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Abstract

Chapatti (unleavened flatbread) is a staple food in northern India and neighboring countries

but the genetics behind its processing quality are poorly understood. To understand the

genes determining chapatti quality, differentially expressed genes were selected from

microarray data of contrasting chapatti cultivars. From the gene and trait association stud-

ies, a null allele of granule bound starch synthase (GBSS; Wx-B1) was found to be associ-

ated with low amylose content and good chapatti quality. For validation, near-isogenic lines

(NILs) of this allele were created by marker assisted backcross (MAB) breeding. Back-

ground screening indicated 88.2 to 96.7% background recovery in 16 selected BC3F5 NILs.

Processing quality and sensory evaluation of selected NILs indicated improvement in cha-

patti making quality. Traits that showed improvement were mouthfeel, tearing strength and

softness indicating that the Wx-B1 may be one of the major genes controlling chapatti

softness.

Introduction

Wheat is an important crop worldwide. In India, Nepal, Bangladesh, Pakistan, Sri Lanka, East

Africa, and the Caribbean, it is mainly consumed in the form of an unleavened flatbread–the

chapatti. Limited studies have been carried out to understand the genes/QTLs involved in cha-

patti making quality [1]. A good chapatti has white colour, less dough stickiness, easy to roll,

soft pliable texture, soft chewing mouth feel and typical taste and aroma [2,3]. Major constitu-

ents of wheat determining end product quality are proteins and carbohydrates. Seed storage

proteins in wheat are mainly glutenins and gliadins, which confer visco-elasticity and extensi-

bility to the dough [4]. Glutenins are comprised of high molecular weight glutenin subunits

(HMW-GS) and low molecular weight glutenin subunits (LMW-GS). HMW-GS constitute

only 12% of total seed storage proteins but they determine 60% of the variation in baking prop-

erties [5]. LMW-GS constitute about 33% of total seed storage proteins and play an important

role in bread-making quality by forming di-sulphide bridges with HMW-GS and helping in

the formation of gluten polymer [6]. On the other hand, gliadins constitute 40–50% of total

storage proteins but their effect on processing quality is limited [7,8]. Other than gluten
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proteins, puroindoline proteins (PINs) play an important role in grain texture and end-use

quality [9]. A high amount of puroindoline proteins results in soft kernel texture. Milling of

soft grains requires less force, thus there is less damaged starch and more intact starch gran-

ules, which decreases water absorption during dough making [10]. Hard textured wheat is

more suitable for bread making while soft textured wheat is more suitable for the preparation

of cookies as the intact starch granules impart crunchiness to the final product [11].

Other than proteins, starch (65–70% of the endosperm) also plays an important role in

end-product quality. Different components of the starch, amylose (AM, 20–30%) and amylo-

pectin (AP, 70–80%) and their ratios (AP/AM) influence properties like pasting, gelatinization

and cooking quality [12–14]. Lower amylose content corresponds to greater water absorption

capacity (and thus greater swelling power), higher peak viscosity of paste, lower peak viscosity

temperature, lower final viscosity, greater resistance to retrogradation [12,15–17] and better

noodle- and steamed bun-making quality [14,18,19].

Most reports on the end-product quality of wheat are related to bread, biscuit, and noodles.

Chapatti, despite being the important food in several countries, has attracted limited attention

[2,20–22]. Pre-green revolution cultivars like C306, C518, C591 and C273 had good chapatti

quality but poor agronomic traits including tall stature, low grain yield and were prone to

lodging. The introduction of semi dwarf, high yielding varieties during the green revolution

led to the loss of chapatti quality traits in modern wheat varieties [23]. Our target was to create

wheat lines with chapatti quality on par with pre-green revolution cultivars with grain yield at

the level of post-green revolution cultivars. Previous research on chapatti quality focused on

the comparison of chapatti making quality between cultivars [1,24], or the effect of additives

on its quality [21,25]. Srivatsava [26] proposed that protein subunits have some influence but

are not a major factor for determining chapatti quality. Other traits influencing chapatti qual-

ity have not been explored much.

In this study, we have screened the previously published microarray data generated from

contrasting chapatti quality wheat cultivars [1]. From the gene and trait association studies,

one gene with a positive influence on chapatti quality was selected. Crosses were made between

good chapatti quality cultivar C306 and two high yielding Indian wheat varieties to create

NILs using a backcross breeding method. Screening for yield and yield-related components as

well as physicochemical, rheological and sensory parameters indicated that the selected gene is

associated with chapatti softness. The current study highlights the usefulness of modern bio-

technological tools like microarray for identification of gene of interest and its validation by

the creation of NILs in a limited time.

Materials and methods

Screening of differentially expressed genes

For screening of differentially expressed genes and selection of candidate genes, seed microar-

ray data of good (C306 and LOK1) vs. poor (WH291 and Sonalika) chapatti quality wheat cul-

tivars (cv.), were collected at three developmental stages (7, 14, and 28 days after anthesis

{DAA}), containing 61,290 probe sets representing about 25 K unigenes was used for screening

[1].

Screening of candidate genes

Based on microarray data granule bound starch synthase (GBSS), HMW-GS and puroindoline

genes were selected as candidates for further analysis. Fourteen wheat cultivars with known

chapatti quality (information provided by Punjab Agricultural University, Ludhiana, Punjab,

India) were screened for allelic diversity. Polymorphism in the GBSS and puroindoline genes
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were screened by PCR based markers (Table 1). HMW-GS were screened using sodium dode-

cyl sulfate poly acrylamide gel electrophoresis [27].

Seeds of all the fourteen cultivars were also screened for amylose content. The wheat starch

granules were isolated according to reference [31]. The percentage amylose content in the

starch granule pellet was determined by using the Megazyme amylose/amylopectin assay kit

[32].

Near isogenic lines (NILs) development

The NILs were developed by crossing the good chapatti quality wheat cv C306 as the donor,

with poor chapatti quality but high yielding cultivars PBW343and PBW621 as recipients,

through the backcross breeding method (Fig 1). All wheat cultivars/lines were grown in the

farms of National Agri-Food Biotechnology Institute, Mohali, Punjab, India (30˚44’10” N Lati-

tude at an elevation of 351 m above sea level) during the main season and at Indian Institute of

Wheat and Barley Research at Dalang Maidan, Himachal Pradesh, India (32˚30’27.9” N Lati-

tude and 76˚59’34” E Longitude at an elevation of 2971 m above sea level) in the offseason.

Three backcrosses (BC3), were followed by seven selfing generations. The BC3 were named as

C3 (from the cross C306/4�PBW343) and C6 (from the cross C306/4�PBW621). Individual

selections (plants/plots) from the same cross were number from A to Z e.g. C3A to C3H from

cross C3 and C6A to C6H from cross C6. The foreground selection (FGS) was carried out

using SSR marker WMC313 followed by co-dominant marker Wx-B1. The background

screening (BGS) was carried out using 400 deletion bin-based primers, spread across 42 chro-

mosomes [33].

Grain quality parameters

Sodium dodecyl sulfate sedimentation (SDSS) test was performed on a small scale using 1 g

flour [34]. Dough extensibility tests were performed on texture analyzer (Stable Microsystems)

using Kieffer dough and gluten extensibility rig. Peak positive force, stretching distance, and

area to positive peak were measured [35]. Solvent retention capacity (SRC) tests were per-

formed according to American Association of cereal chemists (AACC) method 56–11.02 for

deionized water, sucrose solution (50% w/w), sodium carbonate solution (5% w/w), and lactic

Table 1. List of genes and primer sequences utilized under study.

S.No. Gene Location Primer sequence Reference

1 Wx-A1 7A forward: 5’ CGTTTTAACTATACGTCTCGC 3’ [28]

reverse: 5’ ATATGCAAAGGAGGTGAGGAAC 3’

2 Wx-B1 (wild type) 4AS forward: 5’ CTGGCCTGCTACCTCAAGAGCAACT 3’ [19]

reverse: 5’ CTGACGTCCATGCCGTTGACGA 3’

3 Wx-B1 (null) 4AS forward: 5’ CGTAGTAAGGTGCAAAAAAGTGCCACG 3’ [19]

reverse: 5’ ACAGCCTTATTGTACCAAGACCCATGTGTG 3’

3 Wx-D1 7D forward: 5’ CAGATCGAATGCCGGTACC 3’ [28]

reverse: 5’ CGCAAAATTGATATGCCTGTT 3’

4 WMC313 4AS forward: 5’ GCGGTCGTCTATTAATCTGACG 3’ [29]

reverse: 5’ GGGTCCTTGTCTACTCATGTCT 3’

5 Pina-D1 5DS forward: 50 CATCTATTCATCTCCACCTGC 3’ [30]

Reverse: 5’ GTGACAGTTTATTAGCTAGT 30

6 Pinb-D1 5DS forward: 50 AATAAAGGGGAGCCTCAACC 30 [30]

Reverse: 5’ GAATAGAGGCTATATCATCACCA 30

https://doi.org/10.1371/journal.pone.0246095.t001
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acid solution (5% w/w). Thermal properties of starch (isolation as mentioned above) were esti-

mated using differential scanning calorimeter (DSC; 822, Mettler Toledo, Columbus, OS,

USA) equipped with a thermal analysis data station. Onset temperature (To), peak

Fig 1. Schematic representation of the crossing program for the generation of NILs for null allele of GBSS-4A

gene. Solid box indicates crossing and the dotted box indicates selfing. FGS- Foreground selection; BGS- Background

screening.

https://doi.org/10.1371/journal.pone.0246095.g001
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temperature (Tp), conclusion temperature (Tc) and enthalpy (ΔH) were calculated using

STARe software for thermal analysis (STARe SW 9.01).

Chapatti sensory evaluation and texture analysis

Sensory evaluation of fresh chapattis was done by a panel of 10 members. The sensory attri-

butes of chapatti were evaluated in terms of dough stickiness, rollability, puffing height, black

spots, color, taste, aroma, mouth feel, tearing strength and softness by a panel consisting of ten

members using the 9 point-Hedonic scale with a score of 9—extreme liking, 8—like very

much, 7—like moderately, 6—like slightly, 5—neither like nor dislike, 4—dislike slightly, 3—

dislike moderately, 2—dislike very much and 1 for extreme disliking [36]. Donor cultivar

C306 was used as the positive control. Chapatti tensile strength was estimated on the texture

analyzer (Stable Micro systems) within 1hr of baking, and tensile modulus (TM) was measured

[37] as:

TM ðMPaÞ ¼ Tensile stress=Tensile strain ¼ ðF=AÞ=ðDL=LÞ

Where, F—peak force to rupture, A—cross-section area (m2), L—initial chapatti length (m)

and ΔL—change in length (extensibility).

Statistical analysis

Results were analyzed using one-way analysis of variance (ANOVA) followed by Tukey’s-b

test using IBM SPSS Statistics 21.0. The Principal Component Analysis was performed by

XLSTAT 2020 for the analysis of chapatti quality, PIN genes, HMW-GS, null Wx-B1, starch

content.

Results

Short listing of candidate genes

For candidate gene screening differential expression microarray data of good vs. poor chapatti

quality lines was utilized [1]. This data indicated differential expression of genes like gliadins

and glutenins, GBSS-I, peroxidase, proteinase, amylases, puroindolines, etc. [1]. Three genes

and their isoforms namely GBSS-I, HMW-G and puroindoline were shortlisted based on their

differential expression and previous processing quality related literature support (S1 Table).

Selection of candidate genes

The good chapatti lines (Table 2) had hard seed texture with the hardness index 74–95. Poor

chapatti lines were also hard with hardness index 70–82. While very poor (S. No. 13–14;

Table 2) lines had soft grain with hardness index 30–40. In the case of puroindoline genes

(Pina and Pinb), all the tested hard wheat lines (1–12; Table 2) had non-functional Pina allele

Pina-D1b and functional Pinb allele Pinb-D1a with exception of one, cv. Sonalika (S. No. 11;

Table 2) with functional Pina-D1a and non-functional Pinb-D1b alleles. Soft wheat lines (S.

No. 13–14; Table 2) had both functional Pina-D1a and Pinb-D1a alleles. In the case of

HMW-GS genes observed allelic variation was null, 1, 2� at the locus Glu-1A; 7, 7+8, 7+9, 17
+18, 20 at locus Glu-1B; 5+10, 2+12 at locus Glu-1D (Table 2). In the case of GBSS-I genes,

Wx-A1 and Wx-D1 were non-polymorphic (S1 Fig). The Wx-B1 had non-functional null allele

(A; Table 2; 668 bp; Fig 2) in good chapatti lines and functional allele (P; Table 2, 778 bp; Fig

2) in the poor chapatti lines. The screening revealed amylose starch content between 29.1 and

30.3 in poor chapatti lines and 25.6 and 26.8 in good chapatti lines. One exception was Lok1

with good chapatti quality and amylose content of 29.3. The Pearson correlation matrix also
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showed that the chapatti quality is positively correlated with grain hardness (0.837) and null

Wx-B1 (0.9) and negatively correlated with amylose content (-0.765) and Pina-D1a (-0.785)

(S2 Table). As Pina-D1a determines grain hardness and contribution of grain hardness

towards chapatti quality was already known, null Wx-B1 was selected for further validation by

preparing NILs.

Development of NILs

Around 70 BC1 plants from each cross were screened by co-dominant gene specific marker for

heterozygosity of the Wx-B1 gene (foreground selection) and a linked SSR marker. Selected

plants were marked and used for backcrossing. Around 70 plants from BC2 and BC3 were

screened. Total of 150 plants were screened at BC3F2 stage. 20 selected plants each from crosses

C3 and C6 were advanced to BC3F4 stage (Table 3). FGS these 40 BC3F4 lines were showing

null Wx-B1 allele. They were also checked for uniformity and morphological similarity with

the recipient parent. A total of 16 BC3F5 plots in the subsequent year were selected (8 from

PBW343 cross {C3A to C3H} and 8 from PBW621 cross {C6A to C6H} for grain quality

parameters, chapatti sensory evaluation, generation advancement and background screening

(Year 1 data). As it was BC3 based progeny, around 93.75% background recovery was expected.

Among the 16 lines analyzed, background recovery was found to be between 88.2 and 96.7%.

Based on the above-mentioned parameters, 2 BC3F7 NILs, one from each cross with maximum

recipient parent recovery (96.7% and 96.3%) were chosen for next year field performance and

quality study (Year 2 data). The yield (ton/hectare) of NILs viz., C3C (2.68) and C6H (4.77)

were significantly higher than donor C306 (1.3) and lower than the recipient parents PBW343

(3.3) and PBW621 (5.8) (S3 Table). The thousand-kernel weight was similar in NILs, donor

and recipient cultivars. HMW-GS and puroindoline alleles of NILC3C and NILC3H were sim-

ilar to their recipient parents (S3 Table).

Evaluation of grain quality parameters of NILs

Sodium dodecyl sulphate sedimentation value (SDSS). In year 1, SDSS of 8 selected

NILs from each cross ranged between 2.43 to 3.5 for C3 NILs and 3.63 to 7.07 for C6 NILs. For

Table 2. Screening of wheat cultivars with contrasting chapatti making quality for understanding the variation in selected traits.

S.

No.

Cultivar Chapatti

quality

Grain

texture

Grain hardness

index

PINa
-D1

PINb
-D1

HMW-GS Glu-
1A

HMW-GS Glu-
1B

HMW-GS Glu-
1D

Wx-
B1

Amylose

content

1 PBW550 Good Hard 78.5 b a 2� 7 5+10 A 26.0

2 C306 Good Hard 95 b a Null 20 2+12 A 25.6

3 LOK1 Good Hard 74.2 b a 2� 17+18 2+12 A 29.3

4 PBW175 Good Hard 83 b a 2� 7+8 2+12 A 26.8

5 HI1563 Good Hard 75 b a 2� 7+8 2+12 A 26.4

6 K8027 Good Hard 91 b a 2� 17+18 5+10 A 26.2

7 HD2888 Good Hard 85 b a Null 20 2+12 A 25.9

8 HI1500 Good Hard 90 b a Null 20 2+12 A 26.3

9 PBW343 Poor Hard 80 b a 1 7 5+10 P 29.8

10 PBW621 Poor Hard 77.3 b a 2� 17+18 2+12 P 30.3

11 Sonalika Poor Hard 70 a b 2� 7+9 2+12 P 29.1

12 WH291 Poor Hard 82.3 b a 2� 20 2+12 P 29.9

13 Chinese

Spring

Very Poor Soft 38.6 a a Null 7+8 2+12 P 29.2

14 IITR67 Very Poor Soft 39 a a Null 7+8 2+12 P 29.7

https://doi.org/10.1371/journal.pone.0246095.t002
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Fig 2. A. Good chapatti with small uniform spots and good puffiness. B Screening of Indian germplasm with codominant PCR markers to

understand the variation of GBSS-4A allele. The 668 bp fragment indicates null allele while 778 bp fragment indicates functional allele. 1.

C306; 2. Sonalika; 3. K8027; 4. LOK1; 5. HI1563; 6. PBW343; 7. PBW621; 8. Negative control.

https://doi.org/10.1371/journal.pone.0246095.g002

Table 3. Screening and selection of backcross generations for preparation of NILs.

Generation C306/4�PBW343 C306/4�PBW621

Screening method No. of plants/lines

screened

Positive plants/lines selected after FGS/

BGS

No. of plants/lines

screened

Positive plants/lines

selected

BC3F3 FGS 75 20 75 20

BC3F5 (Year

1)

FGS, BGS, Quality

traits

20 8/1 20 8/1

BC3F7 (Year

2)

Quality traits 1 1 1 1

FGS = Foreground selection, BGS = Background screening.

https://doi.org/10.1371/journal.pone.0246095.t003
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donor C306 it was 2.27 and for recipients PBW343 and PBW621, it was 6.6 to 9.7, respectively

(S4 Table). In year 2, SDSS of selected NILs, donors and recipients were in the range of 2.8–

6.13 (S2 Fig). NILs had significantly lower SDSS value than their recipient parents. In year 2,

NILC3C had significantly lower SDSS value than the donor C306 (S2 Fig).

Dough extensibility test. Dough extensibility test in the year 1, revealed that the separa-

tion distance, peak positive force and area to positive peak were significantly higher in recipi-

ent cultivars as compared to the donor with the highest values observed in PBW621. The NILs

showed transgressive segregation i.e., some of NILs had values even lower than C306 and oth-

ers higher than PBW621 (S5 Table). In year 2, a similar trend was observed for parents. For

NILs these values were lower than their recipient parents (S3 Fig). In year 2, these values in

NILC3C were even lower than C306 (S3 Fig).

Solvent retention capacity (SRC). Recipient parents had significantly higher SRC than

C306 in all the four types of solutions, but SRC of NILs followed a random pattern, neither

aligning with donor or recipients (S6 Table).

Differential scanning calorimetry (DSC). We observed that the To, Tp, Tc of donor line

C306 and NILC3C were significantly higher than PBW343. But there was no significant difference

observed in ΔH of all the three lines. The To and Tc values of PBW621 were lower than C306 and

NILC6H. There was no significant difference observed in ΔH of all the three lines. (Table 4).

Overall, there was an increase in either or all of To/Tp/Tc in the donor parent C306 and NILs.

Evaluation of chapatti quality of NILs

In year-1, most of the NILs showed significantly better chapatti sensory evaluation than their

recipient parents (C306>NILs>Recipients) (S7 Table). NILC3C, NILC6H showed better cha-

patti sensory evaluation when compared to other NILs. In the year-2, the selected NILs showed

statistically better chapatti compared to their recipient parents but similar to/lower than C306

(Table 5). The parameters that were consistent for both NILs and showed major difference

were chapatti mouthfeel, tearing strength and softness. These traits were similar to the donor

C306. Some parameters like rollability and puffing were better for NILC3C and black spot,

color and taste were better for NILC6H.

TM was significantly lower in C306 compared to recipient parents (Table 4). The TM of

NILC3C is similar to that of C306 and NILC6H was intermediate between C306 and recipient.

Discussion

This study utilized microarray data to shortlist genes related to chapatti making quality based

on differential expression data of contrasting lines. Out of several differentially expressed

genes, a few genes with more than 10-fold differential expression along with previous literature

Table 4. Thermal properties determined by DSC for NILs and parents (year 2).

Sample ID To Tp Tc ΔH

NILC3C 58.56±0.01b 62.74±0b 67.36±0b 6.83±0.66a

C306 58.54±0.05b 62.03±0.13b 66.84±0.06b 6.57±1.04a

PBW343 57.07±0.37a 60.96±0.17a 65.52±0.19a 5.07±1.92a

NILC6H 58.33±0.08ab 61.98±0.07a 66.09±0.14b 7.42±1.05a

C306 58.54±0.05b 62.03±0.13a 66.84±0.06c 6.57±1.04a

PBW621 57.43±0.24a 61.22±0.18a 65.33±0.11a 6.54±1.31a

Data was represented in mean ± SE of 6 replicates.

Same letters depict they are not significantly different (p<0.05).

https://doi.org/10.1371/journal.pone.0246095.t004
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support were shortlisted for further validation. Several studies on differential expression of

contrasting trait lines have been reported, and these studies have identified several differen-

tially expressed genes belonging to diverse pathways and highlighted complex mechanisms

involving regulation at epigenomic, transcriptional, translational and post-translational levels

[38–42], but shortlisting of a few candidate genes and their validation has not been reported.

Although transcriptional level control is the major one, sometimes changes at this level may

not be reflected at protein accumulation level [42–44], but still, transcriptional level control is

a valuable resource for careful utilization.

In this study, we shortlisted three genes (GBSS, puroindolines, HMW-GS) and their iso-

forms, screened them on previously known chapatti quality lines, selected GBSS-4A, prepared

its NILs and determined its influence on chapatti softness. These three are major genes

reported for their association with wheat processing into different food products like bread,

biscuits, noodles etc. One of these three, the puroindoline genes are responsible for grain tex-

ture. The soft wheat with low protein content is used for biscuits and cakes and hard wheat

with high protein content is preferred for bread and noodles. We could find an association of

grain hardness with chapatti quality, as soft wheat chapattis with both functional puroindoline

alleles (Pina-D1a and Pinb-D1a) made very poor chapattis. Effect of grain hardness on chapatti

quality has not been reported much in scientific publications [45], as the major area of Indian

sub-continent consuming chapattis, grows hard wheat. But, its effect on chapatti quality was

long understood at the time of the green revolution, when dwarf, soft, red and high yielding

wheat varieties were introduced in India and Pakistan by the CIMMYT, Mexico. Those varie-

ties had significantly higher yield but were rejected by the population as these made hard cha-

pattis and correlated it with red color. This led to the selection of hard white CIMMYT lines

and their wide adoption by the farmers and integration of these criteria in the wheat variety

selection program of the country. The hard grain texture is pre-requisite for further investiga-

tion of candidate genes associated with chapatti quality. Thus, the recipients selected in this

study were hard with high grain hardness index. The next gene studied was HMW-GS. It pro-

duced 4–5 subunits belonging to Glu-A1 (0–1 subunits) on chromosome 1A, Glu-B1 (1–2) on

chromosome 1B and Glu-D1 (2) on chromosome 1D and previous studies have shown co-rela-

tion of their allelic variation with bread-making quality [5]. We could not find their co-relation

with chapatti making quality and same alleles were present in good as well as poor chapatti

lines. Previously, alleles Glu-D1xy-5+10 [26] and Glu-B1x-20 [46] have been reported to be

associated with good chapatti quality in comparison to poor chapatti for Glu-D1xy-2+12 and

other Glu-B1xy alleles. But conflicting results indicating no association of individual

HMW-GS with chapatti making quality have also been reported [47,48]. This might be due to

limited number of varieties used to study the correlation between the complex composition of

HMW-GS and chapatti quality.

Table 5. Chapatti sensory parameters of selected NILs in comparison to parents (year 2).

Sample ID Stickiness Roll-ability Puffing Black spots Color Taste Aroma Mouth-feel Tearing Softness Total Score TM at 0’ (M Pa)

NILC3C 8.6±0.16b 8.6±0.16b 8.5±0.22b 7.9±0.28b 7.7±0.3b 7.9±0.23b 8.3±0.15b 8.7±0.15b 8.8±0.13b 8.7±0.15b 83.7±0.92b 0.19±0.01a

C306 8.8±0.13b 8.8±0.13b 8±0.26b 8.5±0.27b 8.4±0.16b 8.8±0.13c 8.9±0.1c 8.8±0.13b 8.9±0.1b 8.8±0.13b 86.7±1.14c 0.21±0a

PBW343 6±0.21a 6.2±0.29a 6±0.21a 6±0.15a 5.8±0.25a 6±0.21a 7.1±0.18a 6.6±0.16a 5.8±0.13a 7±0.26a 62.5±0.58a 0.28±0.02b

NILC6H 8.6±0.16b 8.2±0.13b 7.7±0.15b 8.4±0.16b 8.2±0.13b 8.3±0.15b 7.7±0.15b 8.4±0.16b 8.7±0.15b 8.7±0.15b 83.9±0.78b 0.31±0.04b

C306 8.8±0.13b 8.8±0.13b 8±0.26b 8.5±0.27b 8.4±0.16b 8.8±0.13c 8.9±0.1b 8.8±0.13b 8.9±0.1b 8.8±0.13b 86.7±1.14c 0.21±0a

PBW621 7.8±0.2a 7±0.3a 6.7±0.15a 6.3±0.15a 6.7±0.26a 5.8±0.2a 6.3±0.15a 6.5±0.22a 7.2±0.2a 6.9±0.28a 67.2±0.53a 0.38±0.02b

TM- Tensile Modulus. Data was represented in mean ± SE of 10 replicates. Same letters depict they are not significantly different (p<0.05).

https://doi.org/10.1371/journal.pone.0246095.t005
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Our next gene of interest was GBSS-I, that includes three genes Wx-A1, Wx-B1 and Wx-D1
on chromosome 7A, 4A and 7D. Our polymorphism check of Indian germplasm indicated

polymorphism at Wx-B1 locus and its allelic variation was not only associated with variation

in amylose content but also chapatti making quality, that was further confirmed by preparing

and analyzing NILs of null allele of Wx-B1 locus. Observations on rheological parameters like

SDSS test, dough extensibility, SRC and DSC indicated that these parameters had an improve-

ment in NILs compared to recipients. The SDSS value and dough extensibility of NILC3C

were even lower than donor C306. It is envisaged that these might influence good chapatti roll-

ability that was also found to better in this line. Contrasting reports of the positive and negative

influence of SDSS on chapatti quality have been reported [22,49,50]. Higher dough extensibil-

ity has been related to easy sheeting/rolling of chapatti dough [22,51] and good chapatti qual-

ity. Thus, selected NILs had better ease of extending the dough. Higher values of Na2CO3 SRC

in NILs indicated higher water absorption capacity of NILs as compared to the recipient, that

is associated with good chapatti quality [52]. Observations on DSC results indicated an overall

increase in either or all of To/Tp/Tc in the NILs in comparison to recipient parent and that

might be due to lower amylose content. Chapatti quality evaluation indicated that selected

NILs had statistically better chapatti quality than recipient parents but their score could not

reach up to the level of C306. The positive influence was observed in the case certain parame-

ters like the mouthfeel, tearing strength and softness. These traits were similar to the donor

C306, indicating the association of these parameters to chapattis softness. This observation

was supported by lower TM of NILs that is associated with softer chapattis with high extensi-

bilities [20].

Preparation of NILs by marker assisted breeding is a long process that requires several gen-

erations, but with the estimation of background recovery, this period can be reduced. We used

BC3 lines with background recovery of 96.7% and 96.3% as compared to the expected value of

93.75%. The NILs also have an advantage over RILs that are used for studying the association

of trait of interest with the genes/genic region, as with careful selection these can be directly

used for cultivation. NILs are most useful as it allows measurement for the effect of allelic vari-

ation at single candidate genes while eliminating background genetic variation [53].

Better mouthfeel, tearing strength, softness and dough extensibility observed in selected

NILs indicate improved chapatti making quality. A similar observation has been documented

for softness associated with Japanese Udon noodles that are also associated with a null allele of

the same gene [15,54]. Udon with a firm surface and soft inside is preferred, similar are the

requirement for chapatti making, firm surface for inhibiting it from sticking to the hot plate

(tawa) and thus giving uniform black spots and soft inside to give it a soft mouthfeel. There-

fore, GBSS-4A can be one of the major genes determining chapatti softness in hard wheat.

Conclusions

The present study was aimed to identify traits associated with chapatti quality. The microarray

expression analysis helped in shortlisting candidate genes and further studies helped in the

selection of single genes. The NILs of this gene generated by marker assisted backcross breed-

ing showed improvement in traits like mouthfeel, tearing strength and softness indicating

GBSS-4A may be one of the major genes controlling chapatti softness.
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