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Abstract

Recent advances in the field of intravital imaging have for the first time allowed us to conduct pharmacokinetic and
pharmacodynamic studies at the single cell level in live animal models. Due to these advances, there is now a critical need
for automated analysis of pharmacokinetic data. To address this, we began by surveying common thresholding methods to
determine which would be most appropriate for identifying fluorescently labeled drugs in intravital imaging. We then
developed a segmentation algorithm that allows semi-automated analysis of pharmacokinetic data at the single cell level.
Ultimately, we were able to show that drug concentrations can indeed be extracted from serial intravital imaging in an
automated fashion. We believe that the application of this algorithm will be of value to the analysis of intravital microscopy
imaging particularly when imaging drug action at the single cell level.
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Introduction

Since the advent of intravital imaging, it has been possible to

perform single cell and population analysis of tumor biology in vivo.

In recent years, these methods have also been adapted to the study

of drug pharmacology [1,2], which has been in part enabled by

commercially available compounds as well as a growing number of

fluorescently labeled therapeutic companion drugs [3–6]. To fully

realize the potential of this imaging approach, however, and to

maximize the data that can be mined in a reasonable time frame,

it will be necessary to overcome several challenges. Specifically,

intravital imaging videos typically display (i) dense cell fields made

up of multiple layers of cells; (ii) cells presenting heterogeneous

fluorescent intensity due to differences in the Z location of the cells

and to stochastic biological processes; and (iii) movement artifacts

due to cellular movement in three dimensions (3-D) as well as to

displacement of the anesthetized animal being imaged [7,8]. Due

to these unique features, segmentation of intravital imaging data is

challenging, requiring advanced image processing techniques.

A number of different image segmentation methods have been

reported. Examples commonly used in cell-based applications

include edge detection, watershed-based methods, as well as

others. Perhaps the most widely used method for cell segmentation

is the relatively simple process of thresholding, where an algorithm

is used to separate foreground and background pixels based on the

differences between the two classes. This paper therefore focuses

on thresholding methods due to their simplicity, their implemen-

tation, and their already widespread use amongst biologists.

Within thresholding methods, a number of approaches have

already been described [9], including: (i) histogram shape-based

methods which function by analyzing histogram peaks and curves;

(ii) clustering based methods that divide pixels into two groups,

foreground and background, via analysis of global intensity values,

to create a segmented image (iii) entropy based methods which

utilize the entropic properties of the image foreground and

background to segment the image, (iv) object attribute methods

that look for commonalities among certain object features for

image segmentation; (v) spatial methods that binarize images

based on advanced correlations/statistical methods focusing on

properties of pixels; and (vi) locally adaptive methods which utilize

local information to threshold images in subgroups of local

neighborhoods. For segmenting cells and thresholding microscopic

images, each of these strategies have advantages depending on the

data quality and data type required [7]. Otsu’s method [10] is

perhaps one of the most common thresholding techniques, and

represents an example of a clustering method that functions by

thresholding the gray levels of an image into two distinct segments

via minimization of variance in each respective group. This

technique works most effectively on images where the fluorescent

target of interest is relatively uniform in brightness and where the

background is similar across the whole of the image; unfortunately,

this is not always the case during time lapse imaging of

intravenously administered fluorescent drugs. Huang’s method

[11] is an example of an object attribute method, where in this

case, the attribute of interest is the object ‘‘fuzziness’’ measure.

Ray’s method [12] is an example of an iterative, locally adaptive

thresholding method with only three inputs: the number of

iterations for determining the threshold, the ‘‘power’’ (a single

adjustment that determines the selectivity of the thresholding

sequence), and a termination condition setting denoted as

‘‘epsilon’’. The primary drawbacks of this method are (i) due to

its iterative nature, it is computationally intensive; and (ii) unlike
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other completely automated alternatives, it still requires a certain

degree of user input.

The overall goal of the present study was thus to (i) determine a

suitable thresholding method for broad use in segmentation

algorithms used for intravital microscopy; (ii) utilize a standard

thresholding method to create a robust, semi-automated segmen-

tation and data mining algorithm for analyzing pharmacokinetic

data at the single cell level in in vivo images; and (iii) verify the

function of this algorithm. To validate the method, we chose to use

videos of a fluorescently labeled poly ADP ribose polymerase

(PARP) inhibitor. PARP inhibitors are currently under investiga-

tion for use on tumors with BRCA deficiencies, where pharma-

cokinetics is a key issue [13–15]. Ultimately, the ability to collect

semi-automated data from in vivo images would be of considerable

benefit to the pharmacokinetic analysis of fluorescently labeled

drugs. Semi-automatic data acquisition would not only provide a

non-biased means of assessing drug distribution in cells but would

permit the acquisition of larger data sets than otherwise possible

through manual delineation of cell borders.

Materials and Methods

Tumor model
The human fibrosarcoma cell line HT-1080 was purchased

from ATCC (Manassas, VA). Cells were grown in Dulbecco’s

Modified Eagle Medium (DMEM) supplemented with 10% fetal

bovine serum (FBS) and 1% penicillin-streptomycin.

Reporter cell lines
Histone 2B-red fluorescent protein (H2B-apple) was used to

identify the nuclei of individual cancer cells since this model has

previously been shown to be robust in vivo [2]. pmApple-N1

(Myo1E-pmApple-C1, Addgene, Prof. Christien Merrifield [16])

was cloned by ligating Apple into pmCherry-N1 (Clontech) using

AfeI and BsrG1 restriction enzymes. The pTag-H2B-Apple

construct was generated by subcloning mApple from pmApple-

N1 into pTag-H2B-BFP (Evrogen) using AgeI and NotI. Correct

insertion of Apple was confirmed by sequencing the insert in its

entirety.

pTag-H2B-Apple was transfected into HT1080 cells using the

X-tremeGENE HP transfection reagent (Roche), and followed by

selection in 500 mg/ml G418. Single clones were screened for

H2B-Apple expression by fluorescence microscopy. Multiple

clones showing high fluorescence were selected by fluorescence

activated cell sorting, and the brightest 5% of cells were then

isolated for expansion. Cells were maintained in Minimum

Essential Medium (MEM) supplemented with 10% FBS, 100

I.U. penicillin, 100 mg/ml streptomycin, 2 mM L-glutamine, non-

essential amino acids and 100 mg/ml G418.

Intravital microscopic imaging
All animal experiments were carried out in accordance with

guidelines from the Institutional Subcommittee on Research

Animal Care. Nude mice (Cox7, Massachusetts General Hospital)

were surgically implanted with a dorsal skin window chamber.

Approximately 3–46106 cells, suspended in 1:1 phosphate buffered

saline (PBS) and Matrigel (BD Biosciences, Franklin Lakes, NJ),

were implanted under the fascia and allowed to grow for ,2 weeks.

As soon as the tumors became vascularized and had reached 1–

2 mm in size, mice were anesthetized with 2% isoflurane in 2 L/

minute oxygen on a heated microscope stage. They were then

injected via tail vein catheter with either Angiosense-680 (Perkin

Elmer, Waltham, MA) or 250 mg of a 500 kDa amino-dextran

labeled with Pacific Blue N-Hydroxysuccinimide (NHS) ester

(Invitrogen, Grand Island, NY), according to the manufacturer’s

instructions. Vascularized regions of interest in the tumor were

identified by the vessel probe and by the H2B-Apple tumor signal;

regions with minimal out-of-plane vessels were chosen for imaging.

Time-lapse imaging was initiated prior to injection of the drug. The

drug was formulated by dissolving 7.5 mL of a 1 mM solution in

dimethyl sulfoxide (DMSO) together with 30 mL of a 1:1

dimethylacetamide (DMAc):solutol solution. 112.5 ml PBS was then

slowly added with sonication to obtain a final injection volume of

150 mL.

Static and time series images were collected using a customized

Olympus FV1000 based on a BX61-WI confocal microscope

(Olympus America). A XLUMPLFLN 206 water immersion

objective (NA 1.0, Olympus America) was used for data collection.

BODIPY-FL, H2B-Apple, and vascular probes were scanned and

excited sequentially using a 405 nm, a 473-nm, a 559-nm and/or

a 633 nm diode laser, respectively, in combination with a DM405

488/559/635-nm dichroic beam splitter. Emitted light was then

separated and collected using appropriate combinations of beam

splitters (SDM473, SDM560, and/or SDM 640) and emission

filters BA430–455, BA490–540, BA575–620, BA575–675, and/or

BA655–755 (all Olympus America). Control tumors were used to

determine good settings for voltage and laser power, and to

optimize imaging conditions by ensuring that no photobleaching

or phototoxicity occurred with the imaging settings used. Time-

lapse movies were corrected for small shifts using the StackReg

plugin in ImageJ (vers. 1.47a). Typically, images were acquired

every 75 seconds for the duration of experiments.

Thresholding Survey and Algorithm Implementation
A survey of thresholding images was initially conducted either

using the freely available image processing software ImageJ

(National Institutes of Health, Bethesda, MA) or by implementa-

tion into Matlab (Mathworks, Natick, MA). Promising methods

were then implemented into an image-processing algorithm in

Matlab. Quantitative comparisons were created manually using

the freeware GNU Image Manipulation Program (GIMP, Groton,

MA) by two independent reviewers (Supplemental Fig. 1).

Comparisons were applied to both manual images and the results

are presented as averages.

Fluorescent Drug
A solution of boron-dipyrromethene-fluorine (BODIPY-FL)

succinimidyl ester (5.0 mg, 12.8 mmol; Invitrogen, Carlsbad, CA)

in acetonitrile (250 mL) was reacted with a solution of 4.7 mg

(12.8 mmol, dissolved in 250 mL acetonitrile) of 4-[[4-fluoro-3-

(piperazine-1-carbonyl)phenyl]methyl]-2H-phthalazin-1-one [17]

in the presence of triethylamine (4.6 mL, 64.2 mmol). The two

components reacted together cleanly within 4 hours at room

temperature. The product AZD2281-BODIPY FL was then

isolated using standard high-performance liquid chromatography

(HPLC) techniques performed on a Waters (Milford, MA) liquid

chromatography–mass spectrometry (LC-MS) system and using a

Waters XTerraH C18 5 mm column. The title compound was

isolated in 72% yield and its identity confirmed using LC/MS,

HPLC, nuclear magnetic resonance (NMR) and high resolution

mass spectrometry (HRMS) techniques. The compound had a

maximum absorbance at 507 nm and a maximum emission at

527 nm. This compound has previously been shown to retain

similar bioactivity to the unmodified drug [18].

Statistical Analysis
For data analysis, values for each of three individual measure-

ment methods were compiled and ranked following evaluation of

Intravital Pharmacokinetic Analysis
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six individual images (for additional images used in the statistical

analysis see Supplemental Fig. 2). After ranking, an analysis using

Friedman’s rank sums test was used to evaluate whether any

statistical differences were present among the distributions. For

sets where a difference was detected, the Wilcoxon rank sum test

was used as a pairwise test to determine group subset differences.

The p values,0.05 were considered significant.

Results

Thresholding Method Comparison and Selection
We initially surveyed a variety of thresholding algorithms using

sample pharmacokinetic data (Table 1). Promising methods,

including a clustering based method (Otsu), an object attribute

method (Huang), and a locally adaptive method (Ray), were then

further analyzed against a range of intravital image data sets.

Representative images displaying four different imaging compli-

cations (uneven fluorescence expression, a high cell density field,

a high cell density field with uneven fluorescence expression, and

high magnification images with interior details) were selected.

These were subsequently used to quantitatively compare the

different thresholding methods. Images obtained using a manual

threshold were compared mathematically to individual thresh-

olding methods (see below). Visual comparisons are shown in

Figure 1. The overall goal of these quantitative measures was to

determine the suitability of each method for pharmacokinetic

analysis in intravital imaging. Calculations were thus focused on

the amount of correctly classified area as well as on the

correctness of the number of regions. These measures seem to

be the most appropriate for data acquisition of this type, since

they focus on sources of error in intravital pharmacokinetic

analysis, such as incorrectly classified background or foreground

pixels, the presence of large numbers of artifacts following

thresholding, and/or bias against fluorescence intensity hetero-

geneity.

Misclassification error (ME) [19] reflects the percentage of

background pixels wrongly characterized as foreground, as well as

the percentage of foreground pixels wrongly characterized as

background. If Bo and BT are the background pixels of the initial

and thresholded images respectively, and if Fo and FT are the

foreground pixels respectively, and if |… | represents the

cardinality of the set, ME is described as,

ME~1{
Bo\BTj jz Fo\FTj j

Boj jz Foj j

We subsequently calculated a simple measurement of total

region number nonuniformity (TRNU) by assuming that Ro is

equal to the total number of regions found in the manually

thresholded image, and that RT is the number of regions found in

the images following each of the other thresholding methods,

TRNU~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ro{RTð Þ2

q

Ro

Finally, we were interested in comparing the range of

fluorescent intensities in the manually thresholded image to the

range of intensities present in each image obtained via the other

thresholding methods. To do so, we modified a variance

nonuniformity measure (VNU), which typically assumes that well

segmented images will have a uniform fluorescent intensity value

[20,21]. This assumption, however, is unlikely to hold true for

intravital images containing multiple levels of fluorescent intensity.

Figure 1. A diverse set of typical intravital images was
analyzed using different thresholding methods to determine
their suitability for cell segmentation across a variety of
conditions. Cell nuclei are shown at various magnifications labeled
with H2B-Apple. I. An image displaying multiple fluorescent brightness
levels. II. A dense cell field image. III. A dense cell field with multiple
fluorescent brightness levels. IV. A high magnification image with
intracellular details. The techniques analyzed were: manual threshold-
ing, Otsu’s method, Huang’s method, and Ray’s method.
doi:10.1371/journal.pone.0060988.g001

Table 1. Image Thresholding Methods Surveyed.

Method Type Examples

Histogram Doyle [31]

Glasbey [32]

Tsai [33]

Zack [34]

Clustering Kittler [35]

Otsu [10]*

Ridler [36]

Entropy Kapur [37]

Li [38]

Shanbhag [39]

Yen [40]

Object Attribute Huang [11]*

Prewitt [41]

Spatial Beghadi [42]

Locally Adaptive Ray [12]*

A variety of methods were sampled to identify the most promising techniques
for intravital imaging analyses. Those marked with an asterisk (*) were used for
further analysis.
doi:10.1371/journal.pone.0060988.t001
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Our contrast measure was therefore calculated as,

VNU~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FTj jsT{ FMj jsMð Þ2

q

FMj jsM

assuming sT is the variance of the pixels in the thresholded image,

sM is the variance of the manually thresholded image and FM

represents the foreground pixels of the manually thresholded

image.

The results of our quantitative comparison between images are

presented in Figure 2. Analysis of image I showed that for most

measures, Ray’s method was superior, or equal, to Huang’s

method; Otsu’s method, however, produced unsatisfactory results

for images with multiple levels of brightness. For image II, which

consisted of a single level of brightness within a dense cell field, the

performance of all thresholding methods was approximately equal.

For image III, which consisted of a dense cell field with unequal

brightness, the results were similar to image I, whereas the Ray

and Huang methods performed at approximately the same level,

with Ray’s method perhaps performing slightly better. Finally, in

image IV, the high magnification image, Ray’s method appeared

to produce the best results, particularly for identifying outer

cellular/nuclear boundaries.

Algorithm Development
To develop a segmentation method (Fig. 3), we began by

devising an algorithm that would: (1) create a segmented image

with limited user input in an iterative and robust manner; (2)

provide secondary filtering of images (including elimination of

common defects in thresholded images e.g. image speckling); and

(3) segment/label object borders in each image (namely recognize

objects, label their borders and log their centroids in preparation

for downstream individual object tracking, if desired). By having

such features, our goal was to produce an easy-to-use algorithm,

capable of analyzing drug concentrations in a relatively hetero-

geneous range of intravital image types.

The final algorithm is a simple two-step method, which utilizes

Ray’s method, although other methods such as Otsu or Huang,

could easily be incorporated into this structure. To optimize the

thresholding and filtering procedure, the user is first asked to

define a limited set of variables: frame number to be analyzed,

gamma value of the image adjustment, the minimum object size to

be considered for analysis, the disk size used for speckling filtering,

the number of iterations to run Ray’s method, and the power

factor to run Ray’s method. Once the program applies the desired

thresholding function and variables, the results are displayed for

subsequent review by the user. The user is then given the option of

repeating the analysis or, if the initial results are acceptable,

filtering the entire video and obtaining drug properties.

Filtering thresholded images is achieved by using a combination

of two filters: a ‘‘rough pass’’ filter (a simple erosion/dilation

method that results in the removal of speckling) and a user-defined

high-pass filter that eliminates objects too small to be cells. By

using two filters, determining the optimal object size to filter in the

second portion of the program is thus simplified, since the initial

speckling filter eliminates the noisiest elements in the original

thresholded image. Image segmentation by first thresholding, and

then attenuating the results using a series of simple filters provided

excellent program flexibility as well as ease of use.

Overall object segmentation was completed using established

image processing functions [22] (see Supplemental Fig. 3 for

detailed morphological operations). Briefly, image channels

displaying cell locations and drug fluorescence were first separated.

In the cell location channel, objects were labeled using standard

Figure 2. Quantitative comparison of thresholding methods for intravital microscopy. The various thresholding methods described (Otsu,
Huang and Ray) were quantitatively compared to determine the best non-biased method(s) for each imaging type. Two independent reviewers
created manual images via cell border identification for each image (I–IV in Figure 1). Images obtained with each thresholding method were then
compared to the manually thresholded images, and averaged using various measures found in the literature including: A. the misclassification error,
which penalizes misclassified foreground and background pixels in each image; B. total region number nonuniformity, which penalizes images based
on incorrect numbers of total regions found; C. region variance nonuniformity, which compares the variance of the segmented region fluorescent
intensity between manually thresholded images and the images obtained via the other thresholding methods (Otsu, Huang and Ray); D. The average
rank order across six typical intravital images (see Supplemental Fig. 2 for additional images) for each measure (ME, misclassification error; TRNU,
region number nonuniformity; VNU, region variance nonuniformity). * p,0.05 relative to Otsu’s method, and { p,0.05 relative to Huang’s method.
doi:10.1371/journal.pone.0060988.g002
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commands in Matlab, and object centroids/borders were logged

for each object in each frame of the video. Drug concentrations

were then determined from the drug fluorescence channel by

averaging the amount of fluorescence contained within the

previously identified object borders.

Fluorescent intensities were converted into drug concentrations

via a calibration curve. Specifically, concentrations of the

BODIPY-FL labeled drug were diluted in PBS ranging from the

nanomolar to micromolar range. Images of the PBS-drug solution

were then acquired from each drug concentration utilizing the

exact microscope specifications used for animal imaging. In

addition, blood vessel concentrations of drug were also correlated

with control dilutions created in blood, verifying the calibration.

Optimal microscope settings, including laser intensity, were

determined via trial experiments in order to minimize possible

imaging and signal quantification defects. In general, these settings

precluded typical issues such as background saturation of the drug

signal or high rates of photobleaching that would significantly alter

drug concentration measurements in vivo.

Results of using the Ray Thresholding Method in 3-D
Models

In addition to thresholding individual images, a critical

component of tracking objects is to have consistency in results

over the course of a data set (i.e., the thresholding method should

produce robust results despite various imaging defects occurring

throughout a video). Thus, based on its superior performance in

our quantitative assessment as well as on its greater flexibility, we

chose to analyze results from the previously described algorithm

further using 3-D images. By using 3-D images, we were not only

able to evaluate the possibility of applying this method to 3-D

image analysis but could also determine the consistency of this

thresholding method over the course of a time lapse. Figure 4

displays the results of this analysis across a 40 mm intravital

imaging Z-stack.

Drug Concentration and Localization Tracking
We next used time-lapse videos of fluorescently labeled PARP

inhibitor to automatically extract pharmacokinetic information

from intravital images (Fig. 5A). Drug concentrations were logged

as the average of each cell’s drug concentration, and the standard

deviation of the cells; drug concentration in an area of a local

vessel is also displayed (Fig. 5B). These analyses also provide rapid

answers to broader questions such as what is the fraction of cells

with no or subtherapeutic drug concentrations at a given time

point, or how much drug is located in the nucleus versus the

cytoplasm. Using PARPi as a model, we show that at 2 hours,

during the maximum range of drug distribution and intensity, only

,3% of cells had subtherapeutic levels (defined as a 1.5 mM

concentration [23]) (Fig. 5C). In addition, by making an

assumption about the approximate size of the cytosol surrounding

the nucleus (a simple dilation of the nucleus size) in individual cells

and extrapolating this value across all cells, it was estimated that

,95% of the drug was located in the nuclear compartment at

steady state. With the addition of markers of cell membrane and

other intracellular organelles, it will be possible to generate more

detailed information regarding the behavior of the cytosolic

portion of drug distribution over time.

Figure 3. Overview of the image processing method. The left side of the diagram displays the overall proposed algorithm for analyzing
intravital images and determining drug concentration. This algorithm is made up of an iterative section that allows the user to generate the best
possible segmentation (top) and a processing module that filters through all videos after satisfactory values have been obtained. On the right, the
specific segmentation algorithm used in conjunction with the thresholding method is displayed.
doi:10.1371/journal.pone.0060988.g003

Intravital Pharmacokinetic Analysis
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Figure 4. Cell segmentation on a high cell density Z-stack. A. Representative images from a typical intravital imaging Z-stack with H2B-Apple
labeled nuclei (top row) and segmented regions identified from a negative of the original image using the described segmentation algorithm
(bottom row; green outlines depict the segmented cell regions detected by the algorithm in each Z-slice). All scale bars represent 50 mm. B.
Orthogonal views of the 3D Z-stack displaying segmented cell region outlines (green) in each view. C. Summation of the Z-stack containing all
combined segmented region outlines (green).
doi:10.1371/journal.pone.0060988.g004

Figure 5. Analysis of average nuclear drug concentrations over time. A. Representative images from a 5 hour PARP inhibitor
pharmacokinetics assay. Far-Left Panel: drug distribution. Scale bar represents 50 mm. Middle-Left Panel: H2B Nuclear Marked tumor cells. Scale bar
represents 50 mm. Middle-Right Panel: merged images displaying both the drug (green) and tumor cells (red). An area of the closest vessel was also
selected to analyze the dynamics of drug distribution through the vasculature (Red box). Scale bar represents 50 mm. Far-Right Panel: Magnified cells
from the presented image shown over time. The white arrow indicates a single cell visually tracked throughout the course of the video. Scale bar
represents 10 mm. B. The average and standard deviation of nuclear drug concentration in all cells over time was analyzed using the described
segmentation algorithm. The vessel concentration dynamics were also analyzed by quantifying drug channel fluorescence within an area of the
vessel. C. The number of cells receiving a therapeutic dose of the drug over time.
doi:10.1371/journal.pone.0060988.g005

Intravital Pharmacokinetic Analysis

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e60988



Single Cell Tracking Over Time
Tumor and host cells are often quite mobile and can move over

considerable distances during a several hour imaging session. In

addition, despite the best efforts of most current methods of image

registration [24], some degree of animal movement may also occur

during the course of intravital imaging sessions. This makes the

acquisition of consistent data from the same subset of cells

challenging. One solution to ensuring the continuity of data is to

utilize robust tracking software to log the centroids of cells. The

process of tracking cells is normally divided into two steps: (i)

Identification of the cell to be tracked in each frame of a video and

the logging of their respective centroids (commonly referred to as

particle detection) and (ii) Linking these identified cell centroids

into coherent cell tracks (commonly referred to as particle linking

or tracking). While the detection algorithm presented here can be

easily adapted to a variety of freely available linking/tracking

algorithms, we formatted our data in this study to be used with the

tracking program created by Jaqaman [25]. This program

provides several relevant features. First, the software provides a

tracking solution for data sets with extremely challenging

conditions, such as those with dense cell fields as seen in the

images presented in this paper. Second, this program compensates

for detection failure, making it an optimal solution for an intravital

application where cells may appear or disappear. In addition,

although cell division in the time frame of videos presented in this

paper are typically not regarded as a problem (due to its relative

infrequency) [2], this software allows for merging and splitting

events to occur between particles if desired. As described,

combining our above-described algorithm with a tracking method

has the additional advantage of enabling drug concentration in

individual cells to be analyzed over time. This could potentially

yield important information regarding chemotherapeutics, where

drug resistance in the context of single cells is an area of interest.

The results from algorithm cell tracking are presented (Fig. 6A),

including 10 manually tracked cell trajectories (Fig. 6B), and 10

sample cells’ drug concentrations in a PARP mouse model

(Fig. 6C). A search radius maximum of 10 pixels was used for the

presented analysis.

Discussion

Automating microscopic image analysis of time-series (both 2D

and 3D) is currently a significant bottleneck in the analysis of in vivo

drug distribution and function at the population, single cell and

intracellular level. In a bid to alleviate this problem, an increasing

number of companion imaging drugs are being developed to study

how drugs behave and/or fail. By using these drugs in conjunction

with orthotopic models [1,26], advanced motion stabilization

techniques [27] and modeling approaches [28], it is anticipated

that valuable information regarding the pharmacokinetics and

dynamics of drugs will be revealed. Here, we developed and tested

an integrated algorithm for automating image analysis with the

ultimate output being single cell, intracellular pharmacokinetic

data.

To date, a number of thresholding methods have been

described. Otsu’s method [10] is perhaps one of the most

commonly used thresholding methods and is an example of a

clustering method that functions by thresholding the gray levels of

an image into two distinct segments. By minimizing the weighted

sum of the intraclass variances of the foreground and background

pixels, an optimal threshold level can be attained. This is because

minimizing the intra-class variance is equivalent to maximizing the

inter-class variance, which naturally yields the highest contrast

between two groups of pixels. In general, Otsu’s method works

well in situations where images have relatively equal background

and foreground pixel numbers i.e., situations where there is a

bimodal global distribution of pixel intensities/for bimodal image

histograms [29]. Unfortunately, this is not always the case with

time-lapse images. Huang’s method [11] is an example of an

attribute method based on image ‘‘fuzziness’’ levels [30], which are

defined as the difference between a gray-scale image and its binary

equivalent. This fuzziness measure is used to create a membership

function for each pixel in an image. The final threshold of the

image is then determined by minimizing the index of fuzziness, as

defined by the foreground and background pixel distributions.

Object attribute methods generally show improved performance

on images where a global threshold proves to be unsatisfactory due

to their selection of object features, rather than global intensity

levels, in the image. Ray’s method [12] is an example of a locally

adaptive thresholding method. Locally adaptive methods typically

provide superior results to methods proposing global thresholds. In

microscopy, locally adaptive methods are ideally suited for use on

images with uneven illumination since they depend on local image

characteristics rather than on a single global value for determining

a threshold. A drawback of these methods, however, is that

threshold determination is dependent on a multitude of user inputs

(for example, the thresholding window size). This means that the

quality of the threshold is dependent upon the results of a trial and

error strategy with a wide range of threshold qualities. Conse-

quently, this type of thresholding method can be time-consuming

and cumbersome. Ray’s method, however, attempts to overcome

this problem by proposing a method that iteratively calculates the

optimal weighting parameters, which in turn simplifies the

thresholding procedure. The main limitation of Ray’s method is

its current computational expense: the iterative process used to

determine the optimal thresholding parameters typically requires

Figure 6. Single Cell Pharmacokinetic Tracking. The segmenta-
tion algorithm was combined with a linking program to determine
individual cell nuclear drug concentrations. A. The locations of cell
nuclei were tracked over 5 hours, using external linking software in a
video where both cell movement and image drift were present. Red
boxes indicate arbitrarily selected cells used for manual tracking
verification of the algorithm. B. Manual tracking of arbitrarily selected
cells. C. By combining results using the segmentation algorithm
together with the tracking data, drug concentration over time in 10
sample cells could be plotted.
doi:10.1371/journal.pone.0060988.g006

Intravital Pharmacokinetic Analysis

PLOS ONE | www.plosone.org 7 April 2013 | Volume 8 | Issue 4 | e60988



approximately 1000 iterations to produce a satisfactory image. As

a result, there was a substantial lag time in obtaining thresholded

images compared to the other methods assessed in the present

study.

In view of its inherent advantages (Fig. 1, 2), we incorporated

Ray’s thresholding method into our workflow algorithm. To the

best of our knowledge, this is the first time that this specific

algorithm has been tested and used for cell specific segmentation

applications. As demonstrated in this work, the algorithm provides

excellent results when dealing with dense cell fields, a scenario

where most traditional thresholding methods have the greatest

problems. Specifically, the use of a local adaptive method in

segmenting cells is helpful in dealing with dense or overlapping cell

areas due to its ‘‘local’’ thresholding approach, since cells of

interest in such areas typically exhibit multiple levels of fluorescent

intensity. In effect, local adaptive methods provide the capability

for segmenting multiple levels of cells typical in intravital images,

that often appear as a single layer with heterogeneous fluorescence

intensity. In these images, overlapping cells will typically be

differentiated due to the cells contrast with each other within the

small frame of the local thresholded area (Supplemental Fig. 4). Of

course, overlapping cells with homogenous fluorescence will

require additional processing methods not utilized in this work in

order to distinguish individual borders. Overall, this algorithm

provides a framework for the analysis of single cell behavior in

intravital imaging applications, an emerging area of biological

research with currently only very limited methods available. This

framework also provides a method of cell segmentation that

could be widely adapted to other applications outside of

intravital microscopy where data analysis has traditionally

proven difficult.

Going forward, the method presented in this report could be

expanded in several ways. Firstly, while the segmentation method

provided is valid for planar segmentation, accurate 3D fluores-

cence and drug distribution analysis can only be properly

obtained by considering several additional parameters such as

high-background components due to tissue scattering, resolving

power and confocality of the imaging system, optical aberrations,

and detector noise. This is particularly true for imaging

modalities such as wide-field and laser scanning microscopy,

but is less important for confocal and multiphoton microscopy.

Additional work focusing on 3D-assisted segmentation, in

combination with image denoising and deconvolution methods,

will be the subject of further studies. Secondly, by incorporating

information regarding expected cell sizes (or sizes of other

parameters representative of intravital images), in the form of

filtering mechanisms prior to the thresholding step, the perfor-

mance of this algorithm could significantly improve. This would

also dramatically reduce the number of iterations necessary (using

Ray’s method) for the production of satisfactory results. Thirdly,

adding alternative application routines to this framework (e.g.

organelle-specific analysis, assuming an alternative intracellular

organelle fluorescence is present) would not only increase the

value of this program but would provide additional tools for

analysis. Finally, it is likely that by increasing the computational

speed of this programming framework, and by incorporating it

with on-site microscopy systems, real-time acquisition and

analysis of pharmacokinetic (or other application-specific) data

could be achieved. Ultimately, this would provide another

valuable tool for intravital microscopists.

Supporting Information

Figure S1 Comparison of manually thresholded imag-
es. To generate manual thresholding standards for Figure 1, two

independent reviewers established manual thresholds by demar-

cating (to the best of their ability) cell borders in each image.

Results from the quantitative assessment of the different thresh-

olding methods described were compared with each of the

reviewers’ images and the results were averaged.

(TIFF)

Figure S2 Additional typical intravital images used to
perform ranking analysis in Figure 2D. Images were

analyzed as described for those in Figure 1.

(TIFF)

Figure S3 Detailed view of overall morphological oper-
ations and object labeling on an example image. This

image was thresholded using Ray’s method as described, followed

by standard morphological operations to remove artifacts

produced by the thresholding process. A rainbow color labeled

image is presented to show distinct objects recognized by the

analysis program.

(TIFF)

Figure S4 (I–III) Detailed views of cells with heteroge-
neous fluorescence (indicated by arrows) and segmen-
tation of these areas via the reported algorithm.

(TIFF)
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