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Background: Spinal muscular atrophy (SMA) is the most common neurodegenerative 
disorder and the leading genetic cause of infant mortality. Early detection of SMA through 
newborn screening (NBS) is essential to selecting pre-symptomatic treatment and 
ensuring optimal outcome, as well as, prompting the urgent need for effective screening 
methods. This study aimed to determine the feasibility of applying an Agena iPLEX SMA 
assay in NBS for SMA in China.

Methods: We developed an Agena iPLEX SMA assay based on the matrix-assisted laser 
desorption/ionization time-of-flight mass spectrometry, and evaluated the performance 
of this assay through assessment of 167 previously-genotyped samples. Then we 
conducted a pilot study to apply this assay for SMA NBS. The SMN1 and SMN2 copy 
number of screen-positive patients were determined by multiplex ligation-dependent 
probe amplification analysis.

Results: The sensitivity and specificity of the Agena iPLEX SMA assay were both 
100%. Three patients with homozygous SMN1 deletion were successfully identified and 
conformed by multiplex ligation-dependent probe amplification analysis. Two patients 
had two SMN2 copies, which was correlated with severe SMA type I phenotype; both of 
them exhibited neurogenic lesion and with decreased muscle power. Another patient with 
four SMN2 copies, whose genotype correlated with milder SMA type III or IV phenotype, 
had normal growth and development without clinical symptoms.

Conclusions: The Agena iPLEX SMA assay is an effective and reliable approach for 
population-based SMA NBS. The first large-scale pilot study using this assay in the 
Mainland of China showed that large-scale implementation of population-based NBS for 
SMA is feasible.
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iNTRODUCTiON
Spinal muscular atrophy (SMA) is an autosomal recessive 
neurodegenerative disorder and the leading genetic cause of 
infant mortality, with an incidence around 1 in 10,000 live births 
(Verhaart et al., 2017a; Verhaart et al., 2017b). About 95% of the 
SMA-affected patients are caused by the homozygous deletion 
of the survival of motor neuron 1 (SMN1) gene, resulting in 
deficiency of SMN protein (Lefebvre et al., 1995; Lefebvre et al., 
1997). The SMN1 gene is located in chromosome 5q13 containing 
SMN2. SMN1, and SMN2 are highly homologous differing by 
only five nucleotides (Lefebvre et al., 1995; Cartegni and Krainer, 
2002). The number of SMN2 copies correlates with the severity of 
phenotypes. To be more specific, larger number of SMN2 copies 
are associated with milder phenotypes (Mailman et al., 2002; 
Calucho et al., 2018).

Based on the age of onset and clinical severity, SMA is classified 
into five subtypes (0–IV) (Verhaart et al., 2017b). 60% of SMA-
affected patients have severe SMA type I, and these patients 
usually progress to respiratory failure and even die within the 
first 2 years of life if they are left untreated (Kolb et  al., 2017; 
Verhaart et al., 2017b). Early medical intervention on preventing 
motor neuron loss could generate maximal benefits to SMA-
affected patients (Mendell et al., 2017). However, most patients 
are currently diagnosed with significant delay (Lin et al., 2015). 
Therefore, early detection of SMA through newborn screening 
(NBS) prior to the onset of neurodegeneration is essential to 
providing pre-symptomatic treatment and ensuring optimal 
outcome (Phan et al., 2015).

Given the serious clinical phenotype and high frequency of 
SMA, especially novel therapies drastically altering the course 
of disease and prolonging survival. Currently, SMA has been 
included into the recommended universal screening panel in 
the United States, and some states have lunched the SMA NBS 
program (Kanungo et al., 2018; Fabie et al., 2019). Furthermore, 
nationwide NBS for SMA are now being evaluated in other 
countries (Saffari et al., 2019). Thus, including SMA into NBS 
program has been highlighted recently, and NBS methods for 
SMA are needed more than ever.

Unlike conventional NBS practices, SMA does not have a 
specific biochemical analyte, thus DNA testing is undoubtedly 
the best approach. Several methods have been developed to 
detect the SMN1 genotype in dried blood spot (DBS) samples, 
including real-time PCR (RT-PCR) (Pyatt and Prior, 2006; Taylor 
et al., 2015), competitive oligonucleotide priming PCR (Kato 
et al., 2015; Ar Rochmah et al., 2017), liquid microbead arrays 
(Pyatt et al., 2007), high-resolution melting analysis (Dobrowolski 
et al., 2012), and droplet digital PCR (ddPCR) (Vidal-Folch et al., 
2018). However, standard methods for SMA NBS are still lacking. 
An ideal NBS assay must be cost-efficient, with high throughout, 
and easy to perform and automate. The Agena iPLEX assay is a 
MassARRAY genotyping platform based on the matrix-assisted 
laser desorption/ionization time-of-flight mass spectrometry 
(Calvo et al., 2010). It is one such platform that has successfully 
been utilized for identification of thousands of gene variations 
(Gabriel et al., 2009). The MassARRAY assay consists of an initial 

locus-specific PCR reaction, followed by single base extension 
using dideoxynucleotide terminators of a variant-specific 
oligonucleotide primer which anneals immediately upstream of 
the target site (Jurinke et al., 2004). Multiplexing application of 
the MassARRAY system, allowing for simultaneous assessment 
of multiple single-nucleotide polymorphisms (SNPs)/variants, 
is a cost-efficient way to augment high-throughput genotyping 
output. Herein, we described the development of an Agena 
iPLEX SMA assay to detect the homozygous SMN1 deletion, 
which is applicable to SMA NBS. The performance of this assay 
was systemically studied and further evaluated by applying it to 
screen 29,364 newborns.

MATERiALS AND METhODS

Subjects and Samples Preparation
To evaluate the sensitivity and specificity of the Agena iPLEX 
SMA assay design of this study, 167 newborns in September 
2017, including one SMA case and 166 normal controls, 
were enrolled. The copy numbers of SMN1 and SMN2 genes 
of these 167 newborns were genotyped by using multiplex 
ligation-dependent probe amplification analysis (MLPA) 
method, which is the clinical golden-standard SMA approach. 
Pilot NBS was then performed to validate the application 
possibility of our design. The target screening sample size was 
calculated based on the incidence of 1:17,181 in Taiwan of 
China. Using PASS software (package 11.0), with permissible 
error of 0.03% and a two-sided 95% confidence interval, the 
necessary sample size needed to achieve statistical significance 
was 19,046 (Supplementary File  1). In order to increase 
the screening reliability, a total of 29,364 newborns from six 
hospitals were recruited for pilot NBS between March 2018 
and June 2018. All newborns with expanded NBS results 
within the reference range. The participating hospitals 
include Children’s Hospital, Zhejiang University School of 
Medicine (n  = 14,686), Quanzhou Maternity and Children’s  
Hospital (n  = 2917), Huaihua Maternal and Child Health Care 
Hospital (n = 2905), Jining Maternal and Child Health Family 
Service Center (n = 2951), Yancheng Maternity and Child 
Health Care Hospital (n = 2965), and Anhui Women and Child 
Health Care Hospital (n = 2940). Blood samples were collected 
by heel stick and spotted on Whatman 903 filter paper. DBS 
samples of 167 and 29,364 newborns were sent to Hangzhou 
Genuine Clinical Laboratory (Hangzhou, Zhejiang, China) for 
SMA testing after the center had completed NBS. Genomic 
DNA was extracted from the DBS samples using a Qiagen Blood 
DNA mini kit (Qiagen, Hilden, Germany), and then preserved 
at −20°C refrigerator after measuring the concentration. DNA 
quality and quantity were confirmed using a NanoDrop 1000 
UV-Vis spectrophotometer (Thermo Scientific, Wilmington, 
DE, USA). The concentration of DNA extracted from DBS was 
12.513 ± 5.838 ng/µl. The project was approved by the Ethical 
Committee of Children’s Hospital, Zhejiang University School 
of Medicine. Written informed consents were obtained from 
parents of all the infants.
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Design of the Agena iPLEX SMA Assay
Due to the high similarity of SMN1 and SMN2 genes, two 
well-known positions (c.840 and c.1155) were used as targets 
for designing PCR and single-base extension (SBE) primers 
(Figure 1). The iPLEX assay consists of a target-specific PCR 
reaction, followed by SBE using molecular weight-modified 
dideoxynucleotide terminators of an extension primer which 
anneals immediately upstream of the polymorphic site of 
interest. Using matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry, the distinct mass of the extended 
primer identifies the SNP allele. The nucleotide of c.840 
position is C and T in SMN1 and SMN2 genes, respectively. The 
nucleotide of c.1155 position is G and A in SMN1 and SMN2 
genes, respectively. PCR and SBE primers (patent applications 
in progress) were designed for these two variants of SMN1 and 
SMN2 genes by using MassARRAY Assay Design 3.1 software 
(Agena, San Diego, CA) with 80 ≤ amplicon length (bp) ≤120 
and 4,300 ≤ Mass Range (Da) ≤ 9,400. One PCR primer pair was 
designed for amplifying exon 7 of these two genes, and another 
was for exon 8. Beside these two variants of SMN1 and SMN2 
genes, we also designed other polymorphic markers for sample 
identification (data not shown).

MassARRAY-Based genotyping
In the multiplex PCR reaction, DNA extracted from DBS was 
used to amplify an approximately 100 bp region targeting the 
two SMN1/SMN2 variants of interest, including the c.840C/T 
and c.1155G/A. The 5 μl reaction containing 1 × PCR buffer 
(Agena), 2 mM MgCl2, 100 nM each amplification primer, 500 
μM dNTPs, 25 ng DNA, and 1 U PCR enzyme (Agena). PCR 
conditions were 94°C for 4 min, followed by 45 cycles of 94°C 
for 20 s, 60°C for 30 s, 72°C for 60 s and a final incubation at 
72°C for 3 min. Following the PCR, unincorporated dNTPs were 
inactivated by the addition of shrimp alkaline phosphatase (SAP) 
to the PCR reaction product [7 μl reaction containing 0.24× 
SAP buffer (Agena) and 0.07 U/μl SAP (Agena)]. Following 
SAP treatment, SBE onto the mutation site using the extension 
primers and assay-specific iPLEX terminator nucleotide mixes 
were performed (9 μl reaction containing 0.222× iPLEX buffer 
(Agena), 9 mM each iPLEX terminator nucleotide (Agena), 
0.5–1 μM each extension primer (primer adjustment according 
to the primer mass based on regression method) and 1× iPLEX 

Pro DNA polymerase (Agena)]. PCR conditions were 94°C for 
30 s, followed by 40 cycles of [94°C for 5 s, then 5 cycles of (58°C 
for 5 s, 80°C for 5 s)], and a final incubation at 72°C for 3 min. 
The mass spectrum from time-resolved spectra was retrieved 
by using a MassARRAY mass spectrometer (Agena), and each 
spectrum was then analyzed using SpectroTYPER software 
(Agena) to perform the genotype calling.

MLPA Analysis
The SMN1 and SMN2 copy number were determined using 
MLPA [SALSA MLPA probemix P060 SMA (MRC-Holland, 
Amsterdam, Netherlands)]. The MLPA assay was performed 
according to the manufacture’s instruction. The PCR products 
were detected by ABL 3500XL capillary electrophoresis (Applied 
Biosystems, Foster City, CA, USA). The data were analyzed using 
the Coffalyzer software (version 3.5) to determine potential 
CNV (copy number variations) of exons. In brief, the dosage 
quotient values of 0, 0.4–0.65, 0.8–1.2, 1.3–1.65, and 1.75–2.15 
indicates homozygous deletion, heterozygous deletion, normal 
copy number, heterozygous duplication, and homozygous 
duplication, respectively (Supplementary files 2 and 3). 

RESULTS

Validation Study
The Agena iPLEX SMA assay was validated in a double-blind 
testing of 167 previously-genotyped DBS samples with known 
SMN1 and SMN2 copy numbers. There was a clear distinction 
between positive samples with homozygous SMN1 deletion and 
normal individuals (Figure 2). The only case of SMA-affected 
patient was accurately identified from 167 samples of different 
genotypes, and the analytical results showed 100% concordance. 
Thus, the sensitivity and specificity of this screening assay were 
both 100%.

NBS for SMA
A total of 29,364 individuals were screened, and three newborns 
with SMA were identified. All these positive patients were 
confirmed to have homozygous deletions of SMN1 exons 7 and 
8 by MLPA, yielding an incidence of 1:9788 (Figures 3 and 
Figure  4). Among which two patients (patients 1 and 2) had 

FigURE 1 | Design of the Agena iPLEX spinal muscular atrophy (SMA) assay. The iPLEX assay consists of a target-specific PCR reaction, followed by single-base 
extension using molecular weight-modified dideoxynucleotide terminators of an extension primer which anneals immediately upstream of the polymorphic site of 
interest two well-known positions of SMN1 and SMN2 genes (c.840 and c.1155) were used as targets for designing PCR and single-base extension primers. Black 
and blue colors indicate multiplex PCR and extension primers, respectively.
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two SMN2 copies, which was correlated with severe SMA type I 
phenotype. Both patients exhibited neurogenic lesion and showed 
decreased muscle power. While another patient (patient 3) had 
four SMN2 copies, with genotype correlated with milder SMA 
type III or IV phenotype; the patient had normal growth and 
development without symptoms during the latest follow-up visit 
(Table 1).

DiSCUSSiON
The Agena iPLEX assay is a robust platform for the detection of 
many genetic variations, which has been approved for clinical 
diagnosis. In this study, through taking full advantage of the 
homologous sequences of SMN1 and SMN2, we translated 
deletions to mutations and successfully established an Agena 
iPLEX SMA assay to detect homozygous SMN1 deletion. The 
sensitivity and specificity of the Agena iPLEX SMA assay were 
both 100%. Then, we conducted a pilot study to apply this assay 
in SMA NBS. Three patients having SMA with homozygous 
deletions of SMN1 exons 7 and 8 were successfully identified and 
diagnosed by MLPA. The sensitivity of this assay applied in NBS 
was 95%, because this assay detected only 95% of homozygous 
SMN1 deletion mutations.

Although there are several technologies available for SMA 
NBS, whereas each method has its limitations. For example, 
ddPCR is relatively costly and the instrument is scarce; liquid 
microbead array is rarely used in less developed regions; 
RT-PCR requires normalization or standard curves; competitive 
oligonucleotide priming PCR involves multiple steps of post-
PCR manipulations leading to labor intensive; and high-
resolution melting analysis requires an experienced researcher 
to optimize the reaction conditions and analyze the data. 
Therefore, we explored the use of Agena iPLEX SMA assay for 

the identification of homozygous SMN1 deletion. This assay is 
automated with easier operation, and it is capable to analyzing 
larger batches of samples daily. Meanwhile, the results are easy 
to interpreted and even implemented in small/medium-sized 
NBS laboratories. Moreover, many quality reference materials 
such as gender and SNPs can be built in for sample traceability. 
Furthermore, the Agena iPLEX SMA assay has great adaptability 
with DBS specimens, and previous studies have demonstrated 
the successful use of Agena iPLEX assay for Fabry NBS (Lu et al., 
2018). Last but not least, the Agena iPLEX SMA assay has the 
advantage of flexibility in that more diseases can be incorporated 
into the current assay, such as integrated severe combined 
immunodeficiency, the first DNA-based NBS condition that was 
detected by measuring the T-cell receptor excision circles, for 
prospective molecular screening. Thus, the Agena iPLEX SMA 
assay has great potential to be widely applied in NBS for SMA.

NBS is tasked with differentiating affected patients from 
healthy individuals, however, some carriers may be identified in 
actual work. The identification of carriers is problematic because 
it increases unnecessary stress to the parents. The approach in 
this study was designed to exclusively detect only homozygous 
SMN1 deletion and the unwanted detection of SMA carriers can 
be effectively avoided. Of note is that a small proportion (5% of 
total) of SMN1 intragenic variants cannot be detected through 
the current Agena iPLEX SMA assay, which needs to be clarified 
during the process of informed consent.

There were several pilot studies on NBS of SMA and the 
feasibility of DNA-based NBS for SMA has been demonstrated. 
For instance, Jennifer et al. used a multiplex TaqMan RT-PCR to 
screen 3826 newborns in New York. In this research, one neonate 
with SMA was successfully detected and the study was accepted 
by these families (Kraszewski et al., 2018). Chien et al. (2017) 
used a RT-PCR combined with ddPCR as second-tier testing 
screened 120,267 newborns in Taiwan of China, 15 newborns 

FigURE 2 | Cluster plots of 167 previously-genotyped samples detected by the Agena iPLEX SMA assay. (A) Cluster plots of samples at the nucleotide of c.840 
in exon 7 of SMN1 and SMN2 genes. (B) Cluster plots of samples at the nucleotide of c.1155 in exon 8 of SMN1 and SMN2 genes. Low mass height represents 
the signal strength of SMN1, while high mass height represents the signal strength of SMN2. The yellow triangle (SMN1:SMN2 = 0:2) indicate SMA-affected 
positive sample with homozygous SMN1 deletion. The red circles (SMN1:SMN2 = 2:1 or 1:2), the green squares (SMN1:SMN2 = 2:2), and the blue triangles 
(SMN1:SMN2 = 2:0) indicate normal non-homozygous deletion samples.
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were tested positive for primary screening, and 7 patients were 
finally diagnosed as SMA. Another study conducted by Thomas 
et al. using liquid microbead arrays screened 40,103 DBS samples, 
four positive patients with SMA were successfully identified 
(Prior et al., 2010). The current study revealed that Agena iPLEX 
SMA assay is applicable for SMA NBS; and the frequency of SMA 
in our population is 1:9788, which is similar to 1:10,026 in Ohio 
and higher than 1:17,181 in Taiwan of China (Prior et al., 2010; 
Chien et al., 2017). Therefore, Agena iPLEX SMA assay has high 

specificity and sensitivity, and at high throughput, is an effective 
and reliable approach for population-based SMA NBS.

This is the first large-scale study of NBS for SMA in the 
Mainland of China, two patients with severe SMA type I 
were detected. However, because the first U.S. Food and Drug 
Administration approved drug for SMA therapy, Spinraza, which 
was not available in China, both patients in this series were only 
eligible for adjuvant therapy such as nutritional and respiratory 
support (Finkel et al., 2017; Ottesen, 2017; Gidaro and Servais, 

FigURE 3 | The mass spectra of SMA-affected positive patients and healthy individual. Patient 1 had only one peak at 6710.3 Da (A) and 4665.9 Da (B) 
respectively, indicating the homozygous deletions of SMN1 exons 7 and 8; Patient 2 had only one peak at 6710.3 Da (C) and 4665.9 Da (D) respectively, indicating 
the homozygous deletions of SMN1 exons 7 and 8; Patient 3 had only one peak at 6710.3 Da (E) and 4665.9 Da (F) respectively, indicating the homozygous 
deletions of SMN1 exons 7 and 8; The control of healthy individual had only one peak at 6630.3 Da (g) and 4586.0 Da (h) respectively, indicating with normal copy 
number of SMN1. The red vertical dotted lines on the left indicate the mass of unextension primer, the red and blue vertical dotted lines on the right indicate the 
mass of primer after extension.
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FigURE 4 | Multiplex ligation-dependent probe amplification (MLPA) analysis of SMN1 and SMN2 genes. The dosage quotient (DQ) values of 0, 0.4–0.65, 0.8–1.2, 
1.3–1.65, and 1.75–2.15 indicates homozygous deletion, heterozygous deletion, normal copy number, heterozygous duplication, and homozygous duplication, 
respectively. The homozygous deletions of SMN1 exons 7 and 8 were detected in three patients, (A) patient 1 (SMN1:SMN2 = 0:2); (B) patient 2 (SMN1:SMN2 = 
0:2); (C) patient 3 (SMN1:SMN2 = 0:4).

TABLE 1 | Newborn screening results for spinal muscular atrophy.

Patients 
no.

gender Province/city Age of 
onset

MassARRAY-based 
genotype

SMN1:SMN2 
copies by MLPA

Clinical features 
(Classification)

Evolution

1 Female Zhejiang <3 months Homozygous deletions of 
SMN1 exons 7 and 8

0:2 Exhibited neurogenic 
lesion and with decreased 
muscle power (I)

Died at 5 months old

2 Male Zhejiang <3 months Homozygous deletions of 
SMN1 exons 7 and 8

0:2 Exhibited neurogenic 
lesion and with decreased 
muscle power (I)

Severe

3 Male Hefei Not found Homozygous deletions of 
SMN1 exons 7 and 8

0:4 Normal (III or IV) Well with normal growth 
and development

MLPA, multiplex ligation-dependent probe amplification.
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2019). Consequently, the treatment of these two patients were 
not effective, one patient died and the other is still under poor 
prognosis. But more importantly, the detection of SMA is of great 
significance for the genetic counseling and reproductive guidance 
of these families, especially due to the limitation that carrier 
screening has not been widely carried out in China. China has 
long-term faced many challenges in the screening and treatment 
of SMA, including low level of public awareness of the disease, 
lack of genetic testing channels, and effective treatment drugs, as 
well as lack of standardized long-term follow-up and management 
(Ke et al., 2019). These challenges have seriously hindered the 
development of diagnosis and treatment of SMA in China, and 
have brought many difficulties to SMA-affected patients and 
their families. Fortunately, Spinraza was introduced in China 
in April 2019, indicating that the incurable dilemma of SMA 
should be resolved. Simultaneously with the launch of Spinraza, 
The Diagnosis and Treatment Center for SMA was founded 
in China and will provide better medical services for Chinese 
SMA-affected patients. In addition, the Chinese government is 
currently paying increasing attention to SMA and has formulated 
a series of policies which benefit patients and their families. The 
current study demonstrated the feasibility of SMA NBS, which 
will undoubtedly advance the progress of SMA in China.

In summary, we developed a simple and automated high-
throughput SMA assay for SMA NBS. The assay is rapid (7 h 
from DNA preparation to data report), inexpensive (the running 
cost is approximately $3/sample), and with high specificity 
and sensitivity. Thus, the assay could be recommended as an 
efficient tool for SMA NBS. The first large-scale pilot study using 
this assay in the Mainland of China showed that large-scale 
implementation of population-based NBS for SMA is feasible. 
We believe this work could advance NBS for SMA.
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