)

≤
(

(1− η)R
D

)2

. (7)

The function f (x) = x2

1−exp(−x2) is derived in the Supplementary

Material (see Supplementary Material 1, derivation of Equation
4) for the upper bound ofNa. The relation forNd follows from the
same analysis when switching the roles of dendrites and axons.

Condition 2: Weak lower bound for the number of neurite

segments. Each neurite should have at least one connected
straight fiber. If the neurite radius is Rd/a, the fiber length should
be at least 2Rd/a. Clearly, a better approximation for a single fiber
would be elliptic support with a longer diagonal equal to Ra/d and
a shorter onemuch smaller than Ra/d. But, if we only consider the
circular support of neurites, as it is done in this study, the single
fiber of length 2Rd/a is approximated with a circle of the radius
Rd/a. Therefore, we have

Na ≥
2Ra

2D
, Nd ≥

2Rd

2D
. (8)

Condition 3: Connected network. In order to have a connected
network the following relation between themodel parameters has
to hold:

ndegree ≥ 1⇒ ψ

(

R2π

2NaNdD2
, η,M

)

≥
l2

2R2π
. (9)

Condition 4: The inverse of function φ. The model parameters
should be in the range of values where the inverse of φ exists:

0 ≤
R2π

2NaNdD2
≤ φmax(η,M). (10)

Condition 5: Upper bound for the expected number of

synapses. As each dendrite segment accommodates at most one
synapse with a proximal axon, the upper bound of S can be
estimated as the total number of circles of the radius D that can
be placed inside the axon-dendrite intersection area:

S ≤
‖�a ∩�d‖

D2π
.

In cases when the number of neurite segments is much smaller
than the neurite radius this upper bound allows more than one
synapse per neurite segment, so a more strict constraint should
be imposed:

S ≤ min{Na,Nd} ⇒ φ(ρ, η,M) ≤
R2π

2D2
·max

{

1

Na
,
1

Nd

}

.

(11)

2.3. The Methodology Used to Analyze Networks:
Statistical Measures of Network Connectivity
We analyze network connectivity by computing standard
statistical measures, such as motifs, clustering coefficient,
harmonic path length, and two versions of small-world
coefficient. Most of the section is dedicated to motifs, and the
expression for clustering coefficient directly follows from it. The
harmonic path length is computed using an iterative procedure.
Small-world coefficients are adopted from the literature (Watts
and Strogatz, 1998; Telesford et al., 2011) and will only be
described in brief. We compute the connectivity measures for
one fixed cell, the neuron N1, which is the representative of
all the neurons in the homogeneous population. We consider
all the other neurons (N2, N3,. . . ,Nk) that can form different
connectivity patterns with N1.

2.3.1. Coordinate System and Normalization

(Figure 2B)
The polar coordinate system is fixed to the neuron N1, with the
axon center A1 and the dendrite center B1. The center of the
coordinate system is in A1 and the coordinate axis follows the
direction from A1 to B1. The angular coordinate is measured
counterclockwise with respect to the coordinate axis and takes
values α ∈ [−π, π]. The radial coordinates are normalized,
i.e., divided by 1ad, so that B1 has the coordinates (0, 1), and
a dendrite center BX on the edge of connectivity area has

the coordinates
(

αX, rmax = 1max
1ad

)

1. Figure 2B illustrates the

described coordinate system2.

1To simplify the explanations in the text we sometimes use the notation for neurite

centers when talking about the corresponding neurites. For example, A1 could

stand for “the center of the axon of neuron N1” but also for “the axon of neuron

N1.” Since all neurons have equal properties, the only parameters that distinguish

them are the coordinates of their centers.
2The notation r is simultaneously used for radial coordinates in the coordinate

system of axon A1 and the axon-dendrite distances between A1 and other

dendrites, because these distances are at the same time radial coordinates in the

coordinate system of A1.
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2.3.2. Notation
The symbol BRx (X) is used to denote “a ball” or “a circular
neighborhood.” The subscript indicates the normalized radius,
and the center of the ball is given between brackets. If the center
X has the coordinates (αX , rX), the ball BRx (X(αx, Rx)) is a set of
all points X(α, r) such that

||A1X|| =
√

r2 + r2x − 2r rx cos(α − αx) ≤ Rx ·

This notation is also used to mark the connectivity area of a
neurite, for example Brmax (A) is the connectivity area of an axon
centered in A. If we replace the inequality in the expression above
with an equality the expression corresponds to the edge of the
ball, the circle CRx (X).

2.3.3. Expected Number of Two-Node Motifs

(Figure 2C)
Figure 2C illustrates the two-step method for computation of
two-node motifs. We consider two connected two-node motifs,
i.e., whether two neurons have a unidirectional (N1 → N2) or a
bidirectional (N1 ↔ N2) connection. For the bidirectional motif
we will use the notation M1 − 2, and for the unidirectional the
notation M2 − 2. In the first step (the left side of Figure 2C),
the position of the dendrite center B2 is chosen inside the
connectivity area of axon A1 which, according to the definition of
the connectivity area, results in the connection N1 → N2. From
the model definition, the axon-dendrite distance in a neuron is
fixed to 1ad (1 in the normalized coordinate system) and the
orientation of the neuron is random in the 2D space. Therefore,
for the fixed B2 the axon center A2 can take any position on the
circle of radius 1 centered in B2, C1(B2), with equal probability.
This circle is shown as a red dashed line on the right side of
Figure 2C. Given the set of possible positions of A2, we can
compute the probability that A2 falls inside the connectivity area
of B1, which would give a bidirectional connection between the
two neurons. This probability is proportional to the part of the
circle C1(B2) that falls inside the connectivity area around B1
(highlighted in Figure 2C), and is also described by the function
κ1. If A2 is outside the connectivity area of B1, the resulting motif
will be the unidirectional connection N1 → N2.

From this analysis we can estimate the probability that neuron
N2 forms a unidirectional or a bidirectional motif with the
neuronN1. To compute the expected number of two-node motifs
for N1 we should consider all the possible positions of B2 (and
consequently A2) within the connectivity area of A1, which is
done by integrating over all the coordinates B2(α2, r2) inside
the ball Brmax (A1). In addition, the expression obtained for the
motif M2 − 2 is multiplied by two as we should consider two
directions of the connection, N1 → N2 and N2 → N1. The
obtained expected numbers of motifs are given by the following
expressions:

NM1− 2 =
12

ad

2l2π

∫ rmax

0

∫ π

−π
κ1(α, r) r dr dα, (12)

NM2− 2 =
12

ad

l2π

∫ rmax

0

∫ π

−π
(2π − κ1(α, r)) r dr dα.

If the effective radius is larger than the axon-dendrite distance
in a neuron (1max > 1ad) the dendrite center B1 falls inside
the connectivity area of its axon A1. In the considered model,
the dendrite centers coincide with the somata and, in general
case, they should not be dimensionless. We neglect the finite
size of the somata assuming it to be much smaller than the
size of the neurite field and the connectivity area. If the somata
are not negligible, a correction needs to be applied in order to
exclude possibility that some dendrite center overlaps with B1.
The correction coefficients for all 2-node and 3-node motifs are
given in Supplementary Material 2.

2.3.4. The Definition of κ1 and κ

The function κ1 describes the probability that A2 falls inside the
connectivity area of B1, Brmax (B1), and is proportional to the
intersection between this connectivity area and the circle C1(B2).
The intersection is determined by the angle ∠B2IJ shown in
Figure 2C, this angle is entirely determined by the coordinates
of the dendrite centers B1(0, 1) and B2(α2, r2). Similarly, we can
define a more general function κ if we replace B1 with some other
dendrite center B3(α3, r3) with arbitrarily chosen coordinates.
This way we have κ1(α2, r2) = κ(α2, r2, 0, 1)

3. The function κ
is shown by the orange line in Figure 2D, and it is equal to the
angle ∠B2KL shown in the same panel

κ ′(α2, r2, α3, r3) = 2 arccos
(

1−r2max+d223
2d23

)

,

d23 = ‖B2B3‖ =
√

r22 + r23 − 2r2r3 cos(α2 − α3).

One special case has to be considered when defining κ ′. If
the distance between the dendrite centers is smaller or equal
to 1max − 1ad, i.e., if the circle C1(B2) entirely belongs
to the connectivity area of the other dendrite, the function
κ ′(·) becomes complex as its argument becomes larger than
1. However, the intersection angle in this case is 2π . This
special case is taken into account in the final definition
of κ(·):

κ(α2, r2, α3, r3) =














κ ′(α2, r2, α3, r3), |rmax − 1| < ‖B2B3‖ < rmax + 1
2π, ‖B2B3‖ ≤ rmax − 1, rmax ≥ 1
0, ‖B2B3‖ ≥ rmax + 1
0, ‖B2B3‖ ≤ 1− rmax, rmax < 1

(13)

2.3.5. Three-Node Connectivity Patterns (Figure 2D)
Figure 2D describes the two-step procedure needed to evaluate
the expected number of the majority of three-node motifs. In the
first step, two dendrite centers B2 and B3 are placed inside the
connectivity area of the axon A1, which ensures the connections
from N1 to N2 and N3. In the second step, the position of the
axon center A2 is chosen on the circle C1(B2) around the dendrite
center B2. The intersections of this circle with the connectivity
areas around B1 and B3 determine possible connectivity patterns
between the three neurons, and the lengths of these intersections

3The functions κ1 and κ are introduced as two separate notions in order to simplify

the notation in the equations that follow.
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are proportional to the probabilities of the connectivity
patterns.

The intersection C1(B2) ∩ Brmax (B1) defines the function κ1,
as in the case of 2-node motifs, which corresponds to the angle
∠B2IJ in Figure 2D and is colored red. The intersection C1(B2)∩
Brmax (B3) defines the function κ , a generalization of κ1, which
is shown in orange in Figure 2D and corresponds to the angle
∠B2KL. If the circle and both connectivity areas intersect, the
function λ is non-zero. This is shown in purple in Figure 2D and
corresponds to the angle ∠B2KJ.

If A2 falls inside the connectivity area around B1, but outside
of the connectivity area around B3, the neuron N2 will have a
bidirectional connection with N1 but no connection toward N3

(although, it is possible that it receives a connection from N3).
The probability for this is proportional to the function (κ1 − λ).
If A2 falls inside the connectivity area of B3, but outside the
one of B1, the neuron N2 receives a unidirectional connection
from N1, and also forms the connection with N3 (which might
be unidirectional or bidirectional, depending on the position of
axon A3). Finally, if A2 falls within the intersection between two
connectivity areas, neuronN1 has a bidirectional connection with
N2 and at least a unidirectional connection to N3.

The same analysis is repeated for the intersections between the
circle C1(B3), which defines the possible positions of the axon
center A3, and the connectivity areas around B1 and B2. This
gives the probabilities for the remaining connections. Finally, the
following probabilities correspond to the connectivity patterns
between the three neurons:

N2 → N1,N3:
1

2π
λ(α2, r2, α3, r3), (14)

N2 → N1, N2 6→ N3:
1

2π

(

κ1(α2, r2)− λ(α2, r2, α3, r3)
)

,

N2 → N3, N2 6→ N1:
1

2π

(

κ(α2, r2, α3, r3)

− λ(α2, r2, α3, r3)
)

,

N2 6→ N1,N3:
1

2π

(

2π − κ(α2, r2, α3, r3)

− κ1(α2, r2)+ λ(α2, r2, α3, r3)
)

,

N3 → N1,N2:
1

2π
λ(α3, r3, α2, r2),

N3 → N1, N3 6→ N2:
1

2π

(

κ1(α3, r3)− λ(α3, r3, α2, r2)
)

,

N3 → N2, N3 6→ N1:
1

2π

(

κ(α3, r3, α2, r2)

− λ(α3, r3, α2, r2)
)

,

N3 6→ N1,N2:
1

2π

(

2π − κ(α3, r3, α2, r2)

− κ1(α3, r3)+ λ(α3, r3, α2, r2)
)

.

The expressions on the right are divided by 2π , as the full circle
corresponds to the probability 1.

2.3.6. Definition of λ

The first step is to find the angular coordinates of the intersection
points between the circle C1(B2) and the edges of the two

connectivity areas, Crmax (B1) and Crmax (B3). These points are
indicated as I, J, K, and L in Figure 2D. The same is done for the
intersections between C1(B3) and the edges of connectivity areas
around B1 and B2. The following list summarizes these angles:

I(ϕ211 ), J(ϕ212 ): C1(B2) ∩ Crmax (B1),

K(ϕ231 ), L(ϕ232 ): C1(B2) ∩ Crmax (B3),

ϕ311 , ϕ
31
2 : C1(B3) ∩ Crmax (B1),

ϕ321 , ϕ
32
2 : C1(B3) ∩ Crmax (B2).

The angles ϕ211,2 and ϕ311,2 always exist as the corresponding
intersections exist for every B2 and B3 inside the connectivity
area of A1. The intersections ϕ231,2, ϕ

32
1,2 exist when rmax ≥ 1, but

for rmax < 1 an additional condition for the coordinates of B2
and B3 has to be imposed.

The function λ depends on the length of the arc between
these angles, which is independent of the choice of the reference
coordinate system. The simplest equations are obtained if we
translate the coordinate system from A1 to B2, then rotate it to
have the coordinate axis in the direction from B2 to B1. The
new coordinate center is B2, while B1 maintains the zero angular
coordinate. The first translation requires the following coordinate
transform

r̃ cos(α̃) = r cos(α)−r2 cos(α2), r̃ sin(α̃) = r sin(α)−r2 sin(α2).

The second rotation is done by subtracting the angular
coordinate of B1 in the translated system, equal to τ (0, 1, α2, r2),
from all other angles. The relations between the original
coordinates and the coordinates in the translated-then-rotated
system are:

r̃ =
√

r2 + r22 − 2r r2 cos(α − α2),
α̃ = τ (α, r, α2, r2)− τ (0, 1, α2, r2),

τ (α, r, α2, r2) = arctan

(

r sin(α)− r2 sin(α2)

r cos(α)− r2 cos(α2)

)

.

Function τ updates the angular coordinates after the translation
of the coordinate system to (α2, r2). In the new coordinate system
the intersecting angles between C1(B2) and Brmax (B3) are given as

ϕ̃231,2 = α̃3 ∓ arccos

(

1− r2max + r̃23
2r̃3

)

= τ (α3, r3, α2, r2)∓
1

2
κ(α3, r3, α2, r2).

All the relevant intersection angles are:

C1(B2) ∩ Crmax (B1): ϕ̃211,2 = τ (0, 1, α2, r2)∓
1

2
κ1(α2, r2),

C1(B2) ∩ Crmax (B3): ϕ̃231,2 = τ (α3, r3, α2, r2)

∓
1

2
κ(α3, r3, α2, r2),

C1(B3) ∩ Crmax (B1): ϕ̃311,2 = τ (0, 1, α3, r3)

∓
1

2
κ1(α3, r3),
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C1(B3) ∩ Crmax (B2): ϕ̃321,2 = τ (α2, r2, α3, r3)

∓
1

2
κ(α2, r2, α3, r3) = ϕ̃231,2.

Obtaining the length of the intersection arc from these angles
requires considering each possible mutual position of the three
angles. This problem was solved using the following procedure.
The four angles were sorted from smallest to largest into a vector
of angles ϕ̃(α2, r2, α3, r3). The sorted angles parcel the circle
C1(B2) into four arcs. For each arc we evaluated the distance
between its middle point and the two centers B1 and B3. If
both distances are smaller than rmax, it indicates that the whole
segment belongs to the intersection area Brmax (B1) ∩ Brmax (B3).
All the segments that passed this test were summed up to obtain
the function λ′(α2, r2, α3, r3). This function is non-zero when all
three circles intersect. If dendrites B1 and B3 do not overlap, the
function is zero. The function can be expressed as

λ′ =
∑

Cond. |φi − φj| · h(rmax − d1i,j) · h
(

rmax − d3i,j

)

Cond. : i = 1..4, j = mod(i, 4)+ 1,

dki,j =
√

(

1+ r̃2
k
− 2r̃k cos(φi + φj/2)

)

, k = 1, 3.

The function h(·) is the Heaviside function, equal to one if the
argument is positive and equal to zero otherwise. The variables
d1i,j and d3i,j are distances from the middle points of the four arcs

to the dendrite centers B1 and B3, respectively. The variables ϕi
are the sorted angles from the vector ϕ̃.

If C1(B2) does not intersect with dendrite B1 or B3, the
function λ′ is not defined, and the extension of the definition
given by Equation (15) is needed. The first case in the list
corresponds to the situation when all three circles intersect and
the length of the intersection angle is between 0 and 2π . When
‖B2B3‖ ≤ rmax − 1 the circle C1(B2) is inside Brmax (B3) and
λ = 2π . On the contrary, when ‖B2B3‖ ≤ 1 − rmax, the area
Brmax (B3) is inside C1(B2) and the function is zero. It is also zero
when ‖B2B3‖ ≥ 1 + rmax, i.e., when the circle and the area are
missing each other.

λ(α2, r2, α3, r3) =


















































































λ′(α2, r2, α3, r3), ‖B1B2‖ > rmax − 1
& |rmax − 1| < ‖B2B3‖ < 1+ rmax

κ1(α2, r2), ‖B1B2‖ > rmax − 1 & ‖B2B3‖ ≤ rmax−1

κ(α2, r2, α3, r3), ‖B1B2‖ ≤ rmax − 1
& |rmax − 1| < ‖B2B3‖ < rmax + 1

2π, ‖B1B2‖ ≤ rmax− 1 & ‖B2B3‖ ≤ rmax− 1

0, ‖B2B3‖ ≤ 1− rmax

0, ‖B2B3‖ ≥ rmax + 1

(15)

2.3.7. Minimal Set of Connectivity Patterns Needed to

Describe Three-Node Motifs, the Definition of Central

Node in a Connectivity Pattern
To compute the expected numbers of three-node motifs one
has to analyze all the possible connectivity patterns between
the three neurons N1, N2, and N3, each represented by two
circular connectivity areas, one for the dendrite and one the for
axon. Figure 3A shows the standard schematic representation of
the 3-node motifs (Milo et al., 2002), and Figure 3B shows all
the possible connectivity patterns between N1, N2, and N3 that
correspond to each of the motifs4. We will demonstrate how
this full list of patterns can be reduced to 10 representative ones,
sufficient to compute the expected counts for all the motifs. These
10 patterns are shown in red in the table and are also marked
with the star symbol. The choice of the patterns is somewhat
arbitrary and an alternative set can also be adopted, which should
not affect the obtained expected numbers of motifs. Reduction
to the minimal set of patterns also ensures that each pattern is
counted only once.

First, we need to introduce the notion of central node in the
motif, suppose it is N1. If N1 is central to the motifs M1, M3, M5,
M6, M8, M10, M12, and M13, both dendrite centers B2 and B3
belong to the connectivity area of axon A1, i.e., N3 ← N1 → N2

has to be included in the connectivity pattern. If N1 is central
to the motifs M4, M7, and M11, the situation is inverse, both
axon centers A2 and A3 have to belong to the connectivity area
of dendrite B1, i.e., N3 → N1 ← N2 has to be included in the
pattern. If N1 is central to the motifs M2 and M9, the neuron N1

is on the path fromN3 toN2, i.e.,N3→ N1→ N2 has to be part
of the pattern.

The definition of the central node for the three groups
of motifs is chosen to emphasize the similarities between the
connectivity patterns and to enable selection of the minimal set
of patterns. For example, the central node for M11 can be defined
the same way as for M1, but the adopted definition emphasizes
the similarity between M11 and M6. Following the definition
of the central node, all of the patterns are divided into three
sets, shown as three columns in Figure 3B. Column i contains
connectivity patterns where neuron Ni represents the central
node. Since all of the neurons in the network have the same
properties, the motif counts do not depend on the choice of the
central node. Therefore, for counting all the motifs that include
the neuron N1, it is sufficient to count the motifs where N1 is
central and multiply the obtained counts with a coefficient.

Motifs M1, M4, M8, and M13 have one possible pattern with
N1 as the central node, M2, M3, M5, M6, M7, M9, and M10 have
two, M11 and M12 have four, but only two should be considered
as the other two are repeated in columns two and three. If we
further analyze the pairs of patterns that appear in column one,
it is evident that one of them can be obtained from the other by

4To following calculation confirms that all patterns are included in the table. Each

pair of nodes forms one of the four types of connections (2 in one direction,

1 bidirectional, no connection), this gives 43 = 64 motifs and 54 of them are

connected motifs. In the table, some patterns repeat. Each motif M1, M4, and M8

corresponds to 3 different patterns. M2, M3, M5, M7, M10, and M12 correspond

to 6 patterns each. M6 and M11 correspond to 3 different patterns, M9 to 2, and

M13 to 1 pattern. This gives 54 patterns in total.
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FIGURE 3 | The schematic representation of all possible 3-node motifs.

(A) The standard representation of motifs (Milo et al., 2002). (B) All the

possible connectivity patterns between the three (fixed) nodes. Columns 1,2,3

in the table correspond to the nodes N1,N2,N3 being the central node in the

connectivity pattern. The complete list of 3-node connectivity patterns can be

reduced to the 10 representative patterns (highlighted in red), and only these

10 patterns are considered in computations of the expected motif counts.

switching the positions of N2 and N3. Therefore, it is sufficient
to consider only one of them, irrelevant which one is chosen
(here, we selected the first one). The reason is the following: in
order to create patterns from the first group the dendrite centers
B2 and B3 have to be inside the connectivity area of axon A1.
To compute all the motif counts, we have to consider every
possible position of B2 and B3 within Brmax (A1). Consequently,
both choices of coordinates B2 = (αa, ra), B3 = (αb, rb) and
B2 = (αb, rb),B2 = (αa, ra) are considered, as well as both
connectivity patterns that correspond to a certain motif. It can
also happen that B2= B3 or B2= B1 or B3= B1, but the number
of such examples is negligible, as shown in Supplementary
Material 2. To count all the occurrences of M2 and M9, we
put one dendrite center (B2 or B3) in the connectivity area of
axon A1, and one axon center (A3 or A2) in the connectivity
area of dendrite B1. Regardless of the neuron numeration, this
is sufficient to take into account every appearance of these two
motifs.

Next, consider motifs M1 and M4. One of them is obtained
from another by switching the orientation of all the connections.
This is equivalent to exchanging dendrites and axons, if motif
M1 requires B2 and B3 inside the connectivity area of A1,
then motif M4 requires A2 and A3 inside the connectivity area
of B1. Connectivity areas of dendrites and axons are equal,
which means that counts for M1 and M4 must be equal,
N (M1) = N (M4). The same holds for motifs M3 and M7,
and also for M6 and M11. Consequently, M4, M7, and M11
do not need to be considered separately. This completes the
search for the minimal set of patterns that are shown in red in
Figure 3B.

Once the counts for the 10 representative patterns are
computed, the final motif counts are obtained by multiplying
them with the following coefficients: 3 for M2, M3, M5, M7,

M10, and M12, 1.5 for M1, M4, M6, M8, and M11, 1 for M9,

0.5 for M13. The first set of motifs is multiplied by 3 in order
to take into account three possible choices of the central node.
There is no need to take into account two different patterns
for each central node because that is already accounted for by
considering all the possible coordinates of B2 and B3, as described
in a previous paragraph. Motifs M1, M4, M8 are multiplied by
3
2 , because each central node corresponds to only one pattern.
Consequently, the procedure that takes into account all possible
positions of B2 and B3 leads to counting every pattern twice.
Closer inspection of the patterns for M6, M10, and M11 shows
that each pattern in the table in Figure 3B repeats twice, e.g.,
for M6, pattern 1 for N1 as the central node is equal to pattern
2 for N2 as the central node. If we multiply the motif counts
for central node N1 by 3, in order to take into account other
choices of central nodes, we actually consider each pattern twice.
So the counts should be additionally divided by 2. Next, motifs
M9 and M13 are circular and any choice of the central node
gives the same pattern. So there is no need to multiply the counts
obtained for N1 by 3. In addition, M13 has only one pattern that
corresponds to N1 as the central node, so the count should be
additionally divided by 2.

2.3.8. The Expected Number of Motifs M1, M3, M5,

M6, M8, M10, M12, and M13
The expressions for the expected number of 3-node motifs are
obtained by combining Equations (14) with the procedure for
computing the expected number of 2-nodemotifs. Equations (14)
give probabilities for different types of connections fromN2 toN1

and N3, and also from N3 to N1 and N2. The probability for each
connectivity pattern from Figure 3 is obtained bymultiplying the
probability of the appropriate connection from N2 to N1 and N3

with the probability of the connection from N3 to N1 and N2.
These probabilities are defined for any pair of coordinates of B2
and B3. In order to form any of the listed motifs, B2 and B3 have
to be inside the connectivity area of A1, which defines the range
of their coordinates: in the coordinate system fixed to A1, the
angular coordinates α2 and α3 take all the possible values and
the radial coordinates r2 and r3 have to be smaller than rmax.
Similarly, as in the case of 2-node motifs we should integrate
the expressions for the probabilities of connectivity patterns over
all the possible coordinates for both B2 and B3, i.e., over two
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pairs of coordinates. This results in a quadruple integral, and the
coefficient in front of the integral is the square of the coefficient
obtained for the 2-node motifs.

The following expression (Equation 16) gives the expected
number of the representative connectivity patterns for the
motifs from this group. The total motif counts are obtained
by multiplying them with the coefficients given in the previous
section.

NMi =
14

ad

l4

∫ π

α2 =−π

∫ rmax

r2 = 0

∫ π

α3 =−π

∫ rmax

r3 = 0
ni(α2, r2, α3, r3)r2 r3 dr2 dr3 dα2 dα3 (16)

The expression NMi corresponds to the motif Mi, and depends
on the function ni(α2, r2, α3, r3):

n1(α2, r2, α3, r3) =
1

4π2
·
(

2π − κ1(α2, r2)− κ(α2, r2, α3, r3)+ λ(α2, r2, α3, r3)
)

·

·
(

2π − κ1(α3, r3)− κ(α3, r3, α2, r2)+ λ(α3, r3, α2, r2)
)

,

n3(α2, r2, α3, r3) =
1

4π2
·
(

κ1(α2, r2)− λ(α2, r2, α3, r3)
)

·

·
(

2π − κ1(α3, r3)− κ(α2, r2, α3, r3)+ λ(α3, r3, α2, r2)
)

,

n5(α2, r2α3, r3) =
1

4π2
·
(

κ(α2, r2, α3, r3)− λ(α2, r2, α3, r3)
)

·
(

2π − κ(α3, r3, α2, r2)− κ1(α3, r3)+ λ(α3, r3, α2, r2)
)

,

n6(α2, r2α3, r3) =
1

4π2
· λ(α2, r2, α3, r3) ·

(

2π − κ1(α3, r3)− κ(α3, r3, α2, r2)+ λ(α3, r3, α2, r2)
)

,

n8(α2, r2α3, r3) =
1

4π2
·
(

κ1(α2, r2)− λ(α2, r2, α3, r3)
)

·
(

κ1(α3, r3)− λ(α3, r3, α2, r2)
)

,

n10(α2, r2α3, r3) =
1

4π2
·
(

κ1(α2, r2)− λ(α2, r2, α3, r3)
)

·
(

κ(α2, r2, α3, r3)− λ(α3, r3, α2, r2)
)

,

n12(α2, r2α3, r3) =
1

4π2
· λ(α2, r2, α3, r3) ·

(

κ1(α2, r2)− λ(α3, r3, α2, r2)
)

,

n13(α2, r2α3, r3) =
1

4π2
· λ(α2, r2, α3, r3) · λ(α3, r3, α2, r2).

From the definition of κ , κ1, and λ, all the functions
ni have discontinuities and therefore cannot be integrated
straightforwardly. The problem was solved by dividing the entire
domain of integration into sub-domains where the functions
are continuous. Then, the integration was performed for each
sub-domain and the total motif count is obtained by summing
up all of the obtained values. The details are presented in
Supplementary Material 2.

2.3.9. The Expected Number of Motifs M4, M7, M11
From the previous discussion, these values are equal to the
expected number of motifs M1, M3, and M6, respectively.

2.3.10. The Expected Number of Motifs M2 and M9

(Figure 2E)
The computations for motifs M2 and M9 require a four-step
procedure illustrated in Figure 2E. First, the axon center A3,
given by coordinates (αa3 , r

a
3), is chosen inside the connectivity

area of dendrite B1. Next, the dendrite center B2 with coordinates

(α2, r2) is chosen inside the connectivity area of A1, but outside
of the connectivity area of A3 (the dark green area in Figure 2E).
This results in the connectivity pattern N3 → N1 → N2, a
necessary condition for both motifs M2 and M9. In the third
step, the dendrite center B3(α3, r3) is chosen on the circle
C1(A3), but outside the connectivity area of A1, i.e., in the
domain D(B3) = C1(A3) \ Brmax (A1). This way, the bidirectional
connection between N1 and N3 is avoided. If C1(A3) entirely

belongs to the connectivity area of A1, motifs M2 and M9
are impossible. Therefore, an additional condition for the

coordinates of A3 is: ra3 > rmax − 1. In the final step, axon A2
is chosen on the circle C1(B2). Same as before, the intersection
between this circle and the connectivity areas of B1 and B3 defines
the probabilities to form motifs M2 and M9. These probabilities
are expressed using functions κ1, κ , and λ. Motif M2 emerges if
A2 falls outside of both connectivity areas, while M9 emerges
if A2 falls inside the connectivity area of B3, but outside the
one of B1.

The expected numbers of motifs M2 and M9 are computed
similarly as before. The probabilities of the representative
connectivity patterns are integrated for all possible positions of
A3 and B2. In addition, we have to take into account all the
positions of B3, which adds the fifth integral to the equations. The
easiest way to evaluate this innermost integral is by translating
the coordinate system from A1 to A3, to simplify expressions
for the coordinates of B3 in D(B3) = C1(A3) \ Brmax (A1). The
outer quadruple integral is evaluated in the coordinate system of
A1. The obtained expressions for the expected number of motif
counts are:
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NM2/M9 =
14

ad

l4

∫ ∫

(αa3 ,r
a
3)

∫ ∫

(α2,r2)
n2/9(α2, r2, α

a
3 , r

a
3) r2 r

a
3 dr2 dr

a
3 dα2 dα

a
3 , (17)

n2(α2, r2, α
a
3 , r

a
3) =

1

4π2

∫

D(B3)

(

2π − κ1(α2, r2) − κ(α3, r3(α3), α2, r2) + λ(α2, r2, α3, r3(α3))
)

dα3,

n9(α2, r2, α
a
3 , r

a
3) =

1

4π2

∫

D(B3)

(

κ(α3, r3(α3), α2, r2) − λ(α2, r2, α3, r3(α3))
)

dα3.

2.3.11. Clustering Coefficient (CC)
Clustering coefficient quantifies the density of connections in
the local neighborhood of each network node. The percent of
connected neighbors is estimated for each network node, and
the average over all nodes represents the clustering coefficient
(Watts and Strogatz, 1998; Boccaletti et al., 2006). A global
measure related to the clustering coefficient is transitivity (Watts
and Strogatz, 1998; Boccaletti et al., 2006) which estimates
the number of triangles among all the connected triplets in a
network. Here, we consider a simple case of identical neurons
(network nodes) uniformly distributed in a planar space without
boundaries. The clustering coefficient of the resulting network is
identical to the local clustering coefficient of each node. Similarly,
the global transitivity measure reduces to the measure evaluated
for a single node. We employ one possible extension of the
original clustering coefficient (for undirected networks) to the
case of directed networks (Boccaletti et al., 2006; Sporns, 2011;
Telesford et al., 2011; Mäki-Marttunen et al., 2013):

CCN1 =
1

4 · nneighbors(nneighbors − 1)

×
N
∑

i= 2

i− 1
∑

j= 2

(M1i +Mi1) · (M1j +Mj1) · (Mij +Mji). (18)

The expression holds for a network ofN nodes where each node
has nneighbors neighbors. The values Mij describe the presence or
absence of a connection between nodes i and j, Mij = 1 if a
connection from i to j exists andMij = 0 otherwise. This equation
can be re-written as a linear combination of motif counts. We
can group all pairs of neighbors of node N1 according to the
motif they form. The number of pairs in each group is equal
to the corresponding motif count. Each motif count should be
multiplied with the coefficient determined by the product from
the summation above. Clearly, if a motif has two unconnected
nodes (like M1 or M2) the coefficient is zero. For M5 and M9 the
coefficient is 1, for M6, M10, M11 it is 2, for M12 it is 4, and for
M13 it is 8. From the previous derivations, the expected motif
counts are given by the values 3NM5 for M5, 1.5NM6 for M6,
NM9 for M9, 3NM10 for M10, 1.5NM11 for M11, 3NM12 for M12,
0.5NM13 for M13. The number of neighbors can be expressed
using the expected 2-node motif counts, nneighbors = NM1−2 +
NM2−2, as the sum of unidirected and bidirected connections
that start or end in N1. The equation for the expected clustering
coefficient becomes

CCn = 3NM5 + 3NM6 +NM9 + 6NM10 + 3NM11

+ 12NM12 + 4NM13

CCd = 4(NM1−2 +NM2−2)(NM1−2 +NM2−2 − 1)

CC = CCn/CCd (19)

2.3.12. Path Length
The path length PLij from neuron Ni to neuron Nj is equal to the
minimal number of edges on a traversable path between them. If
the neurons are unconnected then PLi,j = ∞. If PLi,j = k > 1,
no direct connection between the two neurons exists. Instead,
the path from one of them to the other goes through k − 1
other neurons. We compute the harmonic path length (Watts
and Strogatz, 1998; Boccaletti et al., 2006; Mäki-Marttunen et al.,
2011), the harmonic mean over the shortest path lengths for
all the pairs of neurons in the network. In the population of
identical, randomly oriented and uniformly distributed neurons,
this coefficient becomes equal to the harmonic path length
computed for one fixed neuron, for example neuron N1, as
follows

PL−1 =
1

N − 1

N
∑

i= 2

1

PL1,i
.

Instead of computing the harmonic mean we use an equivalent
expression for the expected harmonic path length

PL−1 =
+∞
∑

k= 1

1

k
· P(PL = k). (20)

There, P(PL = k) is the probability that the shortest path fromN1

to some other node goes through k direct edges, i.e., through k−1
other nodes. For sufficiently large networks, the mean converges
toward the expected value, which should hold for the considered
model. In the derivations that follow, all the coordinates are
expressed in the coordinate system fixed to neuron N1, as it was
described before. In this coordinate system, the path length from
N1 to a specific neuron NX depends only on the radial but not on
the angular coordinate ofNX , so we can fix the angular coordinate
to αX = 0 and consider only the neurons along the coordinate
axis.

The probability of the shortest path length P(PL = k) is
computed using the following expression

P
(

PL = k
)

=
2π12

ad

l2N

∫

rX

(

P(PL ≤ k | rX)

−P(PL ≤ k− 1 | rX)
)

rX drX. (21)

where the integration is done over the radial coordinate rX .
The integrated function is the joint distribution of path length
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and radial coordinate. The joint distribution is expressed as
the product of the shortest path length distribution conditioned
on the radial coordinate and the probability that a dendrite
center has such radial coordinate. The probability of having
a radial coordinate rX is simply expressed as the number of
dendrite centers within a ring with the radius rX divided by
the total number of neurons N . The path length distribution
conditioned on the radial coordinate is expressed using another
conditional probability, P(PL ≤ k | rX). For the fixed
radial coordinate, this probability shows how likely is that
the shortest path length of the considered neuron does not
exceed k.

The last conditional probability is obtained from the following
analysis. Consider a neuron NX and fix its dendrite center to rX .
If it has the shortest path length at most k, then there must be one
other neuron that connects to NX , i.e., that has its axon center
within the connectivity area of the dendrite BX , and that has the
shortest path length no bigger than k− 1. Clearly, this is opposite
to the statement that every neuron either does not connect to NX

or has the shortest path length bigger than k−1. If we express this
formally, as probabilities of the described events, and consider all
neurons independent on each other we can write the conditional
probability as

P
(

PL ≤ k | rX
)

= 1− (1− ν(k− 1|rX))N−2. (22)

The last equation depends on the assisting function ν(k − 1|rX).
If we consider one particular neuron with the fixed coordinates,
the probability that it connects to NX and has the path length
at most equal to k − 1 is described by ν(k − 1|rX). Finally,
this function can be expressed as a function of the conditional
probability

ν(k−1 | rX) =
12
ad

2π l2N

∫

r

∫

α
P(PL ≤ k−1 | r) · κ(α, r, 0, rX) · r dr dα.

(23)

The expressions for the conditional probability and the ν-
function form a pair of iterative equations that should be
computed for all feasible values of k. The definition of
connectivity area gives the initial condition for these equations

P (PL ≤ 1 | rX) =
{

1 rX ≤ rmax

0 rX > rmax

The obtained expressions are different from the methodology
used for motif counts or clustering coefficient. The harmonic
path length represents a global measure of network structure
and consequently depends on the total number of neurons
in the population. The equations derived here are carefully
analyzed in Supplementary Material 3. Every step in the
presented procedure is illustrated. An equivalent model
is simulated and the results from the theoretical model
(from this section) and the simulated model are shown
alongside.

2.3.13. The Small-World Coefficient
The clustering coefficient and the shortest path length are
sufficient for the computation of the small-world coefficient.
We consider two different definitions. The classical definition
of the small-world coefficient (Watts and Strogatz, 1998) is the
following:

SWws =
CC/CCrandom

PL/PLrandom
.

Here, the clustering coefficient CC and the shortest path length
PL of the considered network are compared to those of a uniform
random network. In a small-world network, the clustering
coefficient should be relatively high, similarly to the situation
in lattice networks, while the path length should be short,
similarly to the case of uniform random networks. Therefore,
the SW coefficient should be close to one for the uniform
random networks and much bigger than one for the small-world
networks.

Additionally, we consider another definition from the
literature introduced in Telesford et al. (2011) that compares
a network with both, uniform random and locally coupled
networks

SWq =
PLrandom

PL
−

CC

CClocal
. (24)

For a network similar to the uniform random one, the first factor
PLrandom

PL should be close to one while the second factor CC
CClocal

becomes very small as uniform random networks have a much
smaller clustering coefficient than locally coupled networks.
Therefore, SWq is positive and close to one. For a network similar
to a locally coupled network, the first factor is small, as the PL of
such networks is much larger than in random networks, while
the second factor is close to one. The coefficient SWq is negative
and close to minus one. In case of small-world networks, both
the first and the second factor are close to one and SWq is close
to zero.

2.3.14. Locally Coupled Networks
The locally coupled networks are generated to correspond to
the extreme situation in our model, the overlapping axon and
dendrite centers (1ad = 0). The number of N nodes is
uniformly distributed in the two-dimensional space (of size L ×
L) with the density equal as before

(

i.e., equal 1
l2

)

. The two-

dimensional space is projected on a torus to avoid boundary
conditions. The number of nodes is sufficiently bigger than
the maximal considered node degree. A node is connected to
every other node inside its connectivity area, which gives the
node degree according to Equation (6). A network generated
this way has only bi-directional connections and can express
only motifs M2-1, M8, and M13, we call it “strictly locally
coupled network.” To increase variability in motif counts and
still maintain the properties of a locally coupled network, we
removed 10% randomly selected connections and established
them with the nearest neurons outside the connectivity area, we
refer to it as “locally coupled network with 10% of non-local
connections.”
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2.3.15. Uniform Random Networks
These networks are generated in a standard way. Each connection

is set with the probability p = ndegree
N

independently on other
connections. Clearly, the finite size of these networks raises
some issues. In the analyzed model networks, the total number
of nodes is explicitly considered only when computing path
length through the network. The network is considered virtually
infinite. There is no boundary conditions and each node has
an equal number of available neighbors. In the locally coupled
networks, as described above, a comparable model is provided
by choosing a large enough network and projecting it on a
torus. In uniform random networks, the problem is somewhat
more difficult because the network size determines probability
of connection, the parameter that affects all considered network
measures. In the results presented here, we fix the network size
and the probability of connection solely varies with the node
degree.

3. Results

The results of the model analysis are divided into two parts,
similarly to the model description. In the first part, the properties
of neurite morphology are related to the connectivity between
pairs of neurons. Quantitative measures such as the expected
number of synapses, the effective radius of the connectivity area,
and the node degree are derived as functions of the neurite model
parameters. In the second part, the concept derived in the first
step, the effective radius, is related to the typical measures used
to quantify connectivity in networks, motif counts, clustering
coefficient, path length, and small-world coefficient. This way
we divided the initial question, how the properties of neurite
morphology affect connectivity in large networks, into two easier
goals that better explain the role of different aspects of the model.

3.1. The Expected Number of Synapses
In this section, we show how the expected number of synapses
S depends on the neuron model parameters. We give the
general expression for this dependency in Methods Section by
Equation (4). The derivation of S̄ is given in Supplementary
Material 1. We consider the neurites with circular support,
i.e., with neurite segments distributed inside the circle of
radius Ra for axons and Rd for dendrites, and with one
of the two forms of distributions, uniform or truncated
Gaussian. The truncated Gaussians have equal variances along
the two dimensions and the zero cross-covariance, the cases
that simplify computations. Neurite distributions are described
by the parameter set M, which is an empty set for the
uniform distribution and contains normalized parameters M =
{σ, kσ } for the truncated Gaussians. The presented methodology
can be applied in more general situations, for neurites with
elliptic support and a general form of truncated Gaussian
distribution.

According to Equation (4), S̄ depends linearly on the number
of axon and dendrite segments,Na andNd, and also on the square
of the unit length D. It has a non-trivial dependency on the
axon-dendrite distance 1, on the average neurite size R, and on
their ratio, the normalized axon-dendrite distance ρ. In addition,

it depends on the asymmetry index η, the parameter that
quantifies asymmetry between the size of axons and dendrites.
This parameter takes values from the interval η ∈ [0, 1], for
η = 0 the dendrite and axon radii are the same (Ra = Rd), and for
η → 1 the axons are much bigger than dendrites (Ra >> Rd).
In the considered model, the axons are always bigger than the
dendrites. Finally, S̄ depends on the neurite density distributions
and the set of normalized parametersM.

3.1.1. The Expected Number of Synapses as a

Function of Axon-Dendrite Distance (Figures 4A–D)
We first show how S̄ depends on the axon-dendrite distance
and on the normalized axon-dendrite distance by fixing all the
other parameters. This way the expected number of synapses
becomes proportional to the function φ(ρ, η,M), consequently
called the distance-dependent expected number of synapses.
This is illustrated in the left column in Figures 4A–D. Different
panels correspond to different distributions of neurite segments,
which are indicated on each panel along with the distribution
parameters. The x-axis in Figures 4A–D shows the axon-
dendrite distance (1 ∈ [0,Ra + Rd]) and the normalized axon
dendrite distance (ρ ∈ [0, 1]). Four different cases in each panel
correspond to different values of the asymmetry index (values
for the asymmetry index and the color code are indicated in
Figure 4).

Figure 4A illustrates the expected number of synapses
obtained when both the axon and dendrite have uniform
distribution of neurite segments. In this case, the function is
determined solely by the overlap between neurites, i.e., by the
parameters that determine the overlap, the (normalized) axon-
dendrite distance and the average neurite size. For ρ ≤ η,
i.e., 1 ≤ Ra − Rd, the dendrite is entirely inside the axon
and the expected number of synapses is maximal. As the
axon-dendrite distance increases further, the overlap between
the two neurites decreases until it vanishes for ρ > 1, i.e.,
for1 > Ra + Rd.

Figures 4B–D show three typical results obtained for axons
and dendrites modeled as truncated Gaussians. When neurite
segments are evenly distributed across the neurite support, i.e.,
when the distribution variances are similar or larger than the
neurite radii, the size of the axon-dendrite overlap dominantly
determines the shape of distance-dependent expected number
of synapses. The resulting function, shown in Figure 4B, is
somewhat similar to the case obtained for the uniform density
distributions from Figure 4A. For ρ ≤ η the function slowly
decreases (unlike the case in Figure 4A where it is constant),
while for ρ > η it decreases faster until it becomes zero. If one
of the variances is similar to the average neurite size and the
other is much smaller, the expected number of synapses behaves
like an example in Figure 4C. The decrease from the maximal
to zero value is much faster than in the case of Figure 4B. The
presented example resembles a bell-shaped curve, but for some
other model parameters the decrease can be even faster and result
in a step function. The reason for this behavior is the following:
one of the neurites has a small distribution variance, which
means that the majority of neurite segments gets concentrated
around the center of the neurite field. In this case, the increase
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FIGURE 4 | Expected number of synapses. Left column:

Distance-dependent expected number of synapses [φ(ρ, η,M)] as a function

of the axon-dendrite distance (1), and consequently the normalized

axon-dendrite distance (ρ). When all the parameters but 1 are fixed this

function is equal to the expected number of synapses up to a multiplicative

constant. Right column: Size-dependent expected number of synapses

[ρ2φ(ρ, η,M)] as function of the average neurite radius R and the inverse of

the normalized axon-dendrite distance (1/ρ) which is proportional to the

average neurite radius. When all the parameters but the average neurite

radius are fixed this function describes the expected number of synapses up

to a multiplicative constant. The functions are shown for four values of the

asymmetry index (η), dark blue, η = 0.1; blue, η = 0.3; red, η = 0.6; yellow,

η = 0.8. (A,E) are obtained for the uniformly distributed axon and dendrite

segments. (B–D, F–H) show three typical examples obtained for the

truncated Gaussian distribution of neurite segments, and the normalized

parameters of the distribution are indicated on each panel.

in the distance between neurite centers decreases the distance-
dependent expected number of synapses much faster than in
the example in Figure 4B. When the neurite centers are close,
the majority of neurite segments can form synapses, which gives
maximal connectivity. For all axon-dendrite distances, when the
neurite with small variance stays inside the area of other neurite,
the number of synapses is high. But, when it approaches to the
edge of the other neurite the majority of its segments becomes
unavailable for creating synapses, so the expected number of
synapses quickly decreases. If both the axon and dendrite have
small variances, the expected number of synapses is a very narrow
bell-shaped curve, as shown in Figure 4D. Both neurites have
a majority of segments located around the neurite centers. As
soon as those centers move apart, the probability of connection
drops to almost zero. In this case, the neurite asymmetry index
does not affect the expected number of synapses as much as in
the other cases because narrow distributions effectively decrease
neurite radii.

3.1.2. The Expected Number of Synapses as a

Function of the Average Neurite Size (Figures 4E–H)
The relation between S and the average neurite size is examined
by fixing all the parameters except R. The dependency is

described by function ρ2φ(ρ, η,M), named the size-dependent
expected number of synapses, and illustrated in the right column
in Figures 4E–H. The x axis shows the inverse of the normalized
axon-dendrite distance on the interval 1

ρ
∈ [1,+∞) and the

average neurite radius on the interval R ∈
[

1
2 ,+∞

)

. The same
neurite distributions and the same values of the asymmetry index
are considered as in Figures 4A–D.

The size-dependent expected number of synapses is
determined by two opposing mechanisms. An increase in
the average neurite size leads to an increasing overlap between
the two neurites from zero

(

for R = 1
2

)

to the maximal overlap

containing the entire dendrite field
(

for R = 1
2η

)

. The increasing

overlap leads to the increasing expected number of synapses. At
the same time, the increase in the average neurite radius leads to
a decrease in the normalized axon-dendrite distance, the variable
that reflects the distribution of neurite segments. As the neurite
size increases, the fixed number of segments gets distributed
over a larger area, so that the probability of neurite segment per
unit area decreases. Eventually, this probability approaches zero
as the average neurite size becomes very big. Clearly, the smaller
probability of finding two neurite segments within the same
unit area decreases the expected number of potential synapses.
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FIGURE 5 | Top row: Additional analysis of the distance-dependent

expected number of synapses [φ(ρ, η,M)]. The point where ρ = η is marked

with a star. (A) Truncated Gaussian distribution of neurites with parameters

σ = 0.5 and kσ = 1 (repeated example from Figure 4B). (B) Truncated

Gaussian distribution of neurites with parameters σ = 10, kσ = 50 (repeated

example from Figure 4C). Bottom row: Maximal values of the

distance-dependent expected number of synapses, obtained for ρ = 0. (C)

shows the logarithm of the maximal values obtained for η = 0.1, ρ = 0 and a

wide range of values for σ and kσ . (D) illustrates the range of values for the

logarithm of the function maxima, i.e., the difference between log (φ) for

η = 0.8 and for η = 0.1. Bars on the right of the panels show the color code.

The values for σ and kσ are given on the y and x axis, respectively. The white

lines on the panels divide the parameter space (σ, kσ ) according to the shape

of the obtained function φ(ρ, η,M). The upper left area and the lower right

triangular area give functions between step-functions and bell-shaped

curves, as in (B). The upper right area gives narrow bell-shaped functions like

the ones from Figure 4D. The lower left area corresponds to functions

similar to the case of neurites with uniform distribution, shown in (A). The

dashed white line indicates a slow transition of the function shape between

the two areas.

For small values of the average neurite size, the first effect is
dominant and the expected number of synapses increases with
R. For the larger neurites the second effect dominates and the
expected number of synapses decreases with the increasing R.
The same arguments hold for all the neurite distributions that
we examined which is illustrated in Figures 4E–H.

3.1.3. Properties of the Distance-Dependent

Expected Number of Synapses (Figure 5)
Two additional aspects of the distance-dependent expected
number of synapses should be analyzed for the truncated
Gaussian neurites, its maximal value obtained when the axon and
dendrite centers overlap (ρ = 0) and the value obtained when the
axon and dendrite edges touch from the inside (ρ = η). When
the axon-dendrite overlap is maximal

(

for ρ ≤ η
)

, the expected
number of synapses slowly decreases as the distance between the
neurite centers increases, but when the overlap is smaller than
themaximum

(

for ρ > η
)

the decrease becomes faster. The point
of change is marked with a star in Figures 5A,B, which are the
repeated examples from Figures 4B,C. The neurites in Figure 5A
have more evenly distributed neurite segments so the size of
the axon-dendrite overlap has a bigger effect on the expected

number of synapses and the shape of the function φ(ρ, η,M).
For the truncated Gaussian neurites, the function φ(ρ, η,M)
is always invertible and the effective radius can be computed
(see Equation 5). The situation is different for neurites with the
uniform distribution of segments, where the point (ρ = η) marks
the transition from the constant to the monotonously decreasing
part of the function. The constant segment is not invertible,
therefore we consider only the monotonously decreasing part,
i.e., the function obtained for ρ > η.

Figures 5C,D illustrate the range of maximal values for
the distance-dependent expected number of synapses, obtained
when the two neurites overlap maximally. For the truncated
Gaussian neurites the maximal overlap is also given by the
following equation obtained for ρ = 0 (see Supplementary
Material 1):

φmax(η,M) = φ(0, η,M) =
k2σ

1+ k2σ
·
π

8σ 2

·
1− exp

(

− (1− η)2·(k2σ + 1)

8σ 2

)

(

1− exp
(

− (1+ η)2k2σ
2σ 2

))

·
(

1 − exp
(

− (1−η)2
2σ 2

)) .

(25)
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Figure 5C shows log(φmax) for the asymmetry index η = 0.1
and a wide range of values for σ and kσ , the logarithm is
used because the function varies a lot for the given range
of parameters. Figure 5D illustrates the range of values for
log(φmax) obtained for different asymmetry indices, i.e., it shows
the difference between log(φmax) obtained for η = 0.8 and for
η = 0.1. Blue areas in Figure 5D correspond to the cases when
the distance-dependent expected number of synapses decreases
with the increase of the asymmetry index. The white lines that
parcel the parameter space (kσ , σ ) mark the regions that give
different types of functions. The upper left region corresponds
to narrow dendrites, wider axons and the distance-dependent
expected number of synapses in the form that goes from a step-
functions to a bell-shaped function. The upper right region with
high amplitudes corresponds to narrow axons and dendrites that
give narrow bell-shaped expected number of synapses show in
Figure 4D. The lower left region marks the parameter space
that gives functions similar to those obtained for the uniformly
distributed neurites, examples are shown in Figure 4B and in
Figure 5A. The lower right triangular region corresponds to
narrow axons and wider dendrites and the expected number
of synapses in the form that goes from step-like to bell-shaped
functions. In this case, the function maximum depends a lot

on the asymmetry index, as indicated by the large values in
Figure 5D. As the asymmetry index increases the size of the
dendrite decreases compared to the axon size, the dendrite
segments become more concentrated in a small area around the
center which increases the probability of forming a synapse. The
example in Figure 4C and in Figure 5B is picked near the border
between the two regions, close to the dashed white line. The
dashed line indicates a gradual transition between the regions5.

3.2. Effective Radius and Node Degree (Figure 6)
The effective radius 1max is the maximal distance between an
axon-dendrite pair expected to connect with at least one synapse
and is given by Equation (5). In this section we analyze the
properties of the inverse distance-dependent expected number of
synapses

(

φ−1
)

that maps the non-linear dependency between
the effective radius and the model parameters. Figure 6 shows

5Function φ(ρ, η,M) varies a lot with the model parameters. In order to ensure

an accurate numerical evaluation of the function it has to be scaled down with a

fixed coefficient before integration, then multiplied with the same coefficient after

integration. Very small values of σ and large kσ (very narrow Gaussians) might

cause numerical errors even after the scaling (in the form of glitches for some

values of ρ), which then requires additional scaling of the function. Anyway, such

narrow Gaussians likely correspond to unrealistic morphologies.

FIGURE 6 | Effective radius and node degree. Left column: The inverse

function of the distance-dependent expected number of synapses
[

φ−1 (z, η,M)
]

which maps the non-linear dependency between the effective

radius and the model parameters. The x axis shows the function argument

z = R2π
2NaNdD

2 which takes values from the interval [0, φmax]. Right column:

The node degree is a quadratic function of the effective radius in the

considered model. It depends on the square of the inverse

distance-dependent expected number of synapses,

ψ (z, η,M) =
[

φ−1 (z, η,M)
]2

, which is shown in panels in the right column.

The x axis in these panels also shows the variable z on the interval [0, φmax].

The effective radius and the node degree are shown for the same model

parameters as the examples in Figures 4, 5. The asymmetry index takes the

values η ∈ {0.1,0.3,0.6,0.8}. The distribution of neurite segments is either

uniform or truncated Gaussian with parameters (σ = 0.5, kσ = 1),

(σ = 10, kσ = 50) or (σ = 0.50, kσ = 5).
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how this function depends on variable z that is related to several
model parameters as z = π

2NaNdD
2 · R2. The range of values for z

is determined from Equation (5) and is equal to

1 ≤ 1
zφ(ρ, η,M) ≤ 1

zφmax(η,M)

⇒ z ≤ φmax(η,M) = φ(0, η,M).

The inverse distance-dependent expected number of synapses,
and consequently the effective radius, exists on the interval z ∈
[0, φmax] for every distribution that we analyzed in this work.
Figure 6A shows the case with uniform distribution of neurite
segments where the function almost linearly decreases from

one
(

for z = 0
)

to η
(

for z = π
(1+η)2

)

. Figures 6B–D illustrate

examples with a truncated Gaussian distribution of neurite
segments (the same examples are shown in Figures 4, 5). In all
those examples the effective radius decreases with z, but with
non-linearities that are the most visible for z around zero and
around themaximum.When z increases the ratio

NaNd

R2
decreases.

This ratio is proportional to the average number of axon-dendrite

pairs of segments per unit area. A decrease of
NaNd

R2
decreases

the expected number of synapses everywhere, and further from
the neurite center the expected number of synapses can decrease
below one. Consequently the effective radius becomes smaller.

The node degree is a quadratic function of the effective radius
(see Equation 6) described by the function ψ(z, η,M), which is
the square of the inverse distance-dependent expected number of
synapses. This function is shown in Figures 6E–H for the same
examples as those in Figures 6A–D6.

3.3. Motif Distribution
Equation (12) for 2-node motifs and Equations (16, 17) for 3-
node motifs were numerically integrated using the Matlab built-
in function quad2d 7. The exception is the innermost integral in
Equation (17) which was computed using the simple trapezoid
method in order to increase the speed of computations. The
obtained results were additionally verified by simulating the
equivalent model in Matlab, then counting motifs from the
simulations.

3.3.1. The Expected Number of Motifs (Figure 7)
Figure 7A summarizes the expected motif counts for all 2-
node and 3-node motifs. Each column in the color-coded
matrix corresponds to one motif, while each row corresponds
to one value of the normalized effective radius (rmax) obtained
by dividing the effective radius (1max) with the axon-
dendrite distance in a neuron (1ad). We consider a wide
range of values for the normalized effective radius, rmax ∈
{0.1, 0.3, 0.5, 0.7, 1, 1.7, 2, 5, 10}. The schematic representation
of each motif is plotted at the top of the corresponding column.

6Function φ−1(z, η,M) is computed using a simple method. The values of

φ(ρ, η,M) are computed on the interval [0, 1] with a resolution 0.001. For each

value z the closest value of φ(ρ), φ(ρ0), is found. Then φ−1(z) is computed

from the approximation φ(ρ) = φ(ρ0) + (φ−1(z) − ρ0) · φ(ρo)′ ⇒ φ−1(z) =
ρ0 + φ(ρ)−φ(ρ0)

φ′(ρ0)
. The derivative is also estimated using the simple equation

φ′(ρ + dρ) = φ(ρ+ dρ)−φ(ρs)
dρ

.
7Matlab version R2014a

The motifs that have identical expected counts are represented
by the same column (e.g., M1 and M4). Each motif count
is normalized with the total number of same-size motifs, i.e.,
M1-2 and M2-2 are divided with the total number of 2-node
motifs and motifs M1–M13 are divided with the total number
of 3-node motifs. Normalization removes parameters that act as
multiplicative constants in the expressions for motif counts, i.e.,

it removes the coefficient
12

ad

l2
for the 2-node motifs and

14
ad

l4
for

the 3-nodemotifs. The normalized expectedmotif counts depend
only on the normalized effective radius.

The first two columns in the color-coded matrix correspond
to the 2-node motifs. For the smaller values of the normalized
effective radius (rmax ≤ 2) most of the connections are
unidirectional, as indicated by the higher percent of motifs M2-
2 in the second column. For the two biggest values of the
normalized effective radius most of the connections become
bidirectional and the fraction of motif M1-2 increases over 50%.

The 3-node motifs are shown in columns 3–15, arranged
according to the increasing number of connections (in one
direction, i.e., a bidirectional coupling counts twice). For the
smallest values of rmax the motifs with two unidirectional
connections are dominant. As the parameter increases
the percent of the motifs with one bidirectional and one
unidirectional connection (M3 and M7) increases. The middle
range of values for the normalized effective radius (rmax between
1 and 2, encircled with the dashed white line in the figure) is
the most interesting as it gives the biggest variability of motif
counts. For these values, almost all of the motifs are present
in the network structure. For the biggest values of rmax, most
of the nodes form bidirectional connections and the motifs
with bidirectional couplings become dominant. It should be
noted that motifs M3 and M7 appear for all values of the
normalized effective radius but the smallest one. They contain
one bidirectional connection and one unidirectional connection
between the three-nodes and seem to be the most feasible
connectivity pattern for the considered type of network (with
uniformly distributed and randomly oriented neurons). On the
contrary, the cyclic pattern of motif M9 almost never appears in
these networks.

These conclusions are additionally illustrated in
Figures 7B–D, which show the motif percents for the three
representative values of the normalized effective radius.
Figure 7B shows the case for rmax = 0.3 when the motifs with a
small number of unidirectional connections (M2, M1, and M4)
dominate. Figure 7C illustrates the middle range of values for the
normalized effective radius (example: rmax = 1.7), which enables
the biggest variability of motifs. Figure 7D shows the case for
the biggest rmax when the motifs with bidirectional connections
dominate.

3.3.2. Comparison with the Uniform Random and the

Locally Coupled Networks (Figure 8)
For a comparison, motif counts are computed for the
uniform random and for the locally coupled networks
described in Methods Section. The networks are simulated
for N = 3600 nodes. Node degrees are computed according
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FIGURE 7 | The expected motif counts normalized with the total

number of the same-size motifs. (A) The expected motif counts obtained

for a wide range of values for the normalized effective radius

(rmax ∈ {0.1,0.3,0.5,0.7,1,1.7,2,5,10}). The color code on the right

shows the percentages of different motifs in the total number of the

same-size motifs. The left part of the panel (columns one and two)

corresponds to the 2-node motifs, while the right part of the panel illustrates

the 3-node motifs. The middle range of the values for rmax (encircled with the

dashed white line) results in the biggest variation of motifs. (B–D) These

panels additionally illustrate the three typical results shown in (A). (B) shows

the expected motif counts in networks with a small parameter rmax = 0.3,

where motifs with a few connections are pronounced. (C) shows the

example for rmax = 1.7, where all of the motifs, except M9, are present with

at least few percents in the total motif count. (D) illustrates an example with

the largest considered value for rmax = 10, where the motifs with

bidirectional connections dominate.

to Equation (6). The values of the normalized effective
radius are the same as those considered in Figure 7, i.e.,
rmax ∈ {0.1, 0.3, 0.5, 0.7, 1, 1.7, 2, 5, 10}. The axon-dendrite
distance in a neuron is fixed to 1ad = 1, and the parameter that
determines the neuron density is l ∈ {0.3, 0.5}. For l = 0.3,
the square of edge 1ad contains about 11 somata (a denser
network). For l = 0.5 that square contains 4 somata (a sparser
network). For each value of the node degree we generated a
uniform random network, strictly locally coupled network, and
a locally coupled network with 10% of non-local connections.
The construction of these networks is described in Methods
Section. Each connection in the uniform random network is
established with equal probability (that depends on the selected
node degree) and independently of other connections. In the
strictly locally coupled network, each node is connected to
all the nodes within its connectivity area, which results in all
bi-directional connections. The second example of the locally
connected network is similar to the first one, but 10% of all the

connections are removed and re-established with the closest
nodes outside of the connectivity area.

Figure 8 shows the comparison between our model and the
simulated uniform random and the locally coupled networks.
The color maps show t-scores computed using Matlab function
ttest.m. For a simulated network, we obtained motif counts for
every node (3600 values) and tested whether this sample has
a mean value statistically equal to the expected motif count
obtained from our model. The cases that pass the test are
marked with the crossed pink squares in the figure. Clearly, most
of the cases have significantly different motif counts than our
model. The positive t-scores indicate that our model gives more
motifs of a certain type than the simulated network, while the
negative scores indicate fewer motifs in our model compared
to the simulated network (t-scores obtained from Matlab are
multiplied with -1). Also, we set the values outside of the interval
[−500, 500] to ±500, to emphasize the values closer to zero.
In some cases, certain motifs do not appear in the simulated

Frontiers in Neuroanatomy | www.frontiersin.org 20 June 2015 | Volume 9 | Article 76

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive
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FIGURE 8 | Comparison of the results from Figure 7 with the motif

counts obtained from simulated uniform random and locally coupled

networks. The color maps show the t-scores for all motifs (shown on the x

axis) and all considered values of the normalized effective radius (shown on

the y axis). The comparison is done for two population densities, a denser

one (l = 0.3, left column) and a sparser one (l = 0.5, right column). A positive

t-score indicates a bigger expected number of motifs in our model than in

the simulated network, while a negative t-score indicates a smaller expected

number in our model than in the simulated network. All the values outside the

interval [−500,500] are set to ±500. The scores are shown as color maps in

the same format as Figure 7, while the color bar at the bottom explains the

color code. The crossed gray squares correspond to zero motif counts in the

simulated networks, i.e., both the mean value and the variance are zero. The

crossed pink squares are the cases when our model and the simulated

networks give statistically the same results (the t-test with 5% significance

level). (A,B) Comparison with the uniform random networks. (C,D)

Comparison with the strictly locally coupled networks. In these networks all

connections are bidirectional and only motifs M1-2, M8, and M13 are

possible. (E,F) Comparison with the locally coupled networks with 10%

non-local connections.

network. We marked them with gray crossed squares in the
figure. When our model gives zero expected number of motifs,
the case is marked with both gray and pink squares.

The color maps in Figure 8 are in the same format as in
Figure 7. The color bar at the bottom of the figure explains the
color code. The motif types are indicated on the x axis, and the
values of the normalized effective radius are indicated on the y
axis. The first row (Figures 8A,B) shows the comparison with
the uniform random networks, the second row (Figures 8C,D)
is the comparison with strictly locally coupled networks and the
third row (Figures 8E–F) is the comparison with locally coupled

networks with 10% non-local connections. The first column
corresponds to the denser population (l = 0.3), and the second
column to the sparser population (l = 0.5).

For almost all the cases shown in Figure 8, the number
of bidirectional motifs (M1-2) in our model is larger than in
the uniform random networks and smaller than in the locally
coupled networks, while the opposite holds for the unidirectional
motifs (M2-2). Similarly, the number of 3-node motifs with
two unidirectional connections (M1 and M2) is smaller in our
model than in the uniform random networks, and larger than in
the locally coupled networks. On the contrary, the motifs with
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solely bidirectional connections (M8 andM13) are almost always
more frequent than in the uniform random networks and less
frequent than in the locally coupled networks. The motifs with
three or four connections are in most cases more frequent in our
model than in both the uniform random and the locally coupled
networks. The exceptions are motifs M5 and M9 that become
less frequent than in uniform random networks for a sufficiently
big rmax. As the normalized effective radius increases, our model
forms more bidirectional connections and the motifs that require
three unidirectional connections becomes less likely (this is more
visible for M9, as it is anyway rare in our model). For even
higher values of the effective radius, motif M10, which is not very
frequent in our model, becomes underrepresented compared to
both types of networks.

For the expected node degree of approximately 25–35% (cases:
rmax = 5, l = 0.3 and rmax = 10, l = 0.5), our model contains
dense local connectivity with many bidirectional connections.
Eventually, most of the 3-node motifs become less frequent
than in the uniform random networks except the three highly
connected motifs, M8, M12, and M13. The motif M13 becomes
more represented than in the locally coupled networks with 10%
non-local connections, indicating very dense local connectivity
in our model for these values of model parameters. On the
contrary, motif M8 with two bidirectional connections is always
less frequent in our model than in the locally coupled networks.

The last set of model parameters, rmax = 10, l = 0.3, gives
very high connectivity, the probability of connection reaches

0.97 in the network with 3600 nodes. The obtained results are
not consistent with the rest of the analysis, as in this case
both simulated networks contain a high number of the most
connected motif M13, while many other motif types become
less frequent than in our model. We wanted to show this case
to illustrate the effect of the finite simulation size. Our model
allows analysis for any value of the model parameters, but in
the simulated networks, the model size determines the maximal
range of feasible parameters.

3.4. Clustering Coefficient, Path Length and
Small-world Coefficient (Figure 9)
Once the motif counts are obtained, the clustering coefficient
follows from Equation (19). For comparison, we also evaluated
the clustering coefficient for the uniform random and for the
locally coupled networks with 10% of non-local connections (see
Methods Section). The clustering coefficients are computed from
the motif counts. Motifs in random and locally coupled networks
are computed in a standard way, by counting the connectivity
patterns. Those counts are used in Equation (19) instead of NMi

values. The motifs are multiplied with the coefficients 1 for M5
and M9, 2 for M6, M10, and M11, 4 for M12, and 8 for M13
in the numerator of the equation in order to take into account
bidirectional connections in some of the motifs, the same way
as in the standard expression for the clustering coefficient
(Equation 18).

FIGURE 9 | The clustering coefficient (A,B), 10-based logarithm

of the harmonic path length (C,D), and two definitions of the

small-world coefficient (E,F). (E) shows the standard definition

(Watts and Strogatz, 1998) and (F) the alternative definition

introduced in Telesford et al. (2011). Uniform random and locally

coupled networks used for comparison are simulated for N = 4900

neurons and model parameters 1ad = 1, l = 0.3 (solid line) and

l = 0.5 (dashed line). Red line, our model; blue, uniform random

networks; turquoise, locally coupled networks with 10% of non-local

connections. The x axis shows the logarithm of 10 of the

normalized effective radius (rmax ), y axis gives the considered

network measures or their logarithms.
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The simulated random and locally coupled networks have
N = 3600 or N = 4900 nodes and model parameters 1ad = 1
and l ∈ {0.3, 0.5}. We consider only values from 0.3 to 10 for
the normalized effective radius. For rmax = 0.1 the obtained
networks are sparsely connected, possibly with many isolated
cells. This causes a bias in the computation of the clustering
coefficient and we omit these examples.

Figures 9A,B show the clustering coefficient for our model
(red line), and also for the uniform random (blue) and the locally
coupled network (turquoise) for two populations, a denser one
(for l = 0.3) and a sparser one (l = 0.5). For most of the
values of the normalized effective radius (rmax), the clustering
coefficient of our model is in between those of uniform random
and locally coupled networks. Only for the largest two values of
rmax in the sparser population the clustering coefficient becomes
bigger than the one in the locally coupled networks. For small
values of rmax, axon and dendrite centers are relatively far apart
and connect with different groups of cells. As rmax increases the
axon and dendrite centers approach each other and the cells
that connect to the axon become closer to those that connect
to the dendrite, which makes connections between them more
probable. This increases the number of motifs that contribute
to the clustering coefficient. The distance between the axon and
dendrite increases the effective area of the neighborhood, which
might be a reason for the cases with higher clustering coefficient
than in locally coupled networks. In the locally coupled networks,
the dendrite and axon centers are identical and the neighborhood
is defined by a single circle around that center. It should be
noted that (Rieubland et al., 2014) reports higher clustering
coefficient estimated from the experimental data than the one
computed from the simulated uniform random and locally
coupled networks. The example obtained for l = 0.3 and
rmax = 10 demonstrates that the cut-off effect present in smaller
networks (see Figure 8 obtained for N = 3600) disappears
when comparing our model with bigger simulated networks (for
N = 4900). An extensive comparison between our “infinite-
size” model and the finite size simulated networks is presented
in Supplementary Material 3.

The expected harmonic path length obtained using the
iterative (Equations 20–23) (see Methods) is shown in
Figures 9C,D. For all the considered model parameters the
harmonic path length is slightly bigger in our model than in
the uniform random network and smaller than in the locally
coupled network. The computations used in this study result
in somewhat smaller values for the harmonic path length than
those obtained when simulating the equivalent model. This
is a consequence of the finite simulation size (see the analysis
presented in Supplementary Material 3). Consequently, the
harmonic path length obtained from the numerical simulations
differs more from the harmonic path length in the uniform
random network, but is still smaller than the harmonic path
length in the locally coupled network.

Finally, we computed the small-world coefficients out of
clustering coefficients and path lengths. Two definitions of this
coefficient are computed, the standard Watts-Strogatz definition
(SWws, see Watts and Strogatz, 1998), shown in Figure 9E, and
an alternative definition SWq from Telesford et al. (2011), shown

in Figure 9F. The standard version compares our model to the
uniform random networks and should be large for small-world
networks. The alternative definition compares our model to
both, the uniform random and the locally coupled networks,
and should be around zero for the small-world networks. Both
considered populations (for l = 0.3 and l = 0.5) maximize SWws

for the normalized effective radius rmax = 0.7. The alternative
coefficient SWq is the closest to zero for rmax = 1.7 and rmax = 2,
although, for the denser population (l = 0.3) it stays above zero
for all the values of rmax. The parameter rmax in the interval [1, 2]
also maximizes the repertoire of possible motif counts, as shown
in Figure 7.

4. Discussion

We presented a two-level statistical model that examines
how properties of single neurons and neurites constraint
the connectivity in neuronal population. The connectivity is
quantified using the standard graph theoretic measures like
motif counts, clustering coefficient, harmonic path length, and
the two definitions of small-world coefficient. Neurites are
represented as neurite fields in accordance with the model
already addressed in the literature (Snider et al., 2010; Teeter
and Stevens, 2011; Cuntz, 2012; van Pelt and van Ooyen, 2013;
McAssey et al., 2014). Such model provides a low-resolution and
low-dimensional representation of neurites. The entire neuron
model has three components, the neurite field of the axon, the
neurite field of the dendrite, and the parameter that maps the
distance between the axon and dendrite centers. The population
of neurons is uniformly distributed in two-dimensional space
with the density of neurons defined by a model parameter. This
resembles the experiments with dissociated cortical cultures, and
is often used in theoretical studies. Finally, the synapse formation
rule is entirely based on the proximity of axons and dendrites
(Peters’ rule, Peters et al., 1991; Peters and Feldman, 1976),
and no activity-dependent synapse reorganization is considered.
Consequently, we consider only the potential connectivity as
defined in Stepanyants and Chklovskii (2005). The synapse
formation rule, as well as the population properties, are selected
to emphasize the role of neuron morphology and make a clear
link between the morphology and connectivity.

4.1. Summary of the Findings
We first introduced the notion of effective radius of neurites,
which is the maximal distance between an axon-dendrite pair
of two neurons expected to connect with at least one synapse.
The effective radius, the expected number of synapses, and
the expected node degree are expressed as functions of neurite
parameters. The expected number of synapses linearly depends
on the density of neurite distribution, but non-linearly on the
neurite size and the distance between the axon and dendrite
centers. We considered several choices of neurite distributions,
including the uniform distribution and several cases of the
truncated Gaussian distribution with different distribution
parameters. When both axon and dendrite are evenly distributed
within the distribution support the expected number of synapses
decreases almost linearly with the axon-dendrite distance. This
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has also been observed in the experimental studies (Rieubland
et al., 2014), and in the modeling studies that reproduce realistic
neuronal morphologies (Hill et al., 2012).

Next, we expressed the considered connectivity measures as
functions of the normalized effective radius, which is the effective
radius divided by the distance between axon and dendrite centers
of the same neuron. We derived the closed-form expressions for
the 2- and 3-node motifs. These motifs represent the minimal-
size networks with structured connectivity that can be studied
experimentally. The experimental study of path lengths requires
recording of a much bigger population of neurons, which can
easily become infeasible. The expectedmotif counts are expressed
in the form of multiple integrals that are evaluated numerically.
The obtained results vary significantly for different values of
the normalized effective radius. For most of the considered
values of the normalized effective radius, the unidirectional 2-
node motifs are more frequent than the bidirectional motifs.
This resembles the statistics of 2-node motifs in the uniform
random networks. For large values of the normalized effective
radius, the bidirectional motifs become dominant, similarly as
in the locally coupled networks. Additional comparison shows
that our model always expresses more bidirectional motifs that
the uniform random networks and less than the locally coupled
networks. The opposite holds for the unidirectional motifs.

The sparsely connected 3-node motifs (with 2 unidirectional
connections) are dominant for the small normalized effective
radius, which resembles the 3-node motif distribution in the
uniform random networks. For the large normalized effective
radius, the densely connected motifs (with two or three
bidirectional connections) become frequent, which is typical
for the locally coupled networks. For all considered values of
the normalized effective radius, our model exhibits less sparsely
connected motifs than the uniform random networks and more
than the locally coupled networks. The opposite holds for the
motif with themaximal connectivity (i.e., with three bidirectional
connections). In-between these extremes we can identify the
range of values for the normalized effective radius that maximizes
the variability in connection repertoires on the micro-scale. For
these values, almost all the motifs are present in the network,
which is not the case in the uniform random and the locally
coupled networks that favor certain motifs. The analysis of the
clustering coefficient, harmonic path length, and the small-world
coefficient shows that the same range of values results in the
small-world coefficient closest to the one of the small-world
networks. For the normalized effective radius between 1 and 2,
the clustering coefficient is close to the one of the locally coupled
networks, and the path length is somewhat longer than the one of
the uniform random networks.

4.2. Axons and Dendrites Modeled as Neurite
Fields
We adopted several approximations when choosing models for
the individual neurons and for the populations of neurons. In
what follows we will additionally motivate the adopted choices.
The coarse representation of neurites, reduced to the distribution
of neurite segments, neglects the fine details of the neurite
tree structure, including the non-random orientation of neurite

segments, the branching patterns, or any correlation in the
structure of neurite branches. Previous studies suggest that this
low-resolution neurite description still captures relevant dendrite
properties at the level of the whole neuron morphology (Snider
et al., 2010; Teeter and Stevens, 2011). In this work, we also
used density fields to represent axons, which better describes
the properties of neurons in cell cultures than in the three-
dimensional tissue. In the cortical tissue, the axons are elongated
and branched structures that cover large area compared to
dendrites. In most of the cases, just a single axonal branch
passes through the dendritic field (Braitenberg and Schüz, 1998).
The axon density field can be interpreted as uncertainty of the
position of individual axonal branches within the space covered
by the axon. This complies with our model, where the principal
axonal orientation is random, and the neurite field describes
the additional randomness of position of the axonal branches
with respect to the principal orientation. In the systems with
non-random principal orientation of axons, or in neurons for
which the correlation between the axonal branches cannot be
approximated a model that describes each branch might be more
suitable. For example, a neurite field description of dendrites can
be combined with axons modeled in NETMORPH (Koene et al.,
2009). Still, as long as both dendrites and axons cover a limited
space, the effective radius can be derived as well as the expressions
for the considered measures of network connectivity. Eventually,
the expression for the effective radius might have more complex
dependency on the neurite properties.

4.3. Potential Synapses Estimated from the
Neurite Fields
An important issue related to this modeling approach is
addressed in van Pelt and van Ooyen (2013). This study
systematically examines several aspects of connectivity, including
the number of synapses per neurite, the number of synapses
between pairs of neurons, and the connectivity per neuron.
Those aspects are evaluated for neurites with realistic branching
trees and also for neurites described by the neurite density
distribution. The paper finds agreement between realistic and
neurite field based descriptions of neurons when estimating the
expected number of synapses. But, the disagreement arises when
computing the expected number of synapses per connected axon-
dendrite pair. To overcome the problem, the authors proposed an
empirical mapping function between the connectivity obtained
from detailed simulated morphologies and the connectivity
computed using density fields obtained by averaging over
detailed simulated morphologies.

The model examined in our study derives the average
connectivity from neurite distributions, therefore might suffer
from the issues indicated in van Pelt and van Ooyen (2013).
We can adopt the same method to overcome the problem,
and apply an empirical mapping function to the Equation (5)
that defines the effective radius. On the right side of the first
inequality, instead of one there will be a constant dependent on
the empirical mapping function. This constant will be added to
the expression for the effective radius, but the rest of the analysis
will not be affected. Eventually, the optimal range of values for
the normalized effective radius might be shifted from the interval

Frontiers in Neuroanatomy | www.frontiersin.org 24 June 2015 | Volume 9 | Article 76

http://www.frontiersin.org/Neuroanatomy
http://www.frontiersin.org
http://www.frontiersin.org/Neuroanatomy/archive
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[1, 2]. Alternatively, the expected number of synapses can be
obtained from a more realistic model of neurites, e.g., from the
reconstructed cells from neuroimaging studies or from detailed
morphologies simulated using NETMORPH (Koene et al., 2009).
As long as the obtained function is at least piecewise invertible
the effective radius can be computed from it, and the results for
the expected motif counts and for the other considered measures
still apply.

4.4. Relation Between the Actual and the
Potential Number of Synapses
We derive all the network measures from the potential
connectivity, but potential connectivity does not fully explain the
actual connectivity. The obtained potential number of synapses
(Figure 4), the range of values and the functional form, is in
agreement with other studies that estimate the connectivity from
neuronal morphology (Hill et al., 2012; van Pelt and van Ooyen,
2013), but it cannot fully explain the actual synaptic connectivity
reported in Markram et al. (1997) and Fares and Stepanyants
(2009). Figure 4 indicates the adequate range of values for the
properly selected model parameters. The distance-dependent
expected number of synapses [φ(ρ, η,M)] is smaller than 3 for
the typical examples presented in Figure 4, with much bigger
values obtained only for the very narrow (and unrealistic) neurite
fields. To obtain the expected number of potential synapses,
it should be multiplied with a coefficient that depends on the
model parameters and is not greater than φmax. The obtained
expected number of synapses per connection reaches 10 synapses
or less. Although the range of values is (roughly) accurate
for the properly selected model parameters, the distribution
of synapse counts is not according to Fares and Stepanyants
(2009). This study demonstrates that the distribution of potential
synapses between a connected axon-dendrite pair has much
higher variance than the distribution of actual synapses. They
proposed a cooperative model of synapse formation, described by
a sigmoid function, that establishes actual synapses only between
axon-dendrite pairs with sufficient number of potential contacts,
while it rules out the pairs with few contacts. This correction
can be incorporated in our study, similarly to the mapping
function discussed in the previous paragraph, by applying the
proposed sigmoid function to the left side of the first inequality
in Equation (5).

Finally, corrections proposed in van Pelt and van Ooyen
(2013) and Fares and Stepanyants (2009) can be combined. First,
the empirical mapping function from van Pelt and van Ooyen
(2013) can be used to convert the synapse counts obtained
from the neurite fields to the values that would be obtained
by simulating detailed morphologies. Then, the cooperative rule
from Fares and Stepanyants (2009) can be used to convert the
number of potential synapses to the counts of actual synapses.
All these operations will somewhat alter the functional form of
Equation (5) and, consequently, the expression for the effective
radius and how it depends on the neurite parameters. Eventually,
an additional parameter might be introduced to describe the
connectivity area. The computation of the network measures can
then be done following the same method described in this study.

4.5. Alternative Potential Synapse Formation
Rules
We considered a simple potential synapse formation rule based
on the proximity criteria: axon and dendrite segments form
contacts if they find themselves on a distance smaller than the
average dendritic spine length. The only constraint is that a
dendritic segment cannot form potential synapses with more
than one segment of the same neighboring axon. Still it can
form potential synapses with the segments of other axons. A
more realistic rule would require that each dendritic segment
connects to at most one among all the proximal segments of
all the axons, this may better reflect the connectivity in cortical
tissue (Braitenberg and Schüz, 1998) and also reduce the total
number of potential synapses per neuron. In the current model,
the number of potential synapses is controlled by the choice
of model parameters (see Methods). An alternative potential
synapse formation rule would allow a wider range of model
parameters. Implementing the alternative rule would likely result
in a more complex relation between the effective radius and the
neurite parameters. Still, if we consider one particular dendrite,
all the axons that connect to it have to be on a finite distance from
it, and the effective radius is always finite. The alternative rule
would alter the criterion for connectivity: a neuron would not
connect to all the neurons inside of its connectivity area, but just
to some of them and according to some selection criteria derived
from the potential synapse formation rule.

Activity-dependent synaptic rearrangement is not considered
in this study, although it represents an important mechanism
in shaping the synaptic patterns. We focus on the most stable
aspects of neuronal connectivity, those governed by morphology
of neurite trees. As indicated in the literature (Stepanyants
et al., 2002), remodeling of neurite branches requires longer
time scale than formation or removal of the individual synapses.
The synaptic connectivity derived from neuromorphology can
be considered as an additional constrain in the process of the
activity-dependent synaptic rearrangement. It is reasonable to
expect that the networks with larger diversity of motif counts
retain larger variability of the connectivity also in the presence
of the activity-dependent synaptic changes.

4.6. Comparison with the Experimentally
Observed motif Counts
The presented study focuses on a statistical description of
neuronal connectivity and the constraints to connectivity
imposed by low-resolution properties of neuronal morphology.
The considered problem was solved analytically. We established
the functional dependencies between the considered connectivity
descriptors and the parameters that describe neuronal
morphology and the organization of neuronal population.
In order to solve the described problem, we had to approximate
several mechanisms that significantly influence the formation
and maintenance of synaptic contacts. Those include the details
of neurite structure, the realistic organization of neurons in the
cortical tissue (as we considered a model that corresponds to
organization in cell cultures), and most importantly the fine
tuning of connectivity patterns through synaptic plasticity.
Consequently, certain differences between the results obtained
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from our model and the corresponding experimental findings
are expected.

The studies in Markram et al. (1997), Song et al. (2005), and
Perin et al. (2011) examined the connectivity between cortical
layer 5 pyramidal neurons and reported over-representation of
bidirectional motifs compared to the uniform random networks.
The study in Rieubland et al. (2014) addressed the connectivity
between molecular layer interneurons in the cerebellum and
found no significant difference compared to the uniform random
networks. In Markram et al. (1997), 30% observed connections
were bidirectional and 70% unidirectional. This corresponds
to distribution of unidirectional and bidirectional connections
obtained in our model for the normalized effective radius
close to 1.7. Our results show that values of the normalized
effective radius smaller than 2 give less than 50% of bidirectional
connections, while the opposite holds for the normalized
effective radius larger than 2. For almost every choice of the
model parameter value, the number of bidirectional connections
exceeds the one of the uniform random networks, similarly as in
Song et al. (2005) and Perin et al. (2011). A recent study (Cossell
et al., 2015) examined the role of bidirectional connections in
sensory information processing. They found that neurons with
correlated responses to visual stimuli often connect with strong
bidirectional couplings, while the majority of neurons exhibits
weakly or uncorrelated responses to visual stimuli and connects
with unidirectional couplings.

Three studies (Song et al., 2005; Perin et al., 2011; Rieubland
et al., 2014) reported the distribution of 3-node motifs in cortical
neuronal networks. In Song et al. (2005), the authors defined
the optimal transitive connectivity rule stating that “if node
N1 connects to N2, and N2 connects to N3 (in any direction),
the probability that N1 connects to N3 significantly exceeds the
chance level.” Motifs M1, M5, M6, M9, M10, M11, M12, and
M13 have been found in the data more often than in the uniform
random networks. In addition, motif M3 was less frequent than
in the uniform random networks. The study in Perin et al. (2011)
confirms the same connectivity rule and finds motifs M1, M5,
M6, and M11 to be overrepresented in the data compared to
the locally coupled networks. In Rieubland et al. (2014), the
preference for transitive motifs is also confirmed, with motifs M1
and M5 being overrepresented compared to both the uniform
random and the locally coupled networks. Our model suggests
the optimal range of values for the normalized effective radius
that supports formation of the reported motifs (particularly, M5,
M6, M10–M13), i.e., the interval rmax ∈ [1, 2]. Outside of this
interval, some of thesemotifs become rare. Contrary to Song et al.
(2005), we rarely ever observe the loop-motif M9, the same motif
is also rare in the locally coupled networks. Motif M12 becomes
relatively frequent in our model for the sufficiently big values of
rmax. Although it is not reported in all experimental studies, it
also has transitive connectivity.We frequently observe motifs M3
andM7, more frequently than in both the locally coupled and the
uniform random networks. Such motifs can be formed between
three neurons if two of them fall inside the connectivity area of
the third one in such a way that one is close to the center of
the connectivity area and the other is close to its border. The
neuron close to the center of the connectivity area is likely to
form a bidirectional connection present in motifs M3 and M7.

The neuron close to the border of the connectivity area is likely
to form the remaining unidirectional connection.

Finally, it should be mentioned that our model cannot predict
missing connections and disconnectedmotifs, like those analyzed
in Rieubland et al. (2014), or the anti-clustering coefficient
emphasized in the same study. This is a consequence of the
definition of connectivity area and the fact that all dendrites
within the connectivity area of an axon synapse to that axon.
A different synapse formation rule, allowing that some of the
dendrites within the connectivity area remain disconnected
from the considered axon, like the alternative rule described
in a previous paragraph, would allow analysis of the missing
connections and the additional motifs discussed in the literature.

4.7. Limitations of the Experimental Studies
Connectivity measures obtained from experimental studies are
to some extent affected by the adopted experimental protocols.
A recent modeling study (Miner and Triesch, 2014) examined
the possible bias in the connectivity measures introduced by
sampling and finite size of the slices. Our model can also be used
to examine the effects of the finite size of the considered neuronal
population. The analytical results presented in our study are
derived for an infinite-size population of neurons. On contrary,
simulation of the equivalent model can only be done for the finite
number of neurons. Comparison between the analytical and the
simulated results illustrates the bias induced when estimating
the properties of a large neuronal circuit using a small sub-
population. In the following paragraph, we give two examples of
this issue.We illustrate a case where the finite network size affects
motifs computation. We carefully discuss how the reduction of
model size affects the path-length and the small-world coefficient
computations.

4.8. The Effects of the Finite Model Size
In most of the derivations presented in this study, the network
size is not explicitly considered, i.e., we treat the model as if it
were infinite. An exception is the path length, a global measure of
the network structure that has to depend on themodel size. In our
study, the information about model size is, however, introduced
only in the later steps of the path length computation. (In)finite
model size becomes an issue if we want to compare our model
to a simulated, therefore, a finite-size network. In Figure 8, we
compare the expected motif counts obtained from our model
to those obtained from the uniform random and the locally
coupled networks. The result shown for the biggest value of the
effective radius is biased due to the finite number of neurons
in the network. While our model does not suffer from this
effect, the two simulated networks do. The large effective radius
leads to a large number of neighbors, in the considered case
those neighbors represent 97% of all the network nodes. Clearly,
both the uniform random and the locally coupled networks
become densely connected, close to all-to-all connectivity, so
the results obtained in this case visibly deviate from all the
other examples.

In our model, the harmonic path length is computed using
the iterative equations derived in Methods Section. The obtained
harmonic path length is somewhat smaller than the result
computed by simulating the equivalent model. In Supplementary
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Material 3, we analyze steps in computation of the path length
and identify all the differences between the analytically solved
and the simulated model. We first compute all the intermediate
steps and probabilities defined by the iterative procedure.
Then, we calculate all those intermediate probabilities from the
simulated model and compare them to the results of the iterative
procedure. The finite size of the model imposes the maximal
distance between any pair of neurons. As we approach this
maximal distance, the intermediate probabilities computed from
simulations converge to zero. On contrary, the intermediate
probabilities obtained using the iterative method do not contain
the information about the model size, but instead describe an
infinite-size model. Next, we compute the distribution of path
lengths from the intermediate probabilities. This is possible
only if we cut-off the intermediate probabilities at the maximal
allowed distance between a pair of neurons in the model, and
therefore artificially introduce the model size. Consequently,
for the larger values of the effective radius the probabilities
obtained from the iterative equations drop faster than the same
probabilities obtained from the simulations. The harmonic path
length obtained from the iterative equations is somewhat smaller
than the result of simulations.

The connectivity measures most affected by model size
are the small-world coefficients. As the size of simulated
networks increases, the small-world coefficient computed using
the definition from Watts and Strogatz (1998) increases. At
the same time, the coefficient from Telesford et al. (2011)
decreases and becomes closer to zero. In both cases, larger
analyzed networks are more likely to be classified as small-world
networks. The impact of numerical methods, model size, and
number of simulation iterations is discussed in Supplementary
Material 3. It should also be noted that the two considered
definitions of the small-world coefficient lead to somewhat
different conclusions. While the coefficient from Telesford et al.
(2011) suggests that networks obtained for the effective radius
in the interval [1, 2] have the connectivity closest to the small-
world networks, the definition from Watts and Strogatz (1998)
points at smaller values of the effective radius, namely the interval
[0.7, 1]. The interval [1, 2] also maximizes the diversity in the
obtained expected motifs counts, so the results obtained using
the coefficient from Telesford et al. (2011) better agree with the
motifs analysis. At the other hand, this coefficient seems to be
more sensitive to themethodology used to compute the harmonic
path length, although both considered methods (our iterative
method and the numerical simulations) give qualitatively similar
results.

4.9. Related Modeling Studies
Two previous modeling studies, Herzog et al. (2007) and Voges
et al. (2010), use a similar neuron description to address the
same problem, i.e., how the coarse scale properties of neuronal
morphology shape the connectivity in large networks. They
examined a neuron model that reproduces patchy connections
observed in the cortex. Axons are modeled as Gaussian neurite
fields with the axon center displaced from the soma in order
to capture the long-distance connectivity in the considered
networks. A neuron is allowed to connect to other neurons close
to its soma and also to the neurons close to its displaced axon

field. The generated networks exhibit small-world properties
suggesting optimized wiring in the cortex. In our model, both
axons and dendrites are described by neurite fields, but axons
can connect only to the dendrites that are sufficiently close to
the axonal field. Our model is constructed to capture general
properties of neuronal morphology suggested by Snider et al.
(2010), while the studies in Herzog et al. (2007) and Voges
et al. (2010) focus on the specific types of pyramidal cells with
long patchy projections and the neuronal connectivity derived
from this property. In a recent study (McAssey et al., 2014), a
similar model that uses neurite density fields to represent axons
and dendrites is analyzed through simulations. The authors
carefully fitted the density fields using the reconstructed neuronal
morphologies fed to the simulator (Koene et al., 2009). They
demonstrated the realistic distribution of potential synapses
and the optimal properties of the obtained networks treated as
weighted graphs. The results suggest that these networks possess
properties similar to the small-world networks.

The model we considered in this study is very similar to
those described in Herzog et al. (2007), Voges et al. (2010), and
McAssey et al. (2014), but we opted for a different approach
to analyzing the model. Instead of simulating the model for
different parameter sets, we derived the analytical solution that
allows us to fully understand the significance of the individual
model parameters. We introduced the concepts of effective
radius and connectivity area. Through these concepts we
mapped the parameters of the individual neurons to a combined
parameter that further determines the network-level properties.
Additional work should be done to estimate this parameter from
the experimental data, an issue that will be a subject of our future
studies.

The two-level statistical model analyzed in this study can
be seen as a framework to connect single neuron properties
with the network-level organization. The main question is how
to reduce the number of parameters in the neuron model in
order to easier embed it to the network-level model. Ideally, the
single neuron model should include as much details as possible
that are then reduced using averaging and statistical description
into a lower-dimensional representation. The lower-dimensional
representation should provide a possibility to clearly tract the
most crucial aspects of the neuron model when embedded into
the network. We followed this methodology by introducing the
concept of effective radius. The adopted methodology provides
flexibility in selection of model components and allows easier
modification of the presented framework to include new aspects
of neurons and neuronal populations.
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