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ABSTRACT Previous studies using in vitro cell culture systems have shown the role of the 
dynamin-related GTPase Opa1 in apoptosis prevention and mitochondrial DNA (mtDNA) 
maintenance. However, it remains to be tested whether these functions of Opa1 are physio-
logically important in vivo in mammals. Here, using the Cre-loxP system, we deleted mouse 
Opa1 in pancreatic beta cells, in which glucose-stimulated ATP production in mitochondria 
plays a key role in insulin secretion. Beta cells lacking Opa1 maintained normal copy numbers 
of mtDNA; however, the amount and activity of electron transport chain complex IV were 
significantly decreased, leading to impaired glucose-stimulated ATP production and insulin 
secretion. In addition, in Opa1-null beta cells, cell proliferation was impaired, whereas apop-
tosis was not promoted. Consequently, mice lacking Opa1 in beta cells develop hyperglyce-
mia. The data suggest that the function of Opa1 in the maintenance of the electron transport 
chain is physiologically relevant in beta cells.

INTRODUCTION
Mitochondria are highly dynamic organelles that continuously un-
dergo fusion and division in many cell types (Rube and van der Bliek, 
2004; Okamoto and Shaw, 2005; Chan, 2006; Cerveny et al., 2007; 
Hoppins et al., 2007; Westermann, 2008; Molina et al., 2009; 
Soubannier and McBride, 2009; Scott and Youle, 2010). A balance 
between mitochondrial fusion and division is critical for maintaining 

normal mitochondrial structure. Mitochondrial dynamics is regu-
lated by at least three dynamin-related GTPases, including Opa1, 
mitofusin, and Drp1. Whereas Opa1 and mitofusin mediate mito-
chondrial fusion, Drp1 regulates division. Highlighting the impor-
tance of mitochondrial fusion and division in human health, defects 
in these dynamin-related proteins cause human diseases such as 
dominant optic atrophy for Opa1, Charcot-Marie-Tooth disease 
type 2A for mitofusin 2, and a developmental defect for Drp1 
(Benard and Karbowski, 2009).

Mammalian Opa1 has been studied in in vitro cell culture sys-
tems and suggested to play roles in a variety of processes, including 
apoptosis prevention and mitochondrial DNA (mtDNA) mainte-
nance. Opa1 is associated with the inner membrane in the inter-
membrane space of mitochondria (Olichon et al., 2003; Griparic 
et al., 2004). It has been suggested that homotypic interactions 
between a yeast homologue of Opa1, Mgm1p, on opposite mem-
branes mediate mitochondrial fusion (Meeusen et al., 2006). Al-
though Opa1 is located in the inner membrane, Opa1 also regulates 
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trol mice (Figure 1B). These results demonstrate that most beta cells 
in RIP2-Opa1KO mice are Opa1 null.

Electron microscopy revealed that mitochondria in Opa1-deficient 
beta cells are highly fragmented compared with the short tubules 
observed in littermate control mice (Figure 1C). Quantitative analy-
sis showed that mitochondria became shorter in Opa1KO beta cells 
(Figure 1D). In addition, cristae were found to be wider in RIP2-
Opa1KO mitochondria than in control mitochondria (Figure 1C, 
bottom). The width of the cristae junction increased by ∼40% in 
RIP2-Opa1KO mice (Figure 1E). In contrast, volume densities of mi-
tochondria were unaffected in RIP2-Opa1KO mice (Figure 1F). Our 
data indicate that Opa1 is required for the morphology of mito-
chondria in beta cells. Consistent with our findings, a previous study 
has shown that reduced levels of Opa1 block mitochondrial fusion 
in insulin-secreting INS1 cells (Twig et al., 2009).

RIP2-Cre is also known to express in the hypothalamus, which 
regulates food intake and body weight. We observed similar body 
weight, adiposity, lean content, food intake, and locomotion in con-
trol (RIP2-Cre Opa1flox/+) and RIP2-Opa1KO mice (RIP2-Cre 
Opa1flox/−) at 8–12 wk (Supplemental Figure S2). To minimize possi-
ble hypothalamic effects, we used 8- to 12-wk-old animals in all ex-
periments except in analysis of newborn mice.

RIP2-Opa1KO mice are glucose intolerant
Next we determined whether loss of Opa1 in beta cells affects glu-
cose homeostasis. RIP2-Opa1KO mice showed significantly higher 
blood glucose levels than littermate control mice under both fasted 
and random-fed conditions (Figure 2A). To further characterize glu-
cose homeostasis, we examined the ability of RIP2-Opa1KO and 
control mice to dispose of a glucose load, using a glucose tolerance 
test. Mice were fasted for 14 h and then subjected to intraperitoneal 
injection of glucose. We measured blood glucose levels at different 
time points after injection (Figure 2B). RIP2-Opa1KO mice had 
higher blood glucose levels that took longer to return to normal 
levels compared with those in littermate control mice. These results 
indicate that RIP2-Opa1KO mice are intolerant to glucose.

Glucose intolerance could result from defects in beta cells (e.g., 
compromised insulin secretion) and defects in insulin-responsive 
peripheral tissues (e.g., insulin resistance in skeletal muscle, liver, 
and adipocytes). Because we disrupted Opa1 in beta cells, we pre-
dicted that peripheral tissues would take up glucose normally after 
insulin stimulation in RIP2-Opa1KO mice. We confirmed this predic-
tion using an insulin tolerance test. We measured blood glucose 
levels after intraperitoneal injection of insulin and found that RIP2-
Opa1KO and control mice similarly respond to insulin and decreased 
glucose levels with indistinguishable kinetics (Figure 2C).

Because beta cells control glucose homeostasis by secreting 
insulin, we examined insulin response in RIP2-Opa1KO mice. We 
injected glucose intraperitoneally and measured the blood insulin 
levels at different time points. Littermate control mice showed 
increased blood insulin levels after glucose injection (Figure 2D). 
In contrast, RIP2-Opa1KO mice demonstrated virtually no in-
crease in blood insulin levels (Figure 2D). We noticed that the 
relative insulin levels were slightly decreased following glucose 
injection in RIP2-Opa1KO mice, and this decrease may be due to 
insulin uptake by peripheral tissues after glucose injection. Be-
cause glucose levels slowly went back to the basal level in glu-
cose tolerance tests in RIP2-Opa1KO mice (Figure 2B), we sus-
pect that RIP2-Opa1KO mice can still slowly secrete insulin in 
response to glucose. Consistent with this idea, steady-state levels 
of blood insulin were decreased in RIP2-Opa1KO mice but not 
significantly different from control mice (control, 0.1 ± 0.09 ng/ml; 

fusion of the outer membrane, probably through interactions with 
the outer membrane proteins, mitofusins (Sesaki et al., 2003; Cipolat 
et al., 2004). Reduced mitochondrial fusion decreases oxidative 
phosphorylation (Chen et al., 2005, 2010). Although the underlying 
mechanisms are largely unknown, the loss of mtDNA is proposed as 
a possible reason (Chen et al., 2010). In addition to mitochondrial 
fusion, Opa1 also controls the structure of inner membrane cristae 
and thereby the release of cytochrome c during apoptosis (Olichon 
et al., 2003; Griparic et al., 2004; Frezza et al., 2006; Meeusen et al., 
2006). However, studies focusing on the role of Opa1 in mammalian 
tissues have been limited, as homozygous mutations of Opa1 lead 
to embryonic lethality in mice, and mice carrying its heterozygous 
mutations show normal phenotypes except for the degeneration of 
optic nerves in old animals (Supplemental Figure S1) (Alavi et al., 
2007; Davies et al., 2007). Therefore the physiological roles of Opa1 
are virtually unknown in most tissues.

In this study, to investigate the physiological role of Opa1 in 
mammals, we generated a conditional allele using the Cre-loxP sys-
tem. We focused pancreatic beta cells since mitochondrial oxidative 
phosphorylation plays key roles in glucose homeostasis in this cell 
type (Wallace, 1999; Maechler and Wollheim, 2001; Lamson and 
Plaza, 2002; Rolo and Palmeira, 2006; Wikstrom et al., 2007). When 
glucose enters beta cells, it is metabolized through glycolysis and 
mitochondrial oxidative phosphorylation to produce ATP (MacDon-
ald et al., 2005; Maechler and de Andrade, 2006; Fujimoto et al., 
2007). Rising ATP levels cause closure of ATP-sensitive potassium 
channels and depolarization of the plasma membrane, leading to 
the opening of voltage-gated calcium channels and induction of 
insulin granule exocytosis. During ATP production, electron trans-
port chain (ETC) complexes also generate reactive oxygen species 
(ROS) (Wallace and Fan, 2009). Although ROS function as signaling 
molecules, excess ROS can cause apoptosis in beta cells and are 
suggested to contribute to the pathogenesis of type 2 diabetes. 
Therefore it is critical to control the functional competence of mito-
chondria to protect against diabetes. Here, using a new mouse 
model, we show that mice lacking Opa1 in beta cells develop hyper-
glycemia due to defects in ETC complex IV without losing mtDNA.

RESULTS
Aberrant mitochondrial structure in Opa1-deficient 
beta cells
Opa1 is encoded by a single gene that undergoes alternative 
splicing and partial proteolytic processing. To identify Opa1 iso-
forms expressed in pancreatic beta cells, we took advantage of the 
five known Opa1 isoforms expressed in mouse embryonic fibro-
blasts (MEFs): L1, L2, S3, S4, and S5 (Figure 1A) (Merkwirth et al., 
2008; Song et al., 2009). L1 and L2 are uncleaved forms, whereas 
S3–S5 are proteolytic products of the long (L) forms. Both the un-
cleaved and cleaved forms are necessary for Opa1 function. We 
found that these five Opa1 isoforms are also expressed in islets, in 
which beta cells are predominant (Figure 1A). Of interest, the rela-
tive expression level of each isoform was different between the 
two cell types: whereas L2 is the major form in MEFs, S5 is domi-
nant in beta cells.

To delete Opa1 in pancreatic beta cells, we introduced loxP sites 
into the Opa1 gene (Supplemental Figure S1) and crossed 
Opa1flox/flox mice with Opa1+/− mouse strains expressing Cre recom-
binase under the control of the rat insulin promoter (RIP2-Cre 
Opa1+/−). RIP2-Cre is dominantly expressed in beta cells and has 
been used in many studies (Postic et al., 1999). Levels of all the five 
isoforms of Opa1 decreased by ∼90% in islets isolated from RIP2-
Opa1 knockout (KO) mice compared with those from littermate con-
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and RIP2-Opa1KO, 0.087 ± 0.01 ng/ml; 
n ≥ 13).

Impaired cell proliferation in 
Opa1-deficient beta cells
To understand the reason for the altered in-
sulin responses in RIP2-Opa1KO mice, we 
determined whether Opa1 loss in beta cells 
affects islet size. We performed immunohis-
tochemisty on pancreas sections with insulin 
antibodies for beta cells and glucagon anti-
bodies for alpha cells at 8–12 wk. Beta cell 
islet size (insulin-positive area) was de-
creased in RIP2-Opa1KO mice compared 
with littermate controls (Figure 3, A and B). 
In addition, the density of the islets was also 
decreased by ∼60% in adult RIP2-Opa1KO 
mice (Figure 3C).

The reduction in islet size in RIP2-
Opa1KO mice may result from decreased 
cell proliferation and/or increased apopto-
sis. We first examined cell proliferation in 
adult (8–12 wk) and newborn mice (1 wk) 
using immunofluorescence with antibod-
ies against Ki67, a marker for cell prolifera-
tion. When we examined adult pancreas 
specimens, indistinguishable staining pat-
ters for the proliferation markers were ob-
served in littermate control and RIP2-
Opa1KO mice (Figure 4, A and B). In 
contrast, when we examined samples from 
newborn mice, we found that the number 
of Ki67-positive beta cells decreased by 
∼60% in RIP2-Opa1KO mice (Figure 4, A 
and B). Consistent with these results, the 
average area of the beta cell islets 
(Figure 4C) and the beta cell–to–alpha cell 
ratio (Figure 4D) were reduced in adult 
RIP2-Opa1KO mice but not in newborn 
mice. Our data indicate that postnatal pro-
liferation of beta cells is compromised in 
RIP2-Opa1KO mice and suggest that the 
altered insulin response in RIP2-Opa1KO 
mice at least partially resulted from re-
duced islet mass.

FIGuRE 1: Loss of Opa1 results in fragmentation of mitochondria and alternation of cristae 
structure in pancreatic beta cells. (A) Wild-type MEFs and control islets were analyzed by 
immunoblotting using Opa1 antibodies. MEFs have been shown to mainly express five Opa1 
isoforms (L1, L2, S3, S4, and S5) (Song et al., 2007; Merkwirth et al., 2008). Islets also expressed 
these five isoforms with different expression levels. Whereas isoform L2 demonstrated the 
highest levels in MEFs, S5 isoform was dominant in islets. (B) Islets isolated from control and 
RIP2-Opa1KO (KO) mice were subjected to immunoblotting using antibodies to Opa1. Tim23, a 
mitochondrial inner membrane protein, was used as a control. (C) EM analysis of control and 
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Second, terminal deoxynucleotidyl transferase–mediated dUTP 
nick end labeling (TUNEL)–positive staining was rarely observed in 
RIP2-Opa1KO and littermate control mice at all ages examined (Fig-
ure 4, E and F). Consistent with these results, neither activated form 
of caspase-3 (17 and 19 kDa) nor a cleaved form of PARP (89 kDa) 
was exhibited by RIP2-Opa1KO islets (Figure 4G). Given that Opa1 
has been shown to function as an antiapoptotic factor (Olichon 
et al., 2003; Griparic et al., 2004), it was surprising that we did not 
observe increased apoptosis in Opa1-deficient beta cells. It is pos-
sible that Opa1 has different roles in apoptosis in different cell types. 
Consistent with our findings, a previous study showed that loss of 
Opa1 function did not increase apoptosis in vivo in Caenorhabditis 
elegans (Kanazawa et al., 2008).

Opa1 facilitates normal glucose-stimulated ATP production 
in beta cells
To further investigate the mechanisms underlying the altered insulin 
responses in RIP2-Opa1KO mice, we isolated islets and determined 
their insulin content and ability to secrete insulin in response to glu-
cose. We found that islets isolated from RIP2-Opa1KO mice con-
tained reduced amounts of insulin (∼30% of control islets) (Figure 5A). 
Then, we examined insulin secretion by normalizing secreted insulin 
levels relative to total insulin levels. Whereas RIP2-Opa1KO and 
control islets secreted similar percentages of insulin at nonstimula-
tory glucose levels (3 mM), RIP2-Opa1KO islets showed decreased 
insulin secretion at stimulatory glucose levels (11 mM) (Figure 5B). 
Further supporting this notion, glucose-stimulated calcium influx, 
which is a downstream event of mitochondrial ATP production, was 
greatly reduced at 11 mM glucose, but not 3 mM glucose, in RIP2-
Opa1KO islets (Figure 5C). These data suggest that both reduced 
insulin contents and impaired glucose-stimulated insulin secretion 
also contribute to defects in insulin responses in RIP2-Opa1KO 
mice.

Because glucose-stimulated ATP production by mitochondria 
stimulates insulin secretion in beta cells, we isolated islets and mea-
sured ATP content. ATP levels were normalized to protein levels to 
exclude the effect of islet size. At nonstimulatory glucose levels 
(3 mM), control and RIP2-Opa1KO islets showed indistinguishable 
levels of ATP (Figure 6A), indicating that loss of Opa1 does not 
cause gross changes in intracellular ATP levels. When incubated at 
stimulatory glucose levels (11 mM), control islets increased ATP lev-
els by approximately fivefold. However, glucose-stimulated ATP 
production was significantly compromised in Opa1-deficient beta 
cells (Figure 6A). Further supporting defects in mitochondrial oxida-
tive phosphorylation, RIP2-Opa1KO islets were impaired in oxygen 
consumption rates in response to glucose. In control islets, oxygen 
consumption rates were increased upon addition of glucose and 
decreased to low levels by oligomycin, an inhibitor of ETC complex 
V. However, glucose-stimulated oxygen consumption rates were sig-
nificantly lower in RIP2-Opa1KO islets (Figure 6B).
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FIGuRE 2: RIP2-Opa1KO mice show hyperglycemia and impaired 
insulin responses. (A) Blood glucose levels were measured in mice that 
were fasted for 14–16 h or randomly fed using a glucose meter (n ≥ 
12). (B) Glucose tolerance test. Mice were fasted for 14–16 h and 

subjected to intraperitoneal injection of glucose (1.5 mg/g body 
weight). Blood glucose levels were measured at the indicated times 
(n ≥ 11). (C) Insulin tolerance test. After fasting for 14–16 h, mice were 
subjected to intraperitoneal injection of insulin (0.5 U/kg body 
weight). Blood glucose concentrations were determined at different 
time points (n ≥ 11). (D) Blood insulin levels after intraperitoneal 
glucose injection. Mice between 8 and 12 wk of age were fasted 
for 14–16 h and subjected to intraperitoneal injection of glucose 
(1.5 mg/g body weight). Blood insulin concentrations were 
determined at the indicated time points (n = 15).
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the size of each ETC complex using glycerol density gradient cen-
trifugation. The sizes of complexes IV and I were similar in control 
and RIP2-Opa1KO islets (Figure 7E). Similarly, the other complexes 
(i.e., II, III, and V) were also normally assembled in RIP2-Opa1 KO 
islets (Figure 7E).

DISCUSSION
The dynamin-related GTPase Opa1 controls mitochondrial fusion 
and inner membrane cristae structure. In this study, we showed that 
Opa1 deficiency in pancreatic beta cells causes defects in glucose-
stimulated ATP production. We also found that Opa1 is important 
for maintenance of ETC complex IV in beta cells. In the absence of 
Opa1, complex IV levels were decreased, and consequently its ac-
tivity was reduced in RIP2-Opa1KO islets. Decreased complex IV 
activity accounts for defects in glucose-stimulated ATP production, 
oxygen consumption, calcium dynamics, and insulin secretion. Be-
cause the basal levels of ATP remained unaltered in the absence of 
Opa1, the reduced complex IV levels are apparently sufficient to 
support basal ATP levels, but the extra “load” of secretion in re-
sponse to higher glucose concentrations likely overtaxes the Opa1-
null mitochondria. Therefore we suggest that the effect of mito-
chondrial morphology on glucose-stimulated ATP production is 
mediated by the mitochondria’s inability to meet the increased 

Opa1 is required for the maintenance of complex IV
The presence of defects in glucose-stimulated ATP production in 
RIP2-Opa1 KO islets prompted us to analyze the levels of subunits 
of ETC complexes (complexes I–V). We found that the subunits of 
complex IV (subunits I, IV, and Vb) were significantly decreased in 
RIP2-Opa1 KO islets (Figure 7A). In addition, levels of NDUFB8 (a 
subunit of complex I) were also decreased, albeit to a lesser extent. 
In contrast, subunits of complexes II, III, and V and cytochrome c 
remained unaffected in RIP2-Opa1 KO islets (Figure 7A). Consistent 
with decreased complex IV levels, activity was also decreased in 
RIP2-Opa1KO islets (Figure 7B). However, complex I activity re-
mained intact in RIP2-Opa1 KO mice (Figure 7B). These data indi-
cate that Opa1 loss leads to a reduction in the amount and activity 
of complex IV.

To test whether the decreased amounts of complexes I and IV 
resulted from a reduction in mtDNA, we measured its copy number 
using quantitative PCR. We found that control and Opa1-deficient 
beta cells contain ∼200 copies of mtDNA per nuclear genome (Fig-
ure 7C). Consistent with this result, Southern blot analyses also 
showed similar amounts of mtDNA in control and RIP2-Opa1KO is-
lets (Figure 7D). In addition, although the amounts decreased, sub-
units of complexes I and IV were assembled normally. We solubi-
lized isolated islets using a mild detergent—digitonin—and analyzed 

FIGuRE 3: Opa1 deficiency causes reduced islet size. (A) Immunofluorescence of pancreas sections prepared from adult 
mice (8–12 wk old) using antibodies to insulin for beta cells (red) and glucagon for alpha cells (green). (B) Distribution of 
beta cell islet size in adult. Insulin-positive area was determined using ImageJ software (n = 3). (C) The number of islets 
in pancreas sections was determined to calculate their density (n = 3).
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demand of secretion due to decreased level and 
activity of complex IV. Consistent with our find-
ings, a previous study showed that knockdown 
of Opa1 in cultured cells causes a reduction in 
oxygen consumption (Chen et al., 2005).

In addition to pancreatic beta cells, RIP2-Cre 
is also known to express in the hypothalamus. 
We measured animal behaviors and physiology 
because we sought to assess the effect of Opa1 
deletion on the hypothalamus, which controls 
food intake and therefore fat content in the 
body. We observed no differences in food in-
take, fat content, and locomotive activity be-
tween control and RIP2-Opa1KO mice. There-
fore the effect of Opa1 deficiency on the 
hypothalamus is negligible. The data also sug-
gest that reduced insulin secretion and hyperg-
lycemia did not affect general animal physiology 
in RIP2-Opa1KO mice.

It would be interesting to speculate whether 
the inability to respond to high glucose and re-
duction in beta cell mass occur in parallel during 
the lifespan of RIP2-Opa1KO mice. We found 
that young RIP2-Opa1KO mice have a normal 
beta cell mass but exhibit significantly higher 
blood glucose levels (control, 130 ± 3 mg/dl; 
and RIP2-Opa1KO, 173 ± 10 mg/dl; n ≥ 27), sug-
gesting that the stimulus–secretion coupling de-
fect may arise first. During postnatal growth, 
beta cell mass did not increase due to defects in 
cell proliferation, further contributing to hyperg-
lycemia in adult RIP2-Opa1KO mice.

How the loss of Opa1 affects complexes IV 
and I remains to be determined. One possible 
hypothesis is that a reduction in complexes IV 
and I may result from reduced levels of mtDNA. 
Because mtDNA encodes 13 subunits of ETC 
complexes (7 subunits of complex I, 1 subunit of 
complex III, 3 subunits of complex IV, and 
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cells. In addition, levels of other complexes, such as complexes III 
and V, which contain subunits encoded by mtDNA, were unaffected 
in RIP2-Opa1KO islets. Furthermore, subunits IV and Vb of complex 
IV, which are encoded by nuclear DNA, also decreased. Therefore 
it is unlikely that the reduced levels of complexes IV and I simply 
result from decreased mtDNA levels.

Second, fragmentation of mitochondria due to fusion defects 
may produce an uneven distribution of mtDNA. In this hypothesis, 
total amounts of mtDNA in cells remain unchanged, but mtDNA 
amounts per individual mitochondria vary. Some mitochondria have 
more mtDNA, whereas others contain no or reduced mtDNA cop-
ies. Because ETC subunits are encoded by both nuclear DNA and 
mtDNA, improper ratios of ETC subunits will be generated and as-
sembly will be altered, likely affecting oxidative phosphorylation 
(Chen et al., 2010). However, we found that ETC complexes are as-
sembled normally in the absence of Opa1. In addition, this hypoth-
esis is unable to explain our observation that complexes IV and I 

2 subunits of complex V), decreases in its copy number could lower 
ETC complex levels. Consistent with this idea, the loss of mitofusins, 
which are required for mitochondrial outer membrane fusion, has 
been shown to cause a decrease of mtDNA levels and impaired 
respiration in skeletal muscle (Chen et al., 2010). However, we found 
similar copy numbers of mtDNA in control and Opa1-deficient beta 

FIGuRE 5: Deletion of Opa1 causes impaired insulin secretion in mice 
and in isolated islets. (A) Insulin contents in isolated islets were 
determined and normalized to total protein amounts (n = 3). (B) Insulin 
secretion from isolated islets. Isolated islets were incubated with 3 
and 11 mM glucose for 1 h. Secreted insulin levels were determined 
and normalized to total insulin contents (n = 3). (C) Isolated islets were 
stained with 2 μM Fura 2-AM and stimulated with 3 and 11 mM 
glucose (n > 4). The 340 nm/380 nm fluorescence ratio was measured 
under a fluorescence microscope at 8 min after stimulation.
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FIGuRE 7: RIP2-Opa1KO islets contain decreased complex IV level. (A) Isolated islets were subjected to 
immunoblotting using antibodies against ETC complexes (NDUFB8 for complex I, FeS for complex II, Core2 for complex 
III, subunits I, IV, and Vb for complex IV, α subunit for complex V, and cytochrome c). Antibodies against Tim23 and actin 
were used as controls. Band intensity was quantitated and normalized to control samples (n = 3). (B) Activities of 
complexes I and IV in RIP2-Opa1KO islets were normalized to those in controls (n = 3). (C) mtDNA copy number relative 
to nuclear genome in isolated islets was determined using quantitative PCR. (D) Southern blotting was performed for 
mtDNA and nuclear DNA (nDNA). DNA was extracted from control (C) and RIP2-Opa1KO (K) islets. The expected sizes 
of mtDNA and nDNA are 16.3 and 6.3 kbp, respectively. (E) Isolated islets were solubilized with digitonin and analyzed 
by density gradient centrifugation, followed by immunoblotting using the indicated antibodies. Migration patterns of 
ETC components are shown (n = 3). Molecular weights are shown in kilodaltons.
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Opa1KO mice (RIP2-Cre Opa1flox/−) and littermate controls (RIP2-
Cre Opa1flox/+) at 8–12 wk in all of the experiments.

Antibodies
The following antibodies were used in this study: Opa1 (612607; BD 
Biosciences, Franklin Lakes, NJ), Tim23 (611222; BD Biosciences), 
insulin (4011–1; Millipore, Billerica, MA), glucagon (AB932; Chemi-
con, Temecula, CA), Ki67 (ab15580; Abcam, Cambridge, MA); PARP 
(9542; Cell Signaling Technology, Beverly, MA), caspase-3 (9665; 
Cell Signaling Technology), actin (sc-1615; Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), OXPHOS cocktails for NDUFB8, FeS, Core2, 
subunit I, and subunit α (MS604; MitoSciences, Eugene, OR), sub-
unit IV (MS407, MitoSciences), subunit Vb (MS410, MitoSciences), 
and cytochrome c (556432, BD Biosciences).

Electron microscopy
Pancreas tissues were dissected and fixed in 3% paraformaldehyde, 
1.5% glutaraldehyde, 2.5% sucrose, and 100 mM cacodylate, pH 
7.4, for 2 d. Samples were processed, sectioned, and observed as 
described (Wakabayashi et al., 2009). Volume densities of mitochon-
dria were calculated using a point-counting method with a grid con-
sisting of 400 grids.

Measurements of food intake, adiposity, lean content, 
and locomotion
Daily food intake data were acquired during a 4-d experimental pe-
riod using an Oxymax Equal Flow System (Columbus Instruments, 
Columbus, OH). Fat and lean contents were determined using an 
EcoMRI apparatus (Echo Medical Systems, Houston, TX). Novelty-
induced activity in the open field was assessed over a 30-min period 
using activity chambers with infrared beams (San Diego Instruments, 
San Diego, CA). Horizontal and vertical activities were automatically 
recorded as described previously (Pletnikov et al., 2008).

Glucose and insulin measurement in vivo
Tail vein blood glucose concentrations were immediately deter-
mined using a OneTouch UltraMini Meter (Lifescan, Milpitas, CA). 
Nonfasting blood glucose concentrations were measured between 
10 a.m. and 12 p.m. in mice between 8 and 12 wk of age. Fasting 
blood glucose concentrations were obtained in the morning after 
14–16 h of overnight starvation in mice between 8 and 12 wk of 
age.

Glucose tolerance tests were performed at 8–12 wk of age. Mice 
were fasted for 14–16 h and subjected to intraperitoneal injection of 
glucose (1.5 mg/g body weight). Blood glucose concentrations 
were determined using a OneTouch UltraMini Meter. Insulin toler-
ance was performed at 8–12 wk of age. After fasting for 14–16 h, 
mice were subjected to intraperitoneal injection of insulin (0.5 U/kg 
body weight). Blood glucose concentrations were determined at 
different time points.

To measure blood insulin levels after glucose injection, mice be-
tween 8 and 12 wk of age were fasted for 14–16 h and subjected to 
intraperitoneal injection of glucose (1.5 mg/g body weight). Plasma 
was obtained by centrifuging blood collected from the tail vein. In-
sulin concentration in the plasma was determined using an ultrasen-
sitive mouse insulin enzyme-linked immunosorbent assay (ELISA) kit 
(Crystal Chem, Downers Grove, IL).

Immunohistochemistry
Pancreas tissues were dissected, fixed in 4% paraformaldehyde 
overnight at 4°C, and embedded in paraffin. Paraffin sections were 
deparafinized, rehydrated, and heated in a microwave in 10 mM 

were specifically affected. A third hypothesis is that the partial re-
lease of cytochrome c from the inner membrane cristae destabilizes 
complex IV. Supporting this idea, cytochrome c binds to complex IV 
and is required for the stability and activity of this complex (Vempati 
et al., 2009). Because the closed morphology of cristae junctions 
maintains cytochrome c inside the inner membrane cristae (Frezza 
et al., 2006), opening cristae junctions could relocate a fraction of 
cytochrome c to the intermembrane space in Opa1-null mitochon-
dria, compromising its interactions with complex IV and supercom-
plex containing complexes IV and I. It would be important to test 
these hypotheses and further understand the role of Opa1 in mito-
chondrial structure and function in future studies.

Previous reports have suggested that beta cell mitochondrial 
dysfunction is involved in type 2 diabetes (Lamson and Plaza, 2002; 
Lowell and Shulman, 2005; Prentki and Nolan, 2006). For example, 
the maintenance of normal mtDNA is critical for normal beta cell 
function, as loss of mtDNA leads to hyperglycemia in mice carrying 
beta cell–specific deletion of Tfam, which is a mitochondrial tran-
scriptional factor required for mtDNA maintenance (Silva et al., 
2000). Because mitochondrial fusion is thought to be important for 
mtDNA maintenance, we initially expected RIP2-Opa1KO mice to 
lose mtDNA. On the contrary, Opa1 loss resulted in a reduction in 
the quantity and activity of complex IV without mtDNA deficiency. 
Therefore our experiments provide a new model for mitochondrial 
diabetes. In addition, our findings also show differences in the effect 
of Opa1 loss in tissues and cultured cells. To better understand 
physiological roles of Opa1, it would be important to examine its 
function in vivo as well as in vitro. We speculate that the observed 
differences between islets and cultured cells may result from varying 
demand on glycolysis for ATP production. Moreover, we propose 
that changes in Opa1 levels may associate directly with the patho-
genesis and progression of this disease. In support of this idea, a 
recent study showed that islet Opa1 levels decrease before the on-
set of type 2 diabetes in ob/ob mouse models (Keller et al., 2008). 
Furthermore, a Goto–Kakizaki rat model for type 2 diabetes exhibits 
fragmented mitochondria with altered cristae morphology that is 
different from the normal tubular shape observed in beta cells 
(Mizukami et al., 2008). Such changes in mitochondrial morphology 
may be a consequence of defects in Opa1. This study clearly dem-
onstrates the physiological importance of Opa1 in mammals and 
provides a mechanism by which mitochondrial structure and dynam-
ics are linked to metabolism.

MATERIALS AND METHODS
Generation of knockout mice
All animal work was done according to guidelines established by 
the Johns Hopkins University Committee on Animal Care. We in-
serted a neomycin-resistant marker flanked by FRT and loxP sites 
next to exons 10 and 13, which are located in an essential GTPase 
domain. The targeting vector was transfected into C57BL/6–129/
SvEv ES cells by electroporation. G418-resistant colonies were 
screened by PCR. Targeted ES cells were injected into C57BL/6 
blastocysts to create chimeric mice. To create the null Opa1 allele, 
we crossed Flox-neo mice with EIIa-Cre transgenic mice as de-
scribed (Wakabayashi et al., 2009). In addition, upon loxP recombi-
nation, a stop codon was generated immediately after exon 9 due 
to a frame shift. To generate the conditional allele, Flox-neo mice 
were crossed with a transgenic strain that ubiquitously expresses Flp 
recombinase (Wakabayashi et al., 2009). We bred these strains with 
a wild-type strain and isolated mice heterozygous for the null or 
conditional allele but not for Cre or Flp recombinase. All mice were 
kept on a mixed C57BL/6–129/SvEv background. We used RIP2-
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Activities of electron transport chain systems
The activities of complexes I and IV were determined using the 
complex I and IV enzyme activity dipstick assay kits (MitoSciences) 
according to the manufacturer’s protocol.

Quantitative PCR for mtDNA amounts
mtDNA copy number per nuclear genome in isolated islets was 
quantitated as described (Chen et al. 2010). A Fermentas Maxima 
SYBR Green/Fluorescein qPCR Mater Mix (Thermo Fisher Scientific) 
and an iQ Cycler (Bio-Rad, Hercules, CA) were used according to 
the manufacturers’ protocols. The primers used for mtDNA were 
CCTATCACCCTTGCCATCAT and GAGGCTGTTGCTTGTGTGAC. 
For nuclear DNA (PECAM), ATGGAAAGCCTGCCATCATG and TC-
CTTGTTGTTCAGCATCAC were used.

Southern blotting
Southern blotting was performed as described (Ide et al., 2001; 
Naini and Shanske, 2007) with a few minor modifications. Briefly, 
DNA was extracted from islets using the DNeasy Blood and Tissue 
Kit (Qiagen, Valencia, CA). Then, the DNA (2 μg) was digested with 
SacI, resolved by electrophoresis, and transferred to nitrocellulose 
membrane (Amersham Hybond-N+; GE Healthcare Bio-Sciences, 
Piscataway, NJ). Hybridization was performed using the Amersham 
ECL Direct Nucleic Acid Labelling and Detection System according 
to the manufacturer’s instructions. The probe used for mtDNA cor-
responds to position 10643–11224 of the mouse mitochondrial ge-
nome, and the PCR primers corresponding to this probe were ACT-
GCTAATTGCCCTCATCT and GGGAAGACCATTTGAAGTCC. The 
probe used for nuclear DNA corresponds to position 939–1505 of 
the 18S rRNA gene, and the primers corresponding to this probe 
were ATTCGTATTGCGCCGCTAGA and AAGGGCATCACAGAC-
CTGTT.

Glycerol density gradient centrifugation
Glycerol density gradient centrifugation was performed as previ-
ously described (Tamura et al., 2009). Islets were solubilized at 
0.5 μg protein/μl in digitonin buffer (1% digitonin, 20 mM Tris-HCl 
[pH 7.5], 50 mM NaCl, 10% [vol/vol] glycerol, 0.1 mM EDTA, and 
1 mM phenylmethylsulfonylfluoride) for 20 min on ice and then cen-
trifuged at 16,100 × g for 15 min. The 200-μl supernatant was placed 
onto a 5-ml glycerol gradient (20–40%) in 20 mM Tris-HCl (pH 7.4), 
50 mM NaCl, 50 mM 6-aminohexanoic acid, 0.1 mM EDTA, 0.1% 
digitonin, and protease inhibitor cocktail and then centrifuged at 
45,000 rpm for 15 h in a SW55Ti rotor (Beckman Coulter, Brea, CA) 
at 4°C. After centrifugation, 270-μl fractions were collected from the 
top of the gradient. Proteins were precipitated with 10% TCA and 
then resolved by DS-PAGE followed by immunoblotting with 
OXPHOS antibody cocktail (MitoSciences). The band intensity in 
each fraction was normalized relative to the total intensity.

Statistical analysis
All values are means ± SEM. Results were statistically analyzed using 
the t test (*p < 0.05; **p < 0.01; ***p < 0.001).

citrate acid. After blocking in 10% goat and donkey sera diluted in 
TPBS, sections were incubated with guinea pig anti-insulin antibod-
ies (1:2000; Millipore) and rabbit anti-glucagon antibodies (1:2000; 
Chemicon). Immunocomplexes were visualized using fluorescently 
labeled secondary antibodies, including goat anti–guinea pig Alexa 
Fluor 594 (1:2000; Invitrogen, Carlsbad, CA) and donkey anti–rabbit 
Alexa Fluor 488 (1:2000; Invitrogen). Images were captured using an 
Olympus (Center Valley, PA) IX 71 microscope equipped with a Pho-
tometrics (Tucson, AZ) Cascade 512B-intensified charge-coupled 
device (CCD) camera. Islet area and size were determined using 
ImageJ software.

Insulin secretion from isolated islets
Approximately 100 isolated islets were incubated in buffer A 
(135 mM NaCl, 3.6 mM KCl, 5 mM NaH2PO4, 0.5 mM MgCl2, 
1.5 mM CaCl2, 2 mM NaHCO3, 0.07% bovine serum albumin [BSA], 
and 10 mM HEPES, pH 7.4) containing 3 mM glucose for 1 h at 
37°C, collected by centrifugation, and incubated in buffer A con-
taining 3 or 11 mM glucose for 1 h at 37°C. After centrifugation, 
supernatant insulin levels were determined using an ultrasensitive 
mouse insulin ELISA kit (Crystal Chem). Islet protein concentration 
was determined using a Pierce BCA Protein Assay Kit (Thermo Fisher 
Scientific, Rockford, IL) and used to normalize insulin amounts.

ATP measurement
Pancreatic islets were isolated from mutant and control mice us-
ing standard collagenase digestion followed by purification 
through a Ficoll gradient (Hussain et al., 2006). Islets were hand 
picked under light microscope and cultured in RPMI-1640 con-
taining 5.5 mM glucose and 10% fetal calf serum overnight in a 
humidified incubator (5% CO2) at 37°C. After preincubation with 
3 mM glucose for 1 h, islets were treated with or without 11 mM 
glucose for 5 min at 37°C (Li et al., 2003). Approximately 100 is-
lets were then collected by centrifugation, incubated with 10 μl of 
5% trichloroacetic acid (TCA) for 5 min at room temperature, and 
mixed with 90 μl of 1% Triton X-100 and 100 mM Tris-acetate, pH 
8.0. ATP amounts were determined using an Enliten ATP assay kit 
(Promega, Madison, WI).

Oxygen consumption
Measurement of oxygen consumption in isolated islets was per-
formed using a Seahorse XF24 analyzer according to the manufac-
turer’s instructions (Seahorse Bioscience, North Billerica, MA). Ap-
proximately 70 islets were suspended in modified XF assay medium 
containing 3 mM glucose and then transferred into the depressed 
chamber. To stimulate islets, 20 mM glucose was used for islet stim-
ulation. To block F1Fo-ATPase, 5 μM oligomycin was used. After the 
XF24 calibration was complete, the islet plate was placed into the 
XF24, and then the program was started. Basal respiration rates 
were used for normalization.

Calcium measurement
Isolated islets were placed in Cell-Tak–coated (BD Biosciences), 
Nunc eight-well chambered coverglasses (Thermo Fisher Scientific) 
and then loaded with 2 μM Fura 2-AM for 30 min in RPMI containing 
3 mM glucose. After washing, islets were incubated in Krebs buffer 
containing 3 mM glucose and 0.07% BSA. For islet stimulation, we 
used 3 and 11 mM glucose. The 340 nm/380 nm fluorescence ratio 
was measured using an Olympus IX81 motorized inverted micro-
scope with a 40× objective (UAPO/340, 1.35 numerical aperture), a 
Hamamatsu C9100-02 front-illuminated EM-CCD camera 
(Hamamatsu, Japan), and 3i Slidebook software.
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