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S u m m a r y  

In this article, we report that the human fetal thymus contains CD34bns ht cells (<0.01% of total 
thymocytes) with a phenotype that resembles that of multipotent hematopoietic progenitors 
in the fetal bone marrow. CD34bri# t thymocytes were CD33-/dun and were negative for CD38, 
CD2, and CD5 as well as for the lineage markers CD3, CD4, and CD8 (T cells), CD19 and 
CD20 (B cells), CD56 (NK cells), glycophorin (erythrocytes), and CD14 (monocytes). In addition, 
total CD34 § lineage negative (lin-) thymocytes contained a low number of primitive myeloid 
progenitor cells, thus suggesting that the different hematopoietic lineages present in the thymus 
may be derived from primitive hematopoietic progenitor cells seeding the thymus. To investi- 
gate whether the thymus is permissive for the development of non-T cells, human fetal organ 
culture (FTOC) assays were performed by microinjecting sorted CD34+lin - fetal liver cells 
into fragments of HLA-mismatched fetal thymus. Sequential phenotypic analysis of the FTOC- 
derived progeny of CD34+lin - cells indicated that the differentiation into T cells was preceded 
by a wave of myeloid differentiation into CD14+CDllb+CD4 auu cells. Donor-derived B cells 
(CD19 + CD20 +) were also generated, which produced immunoglobulins (IgG and IgM) when 
cultured under appropriate conditions, as well as functional CD56+CD3 - NK cells, which 
efficiently killed K562 target cells in cytotoxicity assays. These results demonstrate that the 
microinjection of fetal liver hematopoietic progenitors into fetal thymic organ fragments results 
in multilineage differentiation in vitro. 

A small percentage (<1%) of hematopoietic non-T cells 
are present in the human fetal and postnatal thymus. 

Thymic macrophages, monocytes, and dendritic cells can be 
readily identified in normal thymic sections (1-4) and they 
have been implicated in the complex selection process of im- 
mature thymocytes that give rise to a MHC-restricted pe- 
ripheral T cell repertoire (5). In addition, NK and B cells 
have been detected in the human thymus (6-10), although 
there is no clear evidence demonstrating that thymic B cells 
and NK cells play a specific role in T cell differentiation. 

The origin of the different hematopoietic lineages present 
in the thymus is presently unknown. During the late em- 
bryonic period in the human fetus, T cell progenitors gener- 
ated in the liver migrate to the thymic rudiment at 7-9 wk 
of gestation (10). CD3 + T cells can be detected in the fetal 
thymus (FT) 1 already at week 8 of gestation (11), although 

1 Abbreviations used in this paper: BM, bone marrow; CFC, colony-forming 
cell; FL, fetal liver; FT, fetal thymus; FTOC, fetal thymic organ culture; 
HPP, high proliferative potential; LPP, low proliferative potential; MHP, 
multipotent hematopoietic progenitor; TN, triple negative; TRC, tricolor. 

the FT is not anatomically completely differentiated until week 
15 of gestation (12). It is possible that T cells and non-T 
cells present in the thymus are derived from a common mul- 
tipotent hematopoietic progenitor (MHP). Alternatively, dis- 
tinct progenitors committed to the lymphoid and myeloid 
lineages may migrate to the thymus, where they further 
differentiate into mature cells. It is, however, also possible 
that mature B, NK, and myeloid ceils are initially generated 
in the hematopoietic organs and migrate from peripheral 
organs of the immune system to the thymus. 

We reasoned that if the non-T cell thymic compartment 
develops intrathymically, we could expect to find a cellular 
population in the thymus with phenotypic and functional 
properties that resemble those of MHPs that have been de- 
scribed in the bone marrow (BM) and fetal liver (FL) (13, 
14). Recent reports indicated that CD34 § CD38- fetal BM 
cells are enriched in early hematopoietic precursors. This 
population should also have T cell progenitor activity, since 
it includes Thy-1 + cells (15) and CD34+Thy-1 + cells have 
been shown to contain T cell precursors (16). Taken together, 
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these data indicate that CD34+CD38 - BM cells are en- 
riched for M H P  cells and may contain pluripotent stem cells. 
In the present study, we investigated the possible existence 
of  a- similar CD34+CD38 - lineage negative (lin-) intra- 
thymic population (lineage: C D 3 - C D 4 - C D 8 - C D 1 4 -  
CD19-CD20-CD56-g lycophor in - )  as well as the presence 
of early myeloid progenitors among CD34+lin - fetal 
thymocytes. 

The hypothesis that thymic non-T cells are derived from 
MHPs seeding the thymus would imply that this organ should 
be able to support the differentiation of non-T cell lineages. 
Appearance of myeloid and nonlymphoid cells together with 
thymocytes has been also reported in the SCID-hu system 
(17). However, it is currently unknown whether hematopoi- 
etic progenitor cells can develop into B and NK cells in the 
thymus. In the present study we investigated the ability of 
the human FT to support the differentiation of CD34+lin - 
FL cells, a heterogeneous population containing both stem 
cells as well as lineage-committed progenitors, into T cells 
and non-T cell lineage cells (myeloid-, B-, and NK-cells) by 
using a human fetal thymic organ culture (FTOC) system. 

Materials and Methods 
mAbs. mAbs against the following markers were used: CD1 

(CD1-RD, Coulter Corp., Hialeah, FL), CD2 (Gll; Caltag Labora- 
tories, San Francisco, CA), CD3 (anti-Leu-4), CD4 (anti-Leu-3a), 
CD5 (anti-Leu-1 and CD5-5D7, from Becton Dickinson & Co. 
[Mountain View, CA] and Caltag Laboratories, respectively), CD7 
(anti-Leu-9), CD8 (anti-Leu-2a), CD11b (anti-Leu-15), CD13 
(IOM13; Amac, Westbrook, ME), CD14 (anti-Leu-M9), CD16 
(anti-Leu-11a), CD19 (anti-Leu-12), CD20 (anti-Leu-16), CD33 
(anti-Leu-M9 and 251 from Becton Dickinson & Co. and Caltag 
Laboratories, respectively), CD34 (anti-HPCA.2), CD45 (anti-Hie- 
1) and anti-HLA-DR (anti-HLA-DR and HL38 from Becton Dick- 
inson & Co. and Caltag Laboratories, respectively). All these mAbs 
were used conjugated to FITC, PE, tricolor (TRC) or biotinylated, 
as indicated in the legends to the figures and are from Becton Dick- 
inson & Co., unless otherwise indicated. Anti-HLA-A2-FITC 
(CRll-351) and anti-HLA-A3-FITC (GAP-A3) were obtained from 
American Type Culture Collection (Rockville, MD). L307 (anti- 
B7) was kindly provided by Dr. L. Lanier (DNAX Research Insti- 
tute). SPLV-3-FITC (anti-DQ) was generated in our laboratory. 
89-FITC (anti-CD40) was kindly provided by Dr. G. Aversa 
(DNAX Research Institute). L185-FITC (anti-CD56) was kindly 
provided by Dr. J. Phillips (DNAX Research Institute). Streptavidin 
conjugated to aUophycocyanin and streptavidin conjugated to TRC 
were purchased from Becton Dickinson & Co. and Caltag Labora- 
tories, respectively. 

Isolation ofFL andFTSubpopulations. Human fetal tissues were 
obtained with informed consent from Advanced Bioscience Re- 
sources Inc. (Alameda, CA), in compliance with regulations is- 
sued by the state and by the federal government. Gestational age 
was determined by crown-rump length and ranged from 16 to 21 
wk. FL and FT samples were homogenized through a wire mesh 
in the presence of RPMI containing 10% FCS. The isolation, by cell 
sorting using a FACStar | plus (Becton Dickinson & Co.), of >99% 
pure CD34(PE)+lin(FITC) - FL cells and CD34(FITC)+lin(PE) - 
triple negative (TN) fetal thymocytes was performed as described 
elsewhere (18). 

High Proliferative Potential (HPP) Colony-Forming Cell (CFC) 

Assay. Myeloid progenitor cells were assayed as previously described 
(19). Cultures were scored for the presence of HPP-CFC (colonies 
>0.5 mm in diameter) and low proliferative potential (LPP)-CFC 
(colonies < than HPP-CFC but > than 50 cells/colony) (20). 

Immunofluorescence and Flow Cytometry. Cell surface phenotypic 
analyses were performed as previously described (19). 

FTOC. Human fetal thymic pieces containing 3-10 lobules 
were prepared, depleted of endogenous thymocytes and microin- 
jected with 104 CD34+lin - FL cells/piece sorted from an HLA- 
mismatched donor, as previously described (19). 20-40 microin- 
jected pieces were placed back on the gelfoam rafts and cultured 
in Yssel's medium (21) supplemented with 1% human serum + 
5% of FCS at 37~ in a humidified 5% CO2 atmosphere. After 
15 d in culture, 10 ng/ml of epidermal growth factor (Sigma Chem- 
ical Co., St. Louis, MO) was added to the FTOC medium to keep 
a good cellular viability of the thymic epithelial cells. At the indi- 
cated times, 5-10 injected thymic pieces, as well as the noninjected 
controls, were dispersed by gentle pipetting in PBS containing 5 
mg/ml BSA and 0.2 mg/ml NaN3 for further phenotypic analysis. 
In parallel to the FTOCs assays, CD34+lin - FL cells were cul- 
tured a t  1 0  4 , 1 0  3 , 10  2 , and 10 cells/well to determine the putative 
contamination with mature T and NK cells, as described elsewhere 
(21, 22). 

Culture of FTOC-derived Monocytes. Adherent cells from the 
bottom of the 6-well plates that contained the FTOC, were trans- 
ferred to separated plates at day 15 after microinjection and cul- 
tured at 105 cells/well in Yssel's medium supplemented with 10% 
FCS and 40 ng/ml GM-CSF (kindly provided by Dr. R. Kastelein, 
DNAX Research Institute). 

Culture Conditions.for Induction of lg Synthesis In Vitro. Cells de- 
rived from FTOC 15 d after injection with CD34+lin - FL cells 
were cultured in duplicate at 1.5 x 104 cells/well in Yssel's 
medium supplemented with 10% FCS, in round bottomed plates 
(Linbro, McLean, VA) in the presence of 400 U/ml of IL-4 (Schering- 
Plough Research, Bloomfield, NJ). The CD4 § T cell clone B21 
was used 2-3 d after activation in the presence of feeder-cell mix- 
ture and PHA (Wellcome, Beckenham, Kent, UK), as previously 
described (21) and added to the FTOC-derived cells at 5,000 
cells/well. After 14 d in culture, IgM, total IgG, IgA, and IgE 
secretion levels present in the culture supernatants were measured 
by ELISA as described elsewhere (23). The sensitivity levels of the 
IgM, total IgG, and IgA ELISAs were 0.5 ng/ml and the sensi- 
tivity of the IgE ELISA was 0.2 ng/ml. 

In Vitro Expansion of FTOC-derived NK Cells. Day 15 FTOCs 
microinjected with CD34+lin - FL ceUs were dispersed, and ana- 
lyzed for the presence of donor-derived CD56 + cells by cytoflu- 
orometry. The cellular suspension was cultured for 10 d in Yssel's 
medium supplemented with 1% human serum in the presence of 
100 U/m1 of rIL-2. For further expansion of the NK population, 
the cells were cultured for 15 d in the presence of feeder cells and 
PHA, as reported elsewhere (22). 

Cytotoxicity Assays. The cytotoxicity assays were performed 
as described previously (21). The effector cells in these experi- 
ments were FTOC-derived NK cells or a peripheral blood-derived 
CD56+CD16+CD3 - NK cell clone. 

Results 

Phenotypic Profile of CD34+lin- Cells Present in the FT. 
CD34 § T N  thymocytes are characterized by the expression 
o f T  cell markers such as CD1, CD2, CD5, CD7, CD10, and 
CD28 (19, 24) and display T cell progenitor activity in a novel 
human FTOC system (18). To address the question of whether 
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a population phenotypically similar to primitive MHPs 
(CD34+CD38 - [13]) is present in the FT, CD34 + TN 
thymocytes were depleted of lineage + cells and isolated by 
cell sorting from fetal thymi. Fig. 1 shows a three-color staining 
of sorted CD34 + lin- thymocytes. Electronic gates were set 
to analyze the expression of CD33, HLA-DI~, CD2, and 
CD5 antigens on CD34baghtCD38- (K1, 1% of CD34+lin - 
thymocytes), CD34b~ig h~ CD38 a"ll (K2, 6%), CD34b~ig h~ 
CD38bng ht (K3, 14%), and CD34 a"11 CD38b~g at (R4, 79%) 
thymocytes. As it has been reported for BM-derived hemato- 
poietic stem cells (13), the small CD34+CD38-1in - thymic 
population (<0.01% of total thymocytes) expressed high levels 
of CD34 and did not express CD2 and CD5, suggesting that 
they are not yet committed to the T cell lineage. The expres- 
sion of CD2 and CD5 was found to increase in parallel with 
the increase in CD38 expression and the decrease in CD34 
expression. Interestingly, the C D 3 4 b ~ i g h t C D 3 8 -  thymocytes 
can be subdivided into two subsets, HLA-DK + and HLA- 
DR-/a~.  In addition, we consistently detected dull levels of 
CD33 expression among C D 3 4  bright. These data suggest the 

existence of very early hematopoietic progenitors in the human 
FT. 

Myeloid Potential o f  C D 3 4  + lin - Fetal Thymocytes. Our re- 
cent studies on FL myeloid precursors have demonstrated that 
HPP-CFC, a compartment of primitive progenitors, are found 
predominantly among the CD34+CD38 - FL cells (14). 
Furthermore, as observed of the CD34+CD38 - thymic 
population, CD34 § CD38- FL counterpart cells comprised 
CD33 + cells which could be subdivided into both HLA- 
D R  + and HLA-DK- subsets. The CD34+CD38 - FL cells 
express higher levels of CD33 than their fetal thymic coun- 
terpart. A representative comparison (out of three experiments) 
of myeloid progenitor activity found among lin- FL and FT 
cells, obtained from a 16-wk-old fetus, revealed a far greater 
number of myeloid progenitors present in the FL as com- 
pared with the FT. The FL contained a total of 34,000 HPP- 
CFC and 77,000 (LPP-CFC) found at a frequency of 1,300 
and 3,000/105 lineage-depleted cells, respectively. The FT 
contained a total of only 91 HPP-CFC and 920 LPP-CFC 
which were present at the low frequency of 8.5 and 86/105 

R4 
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C O 3 3 - T R C  ~ " " , "  '"!:::i~i!ii~!i!! : ' : '  
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Figure  1. Three-color analysis of fetal CD34+lin - TN thymocytes. Sorted CD34+lin - TN thymocytes were stained with anti-CD38-PE and the 
indicated TKC-conjugated mAbs. 5 x 104 alive gated cells were acquired for a multicolor analysis on a FACScan | Electronic gates were set to contain 
>95% of CD34b~ightCD38 - (R1), CD34bnghtCD38aal (K2), CD34b~ghtCD38brig ht (K3), and CD34d~CD3866g ht (K4). IC, isotype matched control. 
The respective mean intensities of fluorescence in regions R.1, R2, R3, and K4 are: 11, 19, 13, and 4 for CD33; 221, 248, and 128, and 34 for HLA-DR; 
6, 16, 50, and 70 for CD2; and 6, 13, 52, and 116 for CD5. The cell numbers (y-axis) in the histograms are presented on a logarithmic scale. 
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lineage-depleted cells, respectively. These results demonstrate 
that the FT contains both early and late myeloid progenitors, 
with the latter population containing the bulk of the thymic 
myeloid colony-forming potential and are consistent with the 
reported presence of CFU-C in immature populations of post- 
natal thymocytes (25). 

The ability of the thymic microenvironment to sustain 
myelopoiesis was analyzed by comparing the in vitro growth 
of CD34+lin - FL cells over 7 d in either cytokine-stimu- 
lated liquid cultures or after microinjection into fresh, un- 
depleted thymic fragments. The number of HPP-CFC and 
LPP-CFC generated from CD34+lin - FL cells during 7 d 
of growth in liquid culture stimulated by GM-CSF + KL 
+ IL-3 + IL-6 increased 6- and 16-fold over starting values, 
respectively. In contrast, the numbers of HPP-CFC and LPP- 
CFC recovered from microinjected undepleted thymic frag- 
ments were, respectively, 20- and 5-fold less than in the freshly 
isolated FL cells. Thus, myeloid progenitor activity is only 
modestly maintained in FTOC relative to the potential of 
these progenitors in the presence of ~ytokines permissive for 
myelopoiesis. 

F T O C  Supports the Differentiation of CD34 + lin- FL Cells 
into Multilineage Progeny. To investigate the capacity of human 
FTOC to support the differentiation of non-T cell lineages, 
we used a source of MHP cells that do not contain com- 
mitted T cell precursors comparable to those found in the 
FT (19). The CD34+lin - subset represents 3.8 _+ 1.6% 
(n = 8) of mononuclear glycophorin- FL cells, the pheno- 
type of which has been described previously (18). Although 
not shown, sorted CD34+lin - FL cells (>99% pure) did 
not express mRNA for RAG-1 and RAG-2 genes, as deter- 
mined by PCR (Bfircena, A., and H. Spits, unpublished ob- 
servations), indicating the lack of TCR and Ig gene rear- 

rangement (26, 27). Furthermore, CD34+lin - FL cells did 
not give rise to T or NK cells when grown in the presence 
of irradiated feeders + PHA + IL-2. These data support 
the notion that the CD34+lin - FL cells lack progenitors 
committed to NK, B, and T cell lineages. 

104 CD34+lin - FL cells sorted (>99% pure) from an 
HLA-A2* donor were microinjected into 20-40 individual 
fetal thymic pieces (HLA-A2-). Phenotypic analysis of the 
cellular progeny was performed at different periods of cul- 
ture to search for the presence of surface markers character- 
istic of different hematopoietic lineages. The cellular recovery 
was typically in the range of 2-5 x 104 cells/thymic piece 
with a 82-95% cellular viability. As it is shown in Table 1, 
two populations bearing the donor HLA and showing over- 
lapping but distinct forward vs. side scatter FACS | profile 
were detected and electronically gated in all phenotypic anal- 
ysis. At day 15 in FTOC, most of the cells recovered from 
the thymic pieces were donor-derived (HLA-A2+), that 
showed a heterogeneous lymphoblastic and monoblastic mor- 
phology. The large cells were mostly CD33 + and CD4 § 
and some expressed markers found on NK cells (CD56), B 
cells (CD19 and CD20), and thymocytes (CD1, CD4, and 
CDS) (Table 1). The analysis of the lymphoid population re- 
vealed a lower expression of CD33 and a higher expression 
of the thymic markers CD1, CD3, and CD8. At later time 
points of FTOC (days 20 and 25), the cellular distribution 
was reversed. The proportion of large CD33 + cells was de- 
creased, correlating with an increase of cells of the lymphoid 
type as well as in the expression of T and B cells markers 
(Table 1). At day 25, cells bearing lymphoid markers were 
also present in the large cell population, which is due likely 
to the existence of a small proportion of lymphoblasts that 
were consistently observed during cell counting at late 

Table 1. Kinetics of Reconstitution in FTOC Injected with CD34 + lin- Fetal Liver Cells 

Percentage of cells expressing 
Number of Percent HLA-A2* 

Day cells/piece cells CD3 CD4 CD8 CD1 CD56 CD19 CD33 

Large cells 

15 35,000 94 1.5 63 2 17 14 32 79 
20 5,000 99 2 40 2 ND* 27 20 ND 
25 4,000 99 37 65 31 80 18 10 17 

Small cells 

15 17,000 85 5.7 65 10 57 15 3 31 
20 20,000 88 10 67 36 ND 8 5 ND 
25 37,000 95 60 75 73 92 15 10 5 

Fetal thymic fragments (HLA-A2-) were microinjected with 104 sorted CD34+lin- cells from an HLA-A2 § FL. After the indicated days in cul- 
ture, the thymic fragments were homogenized, and cell counts were obtained. The recovered cells were stained and subjected to FACS | analysis, 
as described in the Materials and Methods. The results, representative of four independent experiments, are expressed as the percentage of positive 
cells over isotype-matched controls. Gate was set to contain 95 and 98% of large and small cells, respectively. Large cells showed a high profile 
in FSC vs. SSC plot, corresponding to large, granular cells. Small cells were typically found in the lymphoid gate. *ND. not done. 

126 Thymus Is Permissive for T, B, NK, and Myeloid Cell Development 



: . . , : .  Z ~ ~..~:::" o o . . ~ ; :  : ~ : ; ; !  . . . .  

.... ib2' '"'i7+," "" i+~ 
CONTROL-FITC CONTROL-TRC 

GATE 1 GATE 2 

o " ~ .  

4 

HLA-A2-FITC CD3-TRC CD3-TRC 

GATE 1 GATE 2 

== . ~ - ~:,i~ ~ 
~, ~ ~ .  ,.~...., . .  

HLA-A2-FITC CDS-TRC CDS-TRC 

Figure  2. Three-color analysis of day 25 FTOC-derived progeny. Sorted 
CD34+lin - cells from an HLA-A2 + FL were microinjected into HLA- 
A2-  FT fragments, as described in Materials and Methods. After 25 d 
in culture, the FT fragments were dispersed. The harvested cells were in- 
cubated with the indicated mAbs and 5 x 103 cells were acquired for 
three-color analysis using a FACScan | 

timepoints in FTOC. The early appearance of CD33 + im- 
mature myeloid cells before the emergence of lymphoid popu- 
lation suggests a biphasic differentiation of CD34+lin - cells. 
Although not included in Table 1, at day 17 in FTOC we 
observed that 65% of the large cells were CD14 + and 83% 
expressed CD33. The percentage of CD56 + (5-15% of the 
CD34+lin - progeny) was very similar in both large and 
small cell subpopulations and it varied very little during the 
course of FTOC. Since activated T cells can express CD56, 
three-color analyses of day 25 harvested FTOC cells were per- 
formed. Fig. 2 shows that donor-derived HLA-A2 + CD56 + 
cells did not express CD3, whereas the majority of HLA- 

A2 + CD56- cells were CD3 +. In addition, Fig. 2 shows 
that the CD19 + cells generated in FTOC are HLA-A2 + , ex- 
pressing low to negative levels of CD5. Taken together, the 
results shown in Table I and Fig. 2 clearly demonstrate the 
generation of myeloid, T, NK, and B cells in FTOC. 

Generation of Monocytes in FTOC. As early as day 7 after 
the microinjection of CD34+lin - FL cells into FTOC, 
monocytic-, and myeloblastoid cells were observed at the 
bottom of the plates in which the FTOC were cultured. Cells 
with a dendritic or interdigitating cell morphology were also 
present at a low frequency. Fig. 3 shows the characteristic 
elongated and adherent morphology of monocytes, as well 
as the round small myelomonocytic immature cells. For fur- 
ther expansion of the FTOC-derived monocytes, the cells were 
transferred to separate plates and cultured up to 4 wk in the 
presence of GM-CSF. Fig. 4 shows the phenotypic profile 
of FTOC-derived monocytes after 20 d in culture. All cells 
were HLA-A2 +, indicating the FL origin, and most of 
them were CDl lb  +. The level of HLA-DR expression was 
quite variable among different experiments, increasing at later 
time points in culture (data not shown). Fig. 4 shows dull 
HLA-DR expression on 25% of the cells. The majority of 
these cells expressed CD4 auu and about 50% of the cells 
were CD14 +. Although 25% of the cells were CD33 +, the 
expression of the CD34 marker was negative, suggesting that 
myeloid precursors (CD33 + CD34 *) present in the original 
CD34 +lin- population were undergoing in vitro differen- 
tiation into CD33*CD34 - cells and, moreover, some of 
them completed the differentiation pathway into CD14 § 
cells. T cells (CD3+), B cells (CD19+), or NK cells (CD56 +) 
were not present in the medium of FTOCs (Fig. 4). Since 
we occasionally observed the appearance of a small propor- 
tion of cells with a cellular morphology similar to dendritic 
cells (Fig. 3), we also investigated the expression of some den- 
dritic cell markers on the FTOC-derived cells. Fig. 4 shows 
that most of the cells were positive for HLA-DQ and ex- 
pressed CDla antigen in a dull fashion, but we observed a 
small proportion of cells expressing CDla and high levels 
of HLA-DQ, as it has been described for dendritic cells (28). 
Few CD14 + cells were found to be B7 +, but a significant 
proportion (20%) coexpressed CD40. These data suggest the 

Figure  3. Morphology of FTOC-derived myelomonocytic 
cells. Microphotographs of thee myelomonocytic cells (original 
magnification x400) observed at day 7 (A) and day 17 (B) 
at the bottom of the plates in which the thymic fragments 
were incubated. 
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generation of not only monocytes, but a significant propor- 
tion (20%) coexpressed CD40. These data suggest the gener- 
ation of not only monocytes, but also dendritic cells in FTOC. 
No granulocytes (CD13 +) were observed in our cultures. 
The monocytes generated in FTOC were capable to induce 
the proliferation of PBL in MLR assays at comparable levels 
to those induced by sorted CD14 + monocytes from periph- 
eral blood, thus demonstrating their functional capabilities 
(data not shown). 

Generation of Functional B Cells in FTOC. We have previ- 
ously shown that FL B cells undergo Ig isotype switching 
and differentiation into Ig-secreting cells when cultured in 
the presence of IL-4 and the activated CD4 + T cell clone 
B21 (29). To investigate the functional maturity of the 
CD19 § cells generated in the FTOC (Table 1 and Fig. 2), 
cellular suspensions obtained from FTOC at day 15 were cul- 
tured under these conditions. Freshly isolated CD34§ - 
FL cells failed to differentiate into Ig-secreting cells under 
these culture conditions (Table 2). However, when day 15 
progeny of CD34 + lin- FL cells were recovered from FTOC 
and then cultured in the presence of B21 cells + IL-4, low 
but detectable levels of IgM synthesis were observed (Table 
2). Since IgG production was also observed, these naive and 
unprimed FTOC-derived B cells are capable of undergoing 
Ig isotype switching, demonstrating the functional maturity 
of these cells. 

Generation of Functional NK Cells in FTOC. As shown 
in Table 1 and Fig. 2, CD56 + ceils were detected as early 
as 15 d after injection of CD34 +lin- FL cells. Due to the 

low number of CD56 + cells present in the FTOC (5-15%), 
a direct functional analysis of this population was not pos- 
sible. Therefore, a subsequent in vitro expansion of these cells, 
as described in Materials and Methods, was required to assess 
the functional status of these cells. At day 15, very few ma- 
ture T cells had been generated in FTOC (Table 1), allowing 
the establishment of cultures of NK cells in the presence of 
rlL-2 without contaminating T or myeloid cells. After in 
vitro expansion of the FTOC-derived cells, most of the cells 
displayed the donor HLA haplotype, >80% of the cells ex- 
pressed CD56 and '~30% coexpressed CD16 (Fig. 5). In 50% 
of the experiments a small and variable percentage of donor- 
derived mature CD3 + cells was observed. The CD56 + cells 
generated in FTOC displayed NK activity against K562 at 
all the effector/target ratios tested (Fig. 6). The positive con- 
trol for these experiments was a CD56 § NK clone derived 
from peripheral blood. Cytotoxicity assays performed with 
the freshly isolated CD34+lin - FL cells indicated the ab- 
sence of NK activity (data not shown), demonstrating the 
in vitro differentiation of these cells into functionally and 
phenotypically mature NK ceils. 

Discussion 

In the present study we investigated whether the human 
FT contains primitive hematopoietic progenitors. We show 
that sorted CD34 + fin- FT cells contains a very small pop- 
ulation of CD34bnghtCD38- cells (0.5-1% of CD34 § 
thymocytes). The phenotypic profile of these cells resembles 

Table 2. Induction of Ig Synthesis by Cells Derived from FTOC 

Ig isotype produced 

IgM IgG IgE 

Exp. 1 ng/ml 
Medium <0.5 <0.5 <0.2 
B21 + IL-4 <0.5 14.0 + 3.8 <0.2 

Exp. 2 
Medium <0.5 <0.5 <0.2 
B21 + IL-4 3.7 + 0.7 3.5 + 5.4 <0.2 
B21 + IL-4 (noninjected FTOC) <0.5 <0.5 <0.2 
B21 + IL-4 (CD34+lin - cells, day 0) <0.5 <0.5 <0.2 

Exp. 3 
Medium <0.5 <0.5 <0.2 
B21 + IL-4 3.2 + 0.1 4.7 _+ 1.3 <0.2 
B21 + IL-4 (noninjected FTOC) <0.5 <0.5 <0.2 
B21 + IL-4 (CD34+lin - cells, day 0) <0.5 <0.5 <0.2 

Cells derived from FTOC 15 d after injection with CD34+lin - cells were cultured at 15 x 103 cells/well in duplicate in the presence or absence 
of IL-4 (400 U/ml) and B21 cells (5 x 103 cells/well). As a control, cells derived from FTOC not injected with CD34§ cells and freshly isolated 
CD34+lin - cells were cultured in parallel in experiments 2 and 3. The values represent the mean _+ SD of Ig concentrations (ng/ml) detected by 
ELISA after a culture period of 14 d. 
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Figure 4, Phenotypic analysis of 
FTOC-derived myelomonocytic cells. 
HLA-A2 + CD34+lin - FL sorted cells 
were microinjected into H L A - A 2 -  
thymic  fragments. As described in 
Materials and Methods, after 15 d in 
FTOC and 5 d in culture in the pres- 
ence of 40 ng/ml of GM-CSF, the 
cells were stained with the indicated 
mAbs and subjected to two-color anal- 
ysis on a FACScan | The quadrants 
were set to contain >98% of the iso- 
type matched FITC and PE control 
mAbs. 

that of CD34+CD38 - FL cells (14) and fetal BM cells (13, 
30) described to be highly enriched for hematopoietic stem 
cells, since they contain HLA-DR § and HLA-DR -/aal 
cells and express CD33-/a,n. The thymic CD34bnghtCD38- 
cells are probably not yet committed to the lymphoid lineages, 
since they do not express the T/NK cells marker CD2 or 
the T/B cell marker CD5. Our results are in contrast with 
those of Terstappen et al. (31), that did not detect these 
intrathymic cells. An explanation for this discrepancy is 
that these authors analyzed total unseparated thymocytes 
by means of multiparametric fluorescence studies. The 
CD34b~g~CD38- thymocytes comprise <0.01% of the total 
thymocytes, well below the reported sensitivity threshold of 
1 / 1 0 4  cells. 

The notion that the human FT contains a low number 
of hematopoietic progenitor cells is consistent with observa- 
tions obtained in SCID-hu model (17). SCID-hu mice co- 
transplanted with FL and FT showed long-term T cell re- 

, , ,  " i  - ' - i :  

HLA-A2-FITC CD16-FITC 

Figure 5. Phenotypic analysis of FTOC-der ived  N K  cells. HLA-A2-  
C D 3 4 + l i n  - FL sorted cells were microinjected into HLA-A2 + thymic 
fragments. After 15 d in culture, the thymic fragments were dispersed 
and 2-5 x 104 cells were cultured as described in Materials and Methods 
and then subjected to two-color analysis using a FACScan | The  quad- 
rants were set to include 95% of the isotype matched FITC and PE con- 
t rol  mAbs. 

constitution, whereas >90% of the mice transplanted with 
FT alone did not exhibit T cell reconstitution. However, it 
was also reported that <10% of the SCID mice transplanted 
with FT alone exhibited long-term thymopoiesis and these 
thymi contained the BM-like areas, similar to when FL and 
FT are transplanted together. Our observation of HPP-CFC 
in the FT reinforces the notion that this organ contains 
primitive, possibly MHPs. We have previously shown that 
HPP-CFC, an early progenitor compartment, is enriched 
in the CD34SnghtCD38-CD33+lin - population of FL cells 
(14). In this study, we observed a low, but detectable number 
of HPP-CFC and LPP-CFC in the FT, which is consistent 
with the rarity of CD34bnghtCD38-1in - thymocytes that are 
CD33-/a,n. The phenotypic profile of these cells as well as 

6O 

�9 FTOC 
[]  CONTROL 

10 2 0 4  

p ^ ' r l  O 

Figure 6. Cytotoxic activity ofFTOC-der ived  N K  cells. Day 15 FTOCs 
injected with CD34+lin - FL cells were dispersed and expanded in vitro 
as described in Materials and Methods. The cells were then assayed in tripli- 
cate wells for cytotoxic activity against K562 cell line at the indicated 
effector/target ratios. The control is a N K  clone derived from peripheral 
blood (CD56 + C D t 6  + C D 3 - ) .  
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the low number of HPP-CFC present in the FT strongly 
suggest that the CD34bn~htCD38-1in - thymic population 
might contain progenitors for all the hematopoietic lin- 
eages present in the human thymus. To investigate this pos- 
sibility requires the isolation and direct functional analysis 
of CD34bnghtCD38-lin- thymic population, which was, 
however, prevented by the paucity of these cells. Therefore, 
we cannot yet conclude that this thymic subset displays 
pluripotent hematopoietic activity. 

The existence of an intrathymic cell population with a 
phenotype of MHPs has also been found in the mouse. A 
Thy-ll~176 population (CD4 l~ precursor) in the adult 
mouse thymus (32), with a phenotype that resembles that 
of murine hematopoietic stem cells as identified by several 
groups in the murine BM (33, 34). The thymic CD4 l~ 
precursors differentiated into T and dendritic cells following 
intrathymic injection and into B cells after intravenous injec- 
tion in congenic recipients (35, 36), but, in contrast with 
Thy-l~~176 BM cells, they are not totipotent because 
they did not generate all the hematopoietic lineages. A re- 
cent report shows the presence of a c-kit+Thy-ll~ cells 
in the adult murine thymus (37), that generates T, B, and 
NKI.1 + cells after intravenous injection, but no myeloid and 
erythroid cells were detected, suggesting that this popula- 
tion is committed to the lymphoid lineages. Since these studies 
only analyzed the adult thymus, they do not preclude the 
presence of MHP in the FT. It might be possible that early 
in ontogeny, the thymus is seeded with MHP. During later 
fetal stages and after birth, these cells may recede and bipo- 
tent (giving rise to T and dendritic cells), but no pluripo- 
tent, hematopoietic precursors would function as progenitors 
for T and non-T thymic cells. 

The presence of primitive hematopoietic progenitor in the 
thymus raises the possibility that the different hematopoietic 
lineages found in the thymus can be derived from a common 
precursor. In that case, the thymic microenvironment should 
be permissive to the development of multilineage progeny 
from hematopoietic progenitors. Indeed, here it is demon- 
strated that, in the absence of exogenous cytokines, the FTOC 
system provides the signals necessary to support the differen- 
tiation of purified immature CD34+lin - FL cells into all 
members of the lymphoid lineages, T, B, and NK cells and 
into myelomonocytic cells. 

The kinetics of development of the different lineages in 
the FTOC were different. The number of myelomonocytic 
cells peaks at early time points in culture and is followed by 
the migration of these cells out of the thymic fragments and 
an increase of the number of lymphoid cells within the thymic 
fragments. It is important to stress the fact that no exoge- 
nous growth factors were added to the FTOC. Thus, the 
in vitro maturation of myeloid cells was presumably sustained 
by myeloid differentiation factors produced in FTOC. This 
is very reminiscent of the intrathymic reconstitution of lethally 
irradiated mice with purified mouse stem cells, where it was 
observed that, in the first stages, thymi were repopulated with 
the donor-derived myeloid cells, then as their numbers went 
down, the donor T cells started increasing (38). An interesting 
question derived from these observations is whether the de- 

velopment of MHP cells into T cells in the thymus requires 
a prior generation of myeloid cells. It can be hypothesized 
that replenishment of thymic accessory cells, such as den- 
dritic cells and monocytes, might have a positive influence 
on the development of T cell progenitors. In addition, the 
finding that FTOC supports myelopoiesis is consistent with 
the reported production by thymic epithelial cells of mul- 
tiple cytokines associated with the growth of myeloid cells 
(39-41) as well as the capacity of these cells to support my- 
eloid cell growth (42). 

That the thymus can support the development of NK and 
B cells has not before been appreciated. It has been previ- 
ously shown that the thymus contains not only mature and 
functional NK cells (6), but also NK precursors (CD56- 
CD16-) (43), suggesting that NK development might take 
place intrathymically. This idea is strongly supported by our 
results, showing that human FTOC induces in vitro differen- 
tiation of FL MHPs into mature NK cells. Moreover, freshly 
isolated FL MHPs did not display cytotoxic activity, demon- 
strating that their differentiation into FTOC is required for 
the acquisition of functional capabilities. Human thymic B 
cells have been shown to be phenotypically and functionally 
distinct from B cells derived from peripheral immune organs, 
since 50% of thymic B cells express CD2 and CD5 and they 
are unresponsive to anti-CD40 mAbs (8, 9). Here, we dem- 
onstrate that the FTOC supports the in vitro differentiation 
of CD34+lin - FL cells into functionally mature B cells, 
which can be induced in vitro to produce IgM and IgG. Al- 
together, our data support that the thymic B cell compart- 
ment is not derived from circulating B cells, and it might 
be generated from MHPs seeding the thymus. 

An important question arising from our studies is why 
the thymic microenvironment is devoted to preferentially sup- 
port T cell development, despite its intrinsic capability to 
support the development of other hematopoietic lineages. It 
can be proposed that the developing T cells in the FT may 
influence their own differentiation by controlling the devel- 
opment of hematopoietic precursors into other lineages. In 
fact, we show that the microinjection of FL CD34+lin - 
cells into fresh FT fragments that were undepleted of endog- 
enous thymocytes, resulted in a rapid decrease of myeloid pro- 
genitors, while the short-term culture of the same cells in 
the presence of cytokines increased the number of progen- 
itors. Therefore, the presence of T cells in the thymus can 
inhibit extensive in vitro myelopoiesis. This inhibitory effect 
could in part be due to T cell derived factors such as IL-4 
and IFN-3', which are constitutively expressed in the human 
thymus (44, 45) and strongly inhibited the production of 
myeloid differentiation factors G-CSF and GM-CSF by IL- 
l-stimulated thymic epithelial cells (40, 46). In addition, 
IFN-3" induces HLA-DR expression and upregulates inter- 
cellular adhesion molecule 1 (ICAM-1) expression on thymic 
epithelial cells (40). These events might positively influence 
T cell development. Thus, developing thymic T cells and the 
thymic stroma might cooperate to regulate cytokine produc- 
tion that control further development of myeloid cells in the 
physiologic thymic environment. Our FTOC system provides 
the opportunity to test this hypothesis. 
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