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ABSTRACT 

 

 

Epidemiological studies suggest that heterogeneity in influenza vaccine antibody response is 

associated with host factors, including pre-vaccination immune status, age, gender, and vaccination 

history. However, the pattern of reported associations varies between studies. To better understand 

the underlying influences on antibody responses, we combined host factors and vaccine-induced in-

host antibody kinetics from a cohort study conducted across multiple seasons with a unified analysis 

framework. We developed a flexible individual-level Bayesian model to estimate associations and 

interactions between host factors, including pre-vaccine HAI titre, age, sex, vaccination history and 

study setting, and vaccine-induced HAI titre antibody boosting and waning. We applied the model to 

derive population-level and individual effects of post-vaccine antibody kinetics for vaccinating and 

circulating strains for A(H1N1) and A(H3N2) influenza subtypes. We found that post-vaccine HAI titre 

dynamics were significantly influenced by pre-vaccination HAI titre and vaccination history and that 

lower pre-vaccination HAI titre results in longer durations of seroprotection (HAI titre equal to 1:40 

or higher). Consequently, for A(H1N1), our inference finds that the expected duration of 

seroprotection post-vaccination was 171 (95% Posterior Predictive Interval[PPI] 128–220) and 159 

(95% PPI 120–200) days longer for those who are infrequently vaccinated (<2 vaccines in last five 

years) compared to those who are frequently vaccinated (2 or more vaccines in the last five years) at 

pre-vaccination HAI titre values of 1:10 and 1:20 respectively. In addition, we found significant 

differences in the empirical distributions that describe the individual-level duration of seroprotection 

for A(H1N1) circulating strains. In future, studies that rely on serological endpoints should include 

the impact of pre-vaccine HAI titre and prior vaccination status on seropositivity and seroconversion 

estimates, as these significantly influence an individual’s post-vaccination antibody kinetics. 
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INTRODUCTION 

 

The global burden of influenza-associated acute respiratory disease is substantial, annually causing 

5–6 million hospitalised respiratory cases and 290,000–650,000 deaths.[1,2] Vaccination remains the 

primary method to control seasonal influenza disease and transmission. The WHO-recommends 

trivalent influenza vaccines containing candidate vaccine viruses representing recent 

A(H1N1)pdm09, A(H3N2), and B/Victoria viruses. Recommendations for quadrivalent vaccines have 

previously also included a B/Yamagata virus. These recommendations are made each year roughly 6 

months prior to national influenza vaccination campaigns. Vaccination campaigns typically target 

individuals at the highest risk of disease complications and those who are the main drivers of 

transmission within the population.[3] Although vaccination is a valuable preventative tool, the 

propensity for circulating influenza viruses to undergo antigenic evolution and amino acid 

substitutions that can rise in antigenic sites when viruses are propagated in eggs, means that 

vaccine-induced antibodies from egg-grown viruses may recognise circulating viruses poorly, 

resulting in low vaccine effectiveness.[4–7] Host factors also impact vaccine effectiveness, including 

genetic and epigenetic factors and underlying immune profile at vaccination.[8–15] Quantifying how 

these host factors interact to influence vaccine effectiveness is important for understanding which 

groups will benefit most from vaccination and help further understand the biological mechanisms 

that cause heterogeneity in protection from disease. 

  
Cohort or case-control studies can measure the effectiveness of influenza vaccination by relying on 

case-incidence rates. However, these studies can miss non-healthcare-seeking infections and thus 

often only measure effectiveness against moderate to severe disease 

outcomes.[16] Seroepidemiological studies can detect missed infections by comparing changes in 

antibody titres, measured in haemagglutination inhibition assay (HAI), pre- and post-season. 

Traditionally, an HAI titre of 1:40 or greater (seropositivity) in a serological sample has been used to 

indicate a ~50% or greater probability of protection against infection for influenza.[17,18] 

Additionally, a four-fold rise in antibody titre between two time-points in a serological study 

(seroconversion) has been used to indicate a latent infection in the absence of vaccination.[19,20] 

However, pre-vaccination HAI titre has consistently been associated with the magnitude of titre 

boosting post-vaccination or infection.[8,10–13,21] Therefore, the four-fold rise rule could become 

unreliable under certain circumstances. For example, in an unvaccinated population, where HAI 

titres are lower, the four-fold rise criterion may be a more reliable method to identify missed 

infections than in a vaccine-experienced population, which will have higher pre-season titres. In 

addition, previous seroepidemiological studies have found statistical associations between 

seroconversion and host factors, including age, infection history, and vaccine history within 

vaccinated populations.[22–24] 

  
In this study, we develop a flexible Bayesian regression model to estimate the associations and 

interactions between host factors—pre-vaccination HAI titre, age, sex, vaccine history, and study 

setting—and individual-level post-vaccination antibody kinetics.  We fit the model to a multi-season 

ongoing cohort study dataset to help understand antibody boosting towards the egg-grown 

influenza A subtypes vaccine candidate viruses and the cell-grown equivalent viruses, representing 

circulating viruses. By considering antibody kinetics to vaccinating strains, we use the inferential 

uncertainty to quantify the importance of each host factor in driving antibody kinetics and assess if 

the heterogeneity observed among vaccine responses correlates with influenza A subtype kinetics 

when adjusting for the relevant host factors. For influenza circulating strains, we assess how 

persistent established heuristics for protection (titre greater than 1:40 and 1:80) and seroconversion 

(four-fold rise) change post-vaccination to better understand the associations between vaccine 

responses and protection against infection throughout the season. 
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METHODS 

 

Overview of the cohort study 

 

We consider serological data from an ongoing longitudinal cohort study conducted in Australia.[25] 

This study commenced recruitment in 2020 and followed an open cohort of healthcare workers 

(HCW) recruited from hospitals in 6 cities (Brisbane, Newcastle, Sydney, Melbourne, Adelaide, and 

Perth). HCW could be staff, students or volunteers and were not required to have direct patient 

contact because vaccination in these hospitals was free to all personnel regardless of risk. Upon 

enrolment, participants were asked to provide demographic information (sex, age), and influenza 

vaccination history. Recruited HCW were given a quadrivalent influenza vaccine with a strain 

composition consistent with the WHO-recommended vaccine strains for that season (See Table S1 

for vaccine strains). Sera were collected within two weeks before vaccination and two times after, a 

mean of 19 (range 8–63) and 166 (range 66–231) days post-vaccination. This analysis used results for 

4,958 sera samples collected from 2020-2022, during this period influenza did not circulate in 

Australia during 2020-2021 [26] and resumed ciruclation in 2022.[27] These 4,958 serum samples 

came from 1,646 HCW, of which the majority of the HCW (1151/1646) were from frequently 

vaccinated HCW (vaccinated in 5/5 seasons before enrolment) and 177/1646 were from vaccine-

naive HCW (not vaccinated in 5/5 seasons before enrolment). An overview of the study 

characteristics of this cohort is given in Table 1. 

 

 

Antibody HAI titre 
  
Sera were tested in HAI against relevant egg-grown influenza vaccine strains including wild-type and 

influenza vaccine reassortant (IVR) strains as follows: A(H1N1) A/Brisbane/02/2018 IVR-190, 

A/Victoria/2570/2019 IVR-215; A(H3N2) A/South Australia/34/2019, A/Hong Kong/2671/2019 IVR-

208, A/Darwin/9/2021. Sera were also tested In HAI against equivalent cell-grown viruses as follows: 

A(H1N1) A/Brisbane/02/2018, A/Victoria/2570/2019; A(H3N2) A/Darwin/726/2019, A/South 

Australia/34/2019, A/Darwin/6/2021. 

Sera were treated with receptor-destroying enzyme (RDE, Denka Seiken) and adsorbed with a 

mixture of guinea pig and turkey red blood cells (rbc) to remove non-specific inhibitors and non-

specific agglutination. Sera were serially diluted two-fold, ranging from 1:10 to 1:10240. Viruses 

were diluted to 4 HA units. Assays were performed as previously described (Auladell et al., 2021[28]) 

using guinea pig red blood cells for A(H3N2) virus titrations and turkey red blood cells for A(H1N1) 

virus titrations. HI titres were imaged and read using an automated hemagglutination analyser 

(CypherOne, InDevR) with manual reads for Turkey rbc. 

  
Description of response and covariates 
  
The covariates for the model were chosen so that they were comparable across all cohorts. These 

covariates included pre-vaccination HAI titre (10 groups: <1:10, 1:10, 1:20, 1:40, 1:80, 1:160, 1:320, 

1:640, 1:1280, >1:2560), age groups (5 groups: <30, 30–39, 40–49, 50–59, 60+ years), gender (3 

groups: male, female, other), study site (6 groups: Adelaide, Brisbane, Melbourne, Newcastle, Perth, 

Sydney ), study year (2020, 2021, and 2022) and the number of influenza vaccines in the last five 

years (vaccine history) (6 groups: 0, 1, 2, 3, 4, 5). We calculated the individual-level fold-rise in 

antibody titre relative to the pre-vaccination HAI titre for the response variable at time t. The fold-

rise in antibody titres was converted to a log2 scale throughout the analysis. 
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Overview of Bayesian model structure 
  
We developed a Bayesian model that estimates each participant's antibody response—as measured 

by HAI titre—at time t post-vaccination. The post-vaccine antibody kinetics model assumes an 

instantaneous boost immediately after vaccination, followed by a linear wane. Two latent 

parameters describe this model: the peak antibody boosting (log2 scale) and the daily rate of 

antibody decline (log2 scale). The peak antibody boost was calculated using linear regression with 

covariates sex, age group, study site, vaccine history, and pre-vaccination HAI titre. Due to the 

complexity of the immunological mechanisms that relate to pre-vaccination HAI titre and boosting, 

fitting using a non-parametric form such as a Gaussian Process prior allows for a flexible non-linear 

association. Further, as the extreme values of the HAI titre values have a low number of samples, a 

Gaussian process prior will inform these titre values with low power from similar values, giving a 

more robust estimate than may come from a random-effects model (see SI methods). The other 

covariates were categorical and had a partial pooling effect. We also included the possibility of a 

product term between pre-vaccination HAI titre and the other covariates to understand the 

interactions between titre and age/sex/vaccination history. The daily rate of antibody decline also 

followed a linear regression, but we only considered the impact of pre-vaccination titre values, 

which we assumed follows a Gaussian process prior. The individual-level effects are added to both 

the boosting and waning parameters and allow the model to identify unusual individual-level 

boosting effects that the structure of the population-level model may fail to capture. The model 

equations, schematics and further details are in SI Methods. We fit the Bayesian regression model to 

four subsets of HAI data from the HCW dataset described below.  

 

To determine which covariates are significantly associated with HAI boosting, we calculated the 

marginal posterior distribution of peak HAI boosting for covariates: pre-vaccine titre, age group, 

vaccine history, gender, and site. For a given covariate, if there is a significant difference in the 

marginal posterior distribution between levels (i.e. 95% credible interval (CrI) does no overlap), then 

we assumed that the covariate has a significant association with HAI boosting, and we stratified by 

this covariate in further analyses. We also calculated the marginal posterior distribution for the 

covariates with interaction terms with pre-vaccination titre (age group, vaccine history, gender, site) 

to determine the influence of the interaction terms. We considered an interaction term covariate 

significant if >95% of the marginal posterior distribution is above or below 0 for at least one level of 

pre-vaccination titre. As we are interested in estimating the mean effects over multiple seasons, we 

do not stratify by study year, even if the marginal posterior distribution across study year levels is 

significant. For waning, where we only considered the influence of pre-vaccination HAI titre, we 

similarly defined the association as significant if the 95% CrI of the marginal posterior distribution 

between the levels of pre-vaccination HAI titre does not overlap. 

 

Overview of four influenza viral strains 

 

Using the three years of cohort data, we applied the model to two influenza vaccine viruses and one 

predominant circulating virus each year to help understand if there are consistent statistical 

associations between host factors and vaccine-induced HAI boosting for influenza virus strains across 

different study sites and seasons. First, to understand the vaccine-induced antibody kinetics 

response to vaccination strains, we fit the model to HAI titre to A(H3N2) egg-grown vaccine viruses 

A/South Australia/34/2019, A/Hong Kong/2671/2019, and A/Darwin/09/2021 for 2020, 2021 and 

2022 respectively (A(H3N2) vaccinating strains). Similarly, for A(H1N1), we fit the model with HAI 

titres to egg-grown strains; A/Brisbane/02/2018, A/Victoria/2570/2019, A/Victoria/2570/2019 for 

2020, 2021 and 2022 respectively (A(H1N1) vaccinating strains). To help understand how egg-grown 

adaptations impact vaccine-induced antibody kinetics, we also fit the model to HAI titres for cell-
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grown viruses. For this, cell-grown A(H3N2) viruses, matching the same clade as the seasons’ egg-

grown vaccine strains for 2020, 2021 and 2022 were used, namely A/South Australia/34/2019 

(3C.2a.1b.2), A/Darwin/726/2019 (3C.2a.1b.1b), A/Darwin/6/2021 (3c2a1b.2a.2) respectively 

(A(H3N2) circulating strains) and for cell-grown A(H1N1) viruses, we used A/Brisbane/02/2018, 

A/Victoria/2570/2019, and A/Victoria/2570/2019 for 2020, 2021 and 2022 respectively. 

 

Implementation 
  
All data cleaning, posterior inference, and plotting were performed in R (v.4.0.1) through VScode. 

The fitting of the Bayesian regression model was sampled through Hamiltonian Monte Carlo via 

cmdstanr (v. 0.5.3). A GitHub repository with all the code needed to reproduce this work is given at 

https://github.com/dchodge/ab_boosting_published. Data for the study is available upon request 

from the corresponding author. 

 

Model Validation 

 

To assess the fit of the Bayesian model, we compare the model-fitted HAI titre boost on the day of 

bleed with the HAI titre data used to fit the model. We found for all four groups of viruses (A(H1N1) 

vaccine, A(H3N2) vaccine, A(H1N1) circulating, and A(H3N2) circulating), that the HAI titre boosts 

values were well correlated by the model fitted values with 99.4%, 99.2%, 99.1% and 99.2% of 

model estimates within a one-fold-change unit of the data for strain types respectively (SI Figure 1). 

If the fold-rise in the data exceeded 16, the model consistently underestimated the HAI titre 

boosting. However, titre fold-rises of this magnitude were uncommon, with 6.5%, 2.6%, 1.6% and 

1.9% of samples seeing a 32-fold rise in titre or higher for the three influenza strain types.  

 

Ethics Approval 

 

The Royal Melbourne Hospital Human Research Ethics Committee of Royal Melbourne Hospital gave 

ethical approval for study protocol and protocol addendums for follow-up of COVID-19 vaccinations 

and SARS-CoV-2 infections (HREC/54245/MH-2019). LSHTM Observational Research Ethics 

Committee of London School of Hygiene and Tropical Medicine gave ethical approval for the use of 

this data for analysis (ref 22631). 
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RESULTS 

 

Determining covariates that significantly influence antibody-boosting  

 

For A(H1N1) vaccinating strains, our estimates suggest that from the covariates considered, only pre-

vaccination HAI titre and vaccine history significantly influence subsequent HAI boosting (Figure 1, SI 

Figure 2 for posterior distributions of regression coefficients SI Figure 3 for marginal posterior 

distributions for all covariates) (Figure 1A). At pre-vaccination HAI titres of <1:10, 1:10, and 1:20, 

titres were predicted to rise 19.0-fold, 12.2-fold and 6.9-fold with Posterior Predictive Intervals (PPI) 

of 15.0–26.9, 10.1–16.0, and 5.8–8.8, respectively (Figure 1A). We also found that the expected 

titres did not rise above the four-fold threshold when pre-vaccination titres were 1:80 or higher. For 

vaccination history, titres were predicted to rise 8.2 (95% PPI 6.8–10.5) fold in the absence of prior 

vaccination compared to a 4.2 (95% PPI 3.6–5.4) fold if vaccinated with two or more vaccines in the 

last five years (Figure 1B). There was weak evidence of an effect of interaction between pre-

vaccination titre and vaccination history, suggesting that boosting remains high for infrequently 

vaccinated individuals independently of pre-vaccination HAI titre (Figure 1B). We also find that the 

waning rate of HAI titre is significantly associated with pre-vaccination HAI titre, with lower HAI titres 

experiencing faster waning rates (Figure 1A). 

 

Pre-vaccination HAI titre and vaccine history also strongly influence HAI boosting for A(H3N2) 

vaccinating strains (see SI Figure 4 for posterior distributions of regression coefficients and SI Figure 5 

for marginal posterior distributions for all covariates). Lower HAI pre-vaccination titres are 

associated with higher boosting, with a pre-vaccination HAI titre of <1:10, 1:10, and 1:20 predicted 

to rise an estimated 6.1 (95% PPI 5.2–7.5), 4.4 (95% PPI 4.0–5.2), and 4.1 (95% PPI 3.7–4.7) fold 

respectively (Figure 1A). Titres did not rise above the four-fold threshold when pre-vaccination HAI 

titres were 1:40 or higher. For vaccination history, we find strong evidence of an effect of interaction 

between pre-vaccination titre and vaccination history, suggesting that the magnitude of the 

difference in boosting with increasing years of prior vaccination diminishes as pre-vaccination titre 

increases (Figure 1B). We estimate that for HCW who had pre-vaccination titres of <1:10 those with 

no vaccinations in the last five years have an 8.5 (95% PPI 7.0–11.1) fold boost, compared to a 5.6 

(95% PPI 4.7–6.8) fold boost for those who had five vaccinations in the last five years (Figure 1B). We 

also find that the waning rate of HAI titre is significantly associated with pre-vaccination HAI titre, 

with lower HAI titres seeing faster waning rates (Figure 1A).  

 

For A(H1N1) and A(H3N2) circulating strains, we also find pre-vaccination HAI titre and vaccine 

history strongly influence HAI boosting (Figure 1A, see SI Figure 6 and 8 for posterior distributions of 

regression coefficients and SI Figure 7 and 9 for marginal posterior distributions for all covariates). 

We find boosting was attenuated for circulating compared to vaccines strains and failed to reach a 

four-fold for nearly all pre-vaccination titres. We also find the waning of HAI titre is not significantly 

influenced by the pre-vaccination HAI titre (Figure 1A). For all strain types in Figure 1B, we plot the 

outcome variability of the underlying data (squares) to highlight the large variability in outcome 

compared to the inferential uncertainty.  

 

We find large differences in peak HAI boosting between seasons across all three vaccine types. For 

A(H1N1) vaccinating strains, HAI boosting was significantly higher in 2021 than in other years (8.1-

fold vs. 3.2 and 3.1). For A(H3N2) vaccinating strains, we find 2022 has a significantly higher boosting 

than 2020–2021 (4.1 vs. 2.6 and 2.7) with a similar observed trend for A(H3N2) circulating strains, 

albeit with attenuated boosting compared to A(H3N2) vaccinating strains (SI Figures 2, 4, 6, 8).  
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Relating aggregated antibody kinetics to seroconversion and protection 

 

Using our estimates of antibody boosting and waning, we generated predictions for antibody 

trajectories aggregated across different levels pre-vaccination titre and vaccine history calculated for 

up to 220 days post-vaccination for each strain type (Figure 2). To understand how these kinetics 

influence population-level immunity, we estimate the posterior predictive interval of the duration of 

i) seroconversion (a 4-fold rise from their pre-vaccination HAI titre) and ii) seroprotection (HAI titre 

equal to or exceeding 1:40, which is associated with a 50% reduction in risk of infection or 1:80 

associated with a 90% reduction in risk of infection[18,29]) for influenza A subtype circulating strains 

For A(H1N1) circulating strains, we find the duration of seroconversion for those with pre-

vaccination titres of <1:10, 1:10, and 1:20 is 308 (95% PPI 229–389), 217 (95% PPI 151–284), and 100 

(95% PPI 42–155) days for individuals with less than two vaccines in the last five years (infrequently 

vaccinated) and 130 (95% PPI 52–198), 46 (95% PPI 0–101), and 0 (95% PPI 0–0) days for individuals 

with two or more vaccines in the last five years respectively (Figure 3A). For A(H3N2) circulating 

strains, the duration of seroconversion has a mean of between 0–10 days for all vaccine histories 

and pre-vaccination titres. For seroprotection, assuming a threshold value of 1:40, infrequently 

vaccinated individuals are protected 171 (95% PPI 128–220) and 159 (95% PPI 120–200) days longer 

compared to frequently vaccinating individuals for A(H1N1) circulating viruses with pre-vaccination 

titers of 1:10 and 1:20 respectively (Figure 3B). At a seroprotection threshold of 1:80, we similarly 

see the benefit of being infrequently vaccinated, providing 192 (95% PPI 145–244) days longer 

seroprotection assuming a pre-vaccination titre of 1:40. For A(H3N2) circulating viruses, there is a 

slightly longer duration of protection for infrequently vaccinated individuals of around 50 days, 

however these beneficial effects are limited to the those with an HAI titre value of 1:20 (at a 1:40 

threshold) or 1:40 (n at a 1:80 threshold). 

 

 

 

The practical significance of the inferred statistical model 

 

The latent antibody trajectories aggregated across covariate levels of pre-vaccination titre and 

infection history from the models suggest significant differences in the duration of seroprotection 

and seroconversion. However, the large observed individual-level outcome variability means it’s 

difficult to ascertain if these aggregated differences in antibody kinetics translate to a meaningful 

difference in protection when we consider individual-level variation across a whole cohort. To assess 

this, we use the individual-level fits from the regression model and determine how long each 

individual’s post-vaccination HAI titre remains high enough to be four-fold higher than the pre-

vaccination HAI titre, i.e. seroconverts and/or is seroprotected from infection (Figure 4). We find 

that the mean value of the duration of seroconversion and seroprotection is higher in the 

infrequently vaccinated cohort across nearly all pre-vaccination HAI titre values (Figure 4A). For 

A(H1N1) circulating strains, we find a significant difference (according to a Kolmogorov-Smirnov test) 

between the empirical distributions for the individual-level duration of protection and 

seroconversion between frequently and infrequently vaccinated populations across most pre-

vaccination titre levels. The magnitude of this significant difference according to a Cohen’s D effect 

size suggests that the magnitude of the difference is large (above 0.8) for pre-vaccination HAI titres 

less than or equal to 1:40 (Figure 4B). For A(H3N2) circulating strains, there is no significant 

difference between the individual-level empirical distributions between frequently and infrequently 

vaccinated individuals for most pre-vaccination HAI titres, suggesting that vaccine history has little 

practical significance on seroconversion rates. For seroprotection with A(H3N2) circulating strains, 

significant differences in the empirical distributions and in the magnitude of the effect size are seen 
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between infrequently and frequently vaccinated for those with pre-vaccination titres of 1:40 and 

1:80 only. 

 

Comparing the posterior predictive distributions of individual-level dynamics between strain types 

between individuals, we see that boosting and waning estimates between A(H3N2) and A(H1N1) 

vaccinating strains are not strongly correlated, but boosting to H1N1 is significantly higher. Boosting 

and waning between the A(H3N2) vaccinating and A(H3N2) circulating strains are slightly correlated, 

though A(H3N2) circulating strain boosts are generally attenuated (SI Figure 8).  
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DISCUSSION 

 

 

We found that pre-vaccination HAI titre and vaccination history significantly influenced HAI antibody 

boosting induced by vaccination. This result holds for antibodies against both A(H1N1) and A(H3N2) 

vaccination strains, as well as against cell-grown circulating strains. We used model-predicted 

antibody trajectories to estimate the expected duration of seroprotection (HAI titre ≥1:40) and 

seroconversion (≥4-fold rise) for cell-grown circulating strains and found that those with lower pre-

vaccination HAI titres experience longer durations than those with higher pre-vaccination titres. In 

addition, for A(H1N1) circulating strains, our statistical models suggest that infrequently vaccinated 

populations can experience a mean of 50-300 days longer duration of seroprotection against 

influenza compared to frequently vaccinated populations if their pre-vaccination titre is below 1:40. 

These observations result in practically significant differences in the duration of seroprotection when 

we consider individual-level variation across a whole cohort for circulating strains. However, for 

circulating A(H3N2) strains, the attenuation in boosting compared to vaccinating strains means that 

there is almost no seroconversion observed, and vaccine-induced seroprotection is only afforded to 

those individuals with pre-vaccination HAI titres close to the protection thresholds. 

 

Our observation that pre-vaccination titres significantly influence HAI antibody boosting is consistent 

with previous seroepidemiological studies.[8,10–13,21,30] These studies suggest individuals with 

lower pre-vaccination titres see higher fold rises (e.g. 16 fold for <1:10[21]) compared to those with 

higher pre-vaccination titres, with four-fold rises becoming uncommon after pre-vaccination titres of 

1:40/1:80. [10,21,30] This trend is consistent across influenza subtypes and between HAI titres and 

micro-neutralisation assays. Previous models which fit individual-level antibody trajectories as a 

latent parameter have also considered the influence of pre-exposure HAI titres on HAI boosting. 

Ranjeva et al.[31] used individual-level models of post-infection antibody trajectories and found they 

were improved by assuming that (i) boosting decreases with increasing pre-infection titre and (ii) 

that there is limited seroconversion when pre-infection titres exceed 1:80. Similarly, a model by Hay 

et al.[32], which builds antibody trajectories given different sequences of influenza exposure types in 

ferrets, found that pre-vaccination HAI titre-dependent boosting leads to better model fits than 

without. The framework in this study augments the titre-dependent boosting mechanisms outlined 

in these previous models in two ways. First, instead of a linear relationship, we consider a flexible 

non-parametric relationship between log pre-vaccination titre and log fold-rise, allowing for more 

complex dynamics relating the two to be described. Our fitted relationship suggests an almost linear 

decrease in log fold-rise as log pre-vaccination HAI titre increases until a pre-vaccination titre of 

1:640, after which there is no fold-rise. The second way we extend previous models, considering the 

influence of pre-vaccination titre, is by incorporating a hierarchical Bayesian regression structure, 

allowing for the quantification of age, sex, and vaccination history on vaccination-induced antibody 

kinetics. Therefore, after calculating the marginal distributions, we reduce potential confounding 

and allow for more accurate descriptions of covariate-specific antibody trajectories.  

 

The influence of vaccination history on post-vaccination antibody kinetics has also been observed in 

previous seroepidemiological studies. [23,33–35] These studies found that individuals recently 

vaccinated with influenza experience attenuated boosting compared to those without recent 

vaccination. However, these studies often report higher pre-vaccination HAI titres, suggesting that 

the attenuated boost attributable to vaccination history might be confounded by attenuation in 

boosting due to pre-vaccination titre.[35] We, therefore, focus comparisons to our study with 

studies which explicitly consider the influence of pre-vaccination HAI titre and the impact of vaccine 

history on antibody kinetics.[8,36] Beyer et al.[36] used 1,119 paired serum samples from 681 

individuals to estimate post-vaccination HAI titre in a multiple linear regression model. Across all 

dependent variables (pre-vaccination titre, vaccine, age, and gender), they found that increasing pre-

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2024. ; https://doi.org/10.1101/2024.01.24.24301614doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.24.24301614
http://creativecommons.org/licenses/by-nc/4.0/


 

 

11 

 

vaccination titre and vaccination history had a significant negative effect on post-vaccination HAI 

titre boosting. In contrast, age and gender did not significantly influence titre boosting across 

influenza subtypes. Wu et al.[8] used samples from 1,300 individuals and fit a multiple linear 

regression model to predict seroconversion. They found that increasing pre-vaccination HAI titre and 

vaccination history were the two most important predictive covariates for seroconversion rates, with 

age, body mass index (BMI), sex, race, and comorbidities having little importance.[21,30,31]  These 

observations align with the results of our models; however, we extended these frequentist linear 

models by implementing a Bayesian framework with partial pool effects across covariates and 

allowing for interaction terms between pre-vaccination titre and other covariates. We found that 

vaccination history significantly influences boosting, but only as an interaction term with pre-

vaccination titre for A(H3N2) vaccinating strains. Therefore, the degree of influence vaccination 

history has on titre-boosting changes depending on pre-vaccination HAI titre. This observation could 

explain the variable impact that vaccination history has on titre boosting, particularly in studies 

which do not account for pre-vaccination HAI titre.[23,33,34] 
 

A limitation of this model is that the post-vaccination antibody kinetic trajectories are a simple 

representation of key dynamics (a variable boost with variable linear wane) compared to previous 

modelling efforts, which use piecewise linear or exponential functions.[31,32,37] We chose this 

kinetics structure for several reasons. First, it reduces the number of parameters needed in the 

hierarchical model structure simplifying the fitting process. The latent parameters, peak titre 

boosting and wane rate per day are also easily interpretable and don’t require complex post-

processing to find informative metrics. Second, it would be challenging to infer these complex 

individual-level trajectories robustly, given the dataset, as bleed dates are constrained to values 

around 14- and 180-days post-vaccination. Cohort studies with multiple bleeds for the first few 

weeks following vaccination would help better inform complex initial antibody kinetics. The longer-

term dynamics of antibody kinetics suggest a plateauing effect to a set point.[18,37] As we infer a 

linear structure in our post-vaccination kinetics, we only infer trajectories up to 365 days post-

vaccination to help prevent incorrectly estimating the duration of protection and seroconversion at 

long time scales. Future models could extend this framework by using more complex antibody 

kinetics structures, such as in-host B-cell kinetics and multiple antibody production sites (e.g. 

plasmablasts and plasma cells). This can be done implicitly by assuming antibody kinetics follow 

power function decay functions[38] or by explicitly modelling antibody secretion using systems of 

Ordinary Differential Equations (ODEs) which relate antigen-secreting cells and antibody titres.[39] 

 

The statistical model without an individual-level variation model fails to explain the outcome 

variability in the underlying data, meaning predicting individual patterns of HAI boosting using pre-

vaccination titre and vaccine history remains challenging. There are augmentations to the model 

which could help explain some existing outcome variability: most notable is the effect of prior 

influenza of infection on antibody kinetics.[28] This was not included in this model because there 

was a lack of information on infection history before 2020. (It is worth noting that there was little 

influenza virus circulation in Australia between 2020–2021 due to the COVID-19 restrictions, so 

infection rates in our cohort during that period are likely nil.) The lack of infection history combined 

with unusual influenza dynamics over this period may help explain some of the outcome variability 

the model failed to capture. However, there are processes which drive outcome variability that this 

model cannot consider. This includes variability from other in-host immune processes, such as innate 

immunity, cellular immunity, genetic polymorphism and epigenetic factors.[40,41]  

 

This study finds that the circulating influenza A strains that differ antigenically from the egg-grown 

vaccinating strains have notably muted HAI boosting when stratified by pre-vaccination titre and 

vaccine history. The degree of this attenuation in boosting is so great for A(H3N2) that the influence 
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of vaccine history no longer results in significant differences in outcome variability for many pre-

vaccination HAI titres. The observed differences in practical significance in seroconversion between 

the vaccination strains and circulating strains could explain the seasonal variability of the influence 

of vaccination history on observed vaccine effectiveness.[42,43] Future model development will 

incorporate the influence of the antigenic distance between successive vaccinating and circulating 

strains into the antibody kinetics framework. This could be done by using existing metrics of 

antigenic advance or considering the influence of vaccination on boosting HAI titres across various 

strain landscapes.[44] This would allow the exploration of the antigenic distance hypothesis, which 

suggests that the efficacy of vaccines is muted in a vaccinated individual if a circulating strain is 

antigenically distant from the previous two antigenically similar vaccine strains.[45] 

 

This study provides robust statistical inference on the host-specific driving forces behind influenza 

HAI titre kinetics within a single Bayesian framework. This flexible Bayesian model provides the 

quantifiable non-parametric relationship between pre-vaccination HAI titre and prior vaccination 

history and established heuristics such as seroconversion and protection. After accounting for pre-

vaccination titre, we show that vaccination history significantly influences the duration of 

seroconversion and seroprotection against influenza, both with the statistical framework and within 

the outcome variability with individual variation. Future studies that rely on serological and antibody 

kinetics endpoints should include these two essential covariates to ensure accurate epidemiological 

inference.  
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Figure 1. Bayesian marginal posterior distribution for covariates as a measure of inferential 

uncertainty. (A) The marginal posterior distributions of boosting and waning stratified by pre-

vaccination HAI titre for the four virus strains. The point markers are the mean value of the 
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posterior, and the smaller point marker represents a posterior sample. (B) The marginal posterior 

distribution of boosting stratified by pre-vaccination HAI titre and the number of previous vaccines 

for the four virus strains. The point marker indicates the posterior mean and the uncertainty 

represents a 50% and 95% posterior predictive interval (thick and line respectively).  

 

 

Figure 2. Expectation of post-vaccination kinetics from marginal posterior distributions of latent 

parameters. The mean post-vaccination HAI boosting (fold-rise) trajectories to virus strains stratified 

by pre-vaccination HAI titre and vaccination history (infrequently vaccinated and frequently 

vaccinated).   
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Figure 3. Post-vaccination duration of seroconversion and sreoprotection from inferred statistical 

model. (A) Posterior predictive distribution (PPD) for the duration that titre rise is ≥4-fold and that 

HAI titre is ≥1:40 and ≥1:80 after vaccination stratified by vaccination history and pre-vaccination 

titre. (B) The PPD for the differences in days that titre rise ≥4-fold and that HAI titre is ≥1:40 and 

≥1:80  between the two vaccine histories.  
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Figure 4. Post-vaccination duration of seroconversion and protection when considering outcome 

variability. (A) Individual-level estimates for the duration that titre rise is ≥4-fold and that HAI titre is 

≥1:40 and ≥1:80 after vaccination stratified by vaccination history and pre-vaccination titre. Large 

diamond point marker individuals mean of sample. (B) Effect size from Cohen’s D and the p-value 

from a Kolmogorov-Smirnoff test to assess the significance of the difference between the two 

vaccine history levels for the duration post-vaccination above a threshold heuristic. 
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 H1N1 vaccinating strains H3N2 vaccinating strains H1N1 circulating strains H3N2 circulating strains 

  2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 

 (N=1036) (N=1887) (N=2046) (N=1034) (N=1887) (N=2037) (N=1036) (N=1887) (N=2036) (N=1036) (N=1887) (N=2049) 

Pre-vaccine 

HAI titre 
            

  5 118 (11.4%) 215 (11.4%) 106 (5.2%) 29 (2.8%) 6 (0.3%) 
316 

(15.5%) 
189 (18.2%) 509 (27.0%) 171 (8.4%) 66 (6.4%) 165 (8.7%) 815 (39.8%) 

  10 65 (6.3%) 303 (16.1%) 129 (6.3%) 44 (4.3%) 67 (3.6%) 
744 

(36.5%) 
166 (16.0%) 380 (20.1%) 188 (9.2%) 175 (16.9%) 308 (16.3%) 581 (28.4%) 

  20 163 (15.7%) 350 (18.5%) 219 (10.7%) 64 (6.2%) 
234 

(12.4%) 

608 

(29.8%) 
233 (22.5%) 534 (28.3%) 272 (13.4%) 285 (27.5%) 517 (27.4%) 395 (19.3%) 

  40 189 (18.2%) 445 (23.6%) 405 (19.8%) 
158 

(15.3%) 

486 

(25.8%) 

237 

(11.6%) 
216 (20.8%) 305 (16.2%) 342 (16.8%) 298 (28.8%) 481 (25.5%) 172 (8.4%) 

  80 240 (23.2%) 318 (16.9%) 441 (21.6%) 
188 

(18.2%) 

499 

(26.4%) 
86 (4.2%) 151 (14.6%) 137 (7.3%) 547 (26.9%) 183 (17.7%) 278 (14.7%) 58 (2.8%) 

  160 158 (15.3%) 201 (10.7%) 438 (21.4%) 
193 

(18.7%) 

394 

(20.9%) 
39 (1.9%) 56 (5.4%) 20 (1.1%) 305 (15.0%) 27 (2.6%) 122 (6.5%) 23 (1.1%) 

  320 87 (8.4%) 44 (2.3%) 195 (9.5%) 
209 

(20.2%) 
144 (7.6%) 5 (0.2%) 23 (2.2%) 2 (0.1%) 168 (8.3%) 2 (0.2%) 11 (0.6%) 3 (0.1%) 

  640 14 (1.4%) 9 (0.5%) 90 (4.4%) 97 (9.4%) 48 (2.5%) 0 (0%) 2 (0.2%) 0 (0%) 32 (1.6%) 0 (0%) 5 (0.3%) 0 (0%) 

  1280 2 (0.2%) 2 (0.1%) 23 (1.1%) 46 (4.4%) 7 (0.4%) 2 (0.1%) 0 (0%) 0 (0%) 11 (0.5%) 0 (0%) 0 (0%) 2 (0.1%) 

  2560 0 (0%) 0 (0%) 0 (0%) 6 (0.6%) 2 (0.1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Sex             

  Female 854 (82.4%) 1597 (84.6%) 1725 (84.3%) 
852 

(82.4%) 

1597 

(84.6%) 

1716 

(84.2%) 
854 (82.4%) 1597 (84.6%) 1718 (84.4%) 854 (82.4%) 

1597 

(84.6%) 
1727 (84.3%) 

  Male 182 (17.6%) 286 (15.2%) 321 (15.7%) 
182 

(17.6%) 

286 

(15.2%) 

321 

(15.8%) 
182 (17.6%) 286 (15.2%) 318 (15.6%) 182 (17.6%) 286 (15.2%) 322 (15.7%) 

  Other 0 (0%) 4 (0.2%) 0 (0%) 0 (0%) 4 (0.2%) 0 (0%) 0 (0%) 4 (0.2%) 0 (0%) 0 (0%) 4 (0.2%) 0 (0%) 

Age group (yrs)             
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 H1N1 vaccinating strains H3N2 vaccinating strains H1N1 circulating strains H3N2 circulating strains 

  2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 

  <30 196 (18.9%) 342 (18.1%) 353 (17.3%) 
194 

(18.8%) 

342 

(18.1%) 

352 

(17.3%) 
196 (18.9%) 342 (18.1%) 351 (17.2%) 196 (18.9%) 342 (18.1%) 353 (17.2%) 

  30-39 303 (29.2%) 541 (28.7%) 620 (30.3%) 
303 

(29.3%) 

541 

(28.7%) 

620 

(30.4%) 
303 (29.2%) 541 (28.7%) 614 (30.2%) 303 (29.2%) 541 (28.7%) 624 (30.5%) 

  40-49 298 (28.8%) 537 (28.5%) 556 (27.2%) 
298 

(28.8%) 

537 

(28.5%) 

553 

(27.1%) 
298 (28.8%) 537 (28.5%) 556 (27.3%) 298 (28.8%) 537 (28.5%) 556 (27.1%) 

  50-59 220 (21.2%) 440 (23.3%) 474 (23.2%) 
220 

(21.3%) 

440 

(23.3%) 

472 

(23.2%) 
220 (21.2%) 440 (23.3%) 472 (23.2%) 220 (21.2%) 440 (23.3%) 473 (23.1%) 

  60+ 19 (1.8%) 27 (1.4%) 43 (2.1%) 19 (1.8%) 27 (1.4%) 40 (2.0%) 19 (1.8%) 27 (1.4%) 43 (2.1%) 19 (1.8%) 27 (1.4%) 43 (2.1%) 

Study site             

  Adelaide 75 (7.2%) 130 (6.9%) 165 (8.1%) 75 (7.3%) 130 (6.9%) 165 (8.1%) 75 (7.2%) 130 (6.9%) 161 (7.9%) 75 (7.2%) 130 (6.9%) 165 (8.1%) 

  Brisbane 138 (13.3%) 304 (16.1%) 357 (17.4%) 
138 

(13.3%) 

304 

(16.1%) 

356 

(17.5%) 
138 (13.3%) 304 (16.1%) 354 (17.4%) 138 (13.3%) 304 (16.1%) 355 (17.3%) 

  Melbourne 97 (9.4%) 244 (12.9%) 244 (11.9%) 97 (9.4%) 
244 

(12.9%) 

243 

(11.9%) 
97 (9.4%) 244 (12.9%) 241 (11.8%) 97 (9.4%) 244 (12.9%) 244 (11.9%) 

  Newcastle 168 (16.2%) 429 (22.7%) 443 (21.7%) 
168 

(16.2%) 

429 

(22.7%) 

443 

(21.7%) 
168 (16.2%) 429 (22.7%) 445 (21.9%) 168 (16.2%) 429 (22.7%) 443 (21.6%) 

  Perth 279 (26.9%) 345 (18.3%) 433 (21.2%) 
279 

(27.0%) 

345 

(18.3%) 

426 

(20.9%) 
279 (26.9%) 345 (18.3%) 431 (21.2%) 279 (26.9%) 345 (18.3%) 438 (21.4%) 

  Sydney 279 (26.9%) 435 (23.1%) 404 (19.7%) 
277 

(26.8%) 

435 

(23.1%) 

404 

(19.8%) 
279 (26.9%) 435 (23.1%) 404 (19.8%) 279 (26.9%) 435 (23.1%) 404 (19.7%) 

Vaccine history  

(# in last 5 

years) 

            

  0 131 (12.6%) 45 (2.4%) 61 (3.0%) 
131 

(12.7%) 
45 (2.4%) 61 (3.0%) 131 (12.6%) 45 (2.4%) 61 (3.0%) 131 (12.6%) 45 (2.4%) 61 (3.0%) 

  1 99 (9.6%) 87 (4.6%) 57 (2.8%) 99 (9.6%) 87 (4.6%) 57 (2.8%) 99 (9.6%) 87 (4.6%) 57 (2.8%) 99 (9.6%) 87 (4.6%) 57 (2.8%) 

  2 79 (7.6%) 114 (6.0%) 115 (5.6%) 79 (7.6%) 114 (6.0%) 114 (5.6%) 79 (7.6%) 114 (6.0%) 112 (5.5%) 79 (7.6%) 114 (6.0%) 114 (5.6%) 
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 H1N1 vaccinating strains H3N2 vaccinating strains H1N1 circulating strains H3N2 circulating strains 

  2020 2021 2022 2020 2021 2022 2020 2021 2022 2020 2021 2022 

  3 52 (5.0%) 117 (6.2%) 122 (6.0%) 52 (5.0%) 117 (6.2%) 122 (6.0%) 52 (5.0%) 117 (6.2%) 122 (6.0%) 52 (5.0%) 117 (6.2%) 125 (6.1%) 

  4 100 (9.7%) 136 (7.2%) 185 (9.0%) 98 (9.5%) 136 (7.2%) 186 (9.1%) 100 (9.7%) 136 (7.2%) 184 (9.0%) 100 (9.7%) 136 (7.2%) 187 (9.1%) 

  5 575 (55.5%) 1388 (73.6%) 1506 (73.6%) 
575 

(55.6%) 

1388 

(73.6%) 

1497 

(73.5%) 
575 (55.5%) 1388 (73.6%) 1500 (73.7%) 575 (55.5%) 

1388 

(73.6%) 
1505 (73.5%) 

 

 

Table 1. Baseline characteristics of the study populations stratified by covariates for each of the three vaccine types where N is the number of samples.   
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