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Objective: To identify the novel projections received by the cerebrospinal fluid (CSF)-
contacting nucleus from the subcortex and limbic system to understand the biological
functions of the nucleus.

Methods: The cholera toxin subunit B (CB), a retrograde tracer, was injected into
the CSF-contacting nucleus in Sprague–Dawley rats. After 7–10 days, the surviving
rats were perfused, and the whole brain and spinal cord were sliced for CB
immunofluorescence detection. The CB-positive neurons in the subcortex and limbic
system were observed under a fluorescence microscope, followed by 3D reconstructed
with the imaris software.

Results: CB-positive neurons were found in the basal forebrain, septum, periventricular
organs, preoptic area, and amygdaloid structures. Five functional areas including 46
sub-regions sent projections to the CSF-contacting nucleus. However, the projections
had different densities, ranging from sparse to moderate, to dense.

Conclusions: According to the projections from the subcortex and limbic system,
we hypothesize that the CSF-contacting nucleus participates in emotion, cognition,
homeostasis regulation, visceral activity, pain, and addiction. In this study, we illustrate
the novel projections from the subcortex and limbic system to the CSF-contacting
nucleus, which underlies the diverse and complicated circuits of the nucleus in
body regulations.

Keywords: CSF-contacting nucleus, subcortex, limbic system, projection, retrograde trace

INTRODUCTION

The cerebrospinal fluid (CSF)-contacting nucleus is a special nucleus recently identified in the
brain. It is located within the pons including the isthmic region (Song et al., 2019). The unique
characteristic of this nucleus is that its axons form bundles and go across the CSF-brain barrier
stretching into the CSF (Song and Zhang, 2018; Song et al., 2019). After injecting the tracer
CB-HRP or cholera toxin subunit B (CB) into the ventricle, only the CSF-contacting nucleus in
the brain parenchyma is labeled (Song et al., 2019). Our previous studies have demonstrated the
connections of the CSF-contacting nucleus with non-CSF-contacting neurons, glial cells, and
blood vessels (Zhang et al., 2003). It implies that the CSF-contacting nucleus may be considered
as an important structure bridging the brain and CSF, or that it plays an extremely important
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role in physiological activities. Moreover, our recent studies
reveal that this nucleus receives the projections from the
hypothalamus (Song et al., 2020b) and brainstem (Song
et al., 2020a), which implies that the CSF-contacting nucleus
participates in complex and diverse neural circuits modulating
different behaviors. The relationships with some of the life
activities such as pain (Liu et al., 2017), stress (Wu et al., 2015),
and drug addiction (Lu et al., 2011) have been already reported.

The present study aimed to identify if these CSF-contacting
nucleus functions are underpinned by monosynaptic projections
from the subcortex and limbic system. The subcortex and
limbic system are located below the cerebrum rostral to the
diencephalon. These two brain regions, which include the basal
forebrain, septum, preoptic area, amygdaloid structures, which
play important roles in modulating the body activities. For
example, the basal forebrain, septum, and amygdaloid structures
are known to modulate cognition (Talishinsky and Rosen, 2012;
Aitta-Aho et al., 2018; Chaves-Coira et al., 2018), emotion (Sah
et al., 2003; Talishinsky and Rosen, 2012; Zhang et al., 2018),
and autonomic nervous functions (Loewy, 1991; Sah et al., 2003;
Talishinsky and Rosen, 2012). The preoptic area plays essential
roles in fluid balance (Augustine et al., 2018), body temperature
regulation (Abbott and Saper, 2018;Mohammed et al., 2018), and
autonomic functions (Fassini et al., 2017).

In this study, we mapped the novel projections from the
subcortex and limbic system to the CSF-contacting nucleus by
using the retrograde tracing method. The biological functions
of the CSF-contacting nucleus can be speculated according
to the projections, which will lay the foundations for further
deeper research.

MATERIALS AND METHODS

Experimental Animals
Fifteen specific pathogen-free male Sprague–Dawley rats (weight
250 ± 50 g) were acquired from the Experimental Animal
Center of Xuzhou Medical University. Rats successfully injected
with the tracer into the CSF-contacting nucleus were used for
observation and analysis (n = 6). All animal experiments were
approved by and performed following the guidelines of the
Committee for Ethical Use of Laboratory Animals of Xuzhou
Medical University.

Retrograde Tracer Injection
The rats were first anesthetized with pentobarbital sodium
(40 mg/kg, i.p.). Then, the head of the animal was fixed
on the stereotaxic instrument (Stoelting 51700, Wood
Dale, IL, USA) and 0.2 µl of the retrograde tracer (1%
CB) solution (Cat# abs80001, Absin, China) was injected
according to the CSF-contacting nucleus stereotaxic coordinates
(Bregma: 8.24 ± 0.18 mm, Lateral: 0.09 ± 0.01 mm, Depth:
6.45 ± 0.11 mm; Song et al., 2019). A Hamilton syringe
(Hamilton Company, Switzerland) with a 33G needle tip
controlled by a microinfusion pump (KD Scientific, Holliston,
MA, USA) was used for the CB solution injections. The injections
were made for about 30 min, and the syringe was left in place for
10–15 min before retraction.

Sampling and Sectioning
After 7–10 days, the surviving rats were perfused. The rats were
first anesthetized with pentobarbital sodium (40 mg/kg, i.p.)
and then perfused with 300 ml of 0.01 M phosphate-buffered
saline (pH 7.4), followed without interruption by 300 ml of 4%
paraformaldehyde in 0.2M phosphate buffer (pH 7.4). The whole
brain and spinal cord were isolated and sectioned coronally
into 40-µm slices on a cryostat (CM1900, Leica, Germany). In
this study, only the subcortex and limbic system were captured
and analyzed.

Tracer Immunofluorescence Staining and
Image Acquisition
All the sections were subjected to CB immunofluorescence
staining. The antisera used for immunofluorescence processing
were diluted in a solution of 0.1 M PBS containing 0.3%
Triton X-100. The sections were incubated in rabbit anti-CB
primary antibody (1:600, Cat# ab34992, Abcam) for 48 h at
4◦C. Next, the slices were incubated in donkey anti-rabbit Alexa
Fluor 488 secondary antibody (1:200, Cat# A-21206, Thermo
Fisher) for 2 h in the dark at room temperature. Then, the
sections were mounted in sequence onto slides, counterstained
with 4′,6-diamidino-2-phenylindole (DAPI), and covered with
coverslips. Images of the sections of the subcortex and
limbic system were captured under a fluorescence microscope
(DM6, Leica, Germany) and confocal laser microscope (Zeiss,
Germany). The 10× lens was used to capture the positive
neurons, while the 40× lens was applied to show the
detailed structures.

Three-Dimensional Reconstruction of the
Subcortex and Limbic System Projections
The CB-positive neurons were aligned, segmented, and
registered on a common rat reference atlas (Paxinos and
Watson, 2007). The three-dimensional (3D) subcortex and
limbic system projections were reconstructed using Imaris
software version 8.4.1 (Bitplane, USA).

Statistics
SPSS 13.0 software was used for data analysis in the present
study. Data were presented as mean ± SD. The cell density of
CB-positive neurons (cell number/0.2 mm2 area) in each brain
region was calculated using Image-Pro Plus 7.0 software, and
then classified according to the following densities: <5, sparse;
6–10, moderate; and >10, dense.

RESULTS

Injection of the Tracer Into the
CSF-Contacting Nucleus
The retrograde tracer CB was injected directly into the
CSF-contacting nucleus according to the stereotaxic
coordinates (Figure 1A). The tracer produced dense
green immunofluorescence-positive staining within the
CSF-contacting nucleus (Figure 1B).
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FIGURE 1 | Injection site of cholera toxin subunit B (CB) into the
cerebrospinal fluid (CSF)-contacting nucleus (A,B). White arrow (↓): site of the
CB injection. Aq, aqueduct. Bar = 100 µm.

Cellular Morphology of the Subcortex and
Limbic System Projections
Most of the CB-positive neurons in the subcortex and limbic
system appeared round or fusiform in shape. The neurons were
of different sizes, and the processes were sparse and short. In
the anterior olfactory nucleus (AO) and magnocellular preoptic
nucleus (MCPO) of the preoptic area, the CB-positive neurons
were mainly large in size and had many processes. Among them,
1–2 processes were longer and reached towards other parts of the
brain (Figure 2).

Projection Sites of the Subcortex and
Limbic System
The retrogradely labeled neurons were located in five functional
areas including 46 sub-regions in the subcortex and limbic
system. However, their density ranged from being sparse or
moderate to strong in each functional region.

The projections from the entire subcortex and limbic
system to the CSF-contacting nucleus could be identified by
the positively labeled neurons. In the basal forebrain, nine
sub-regions had projections of the CSF-contacting nucleus. The
AO, claustrum, and accumbens nucleus shell (AcbSh) had strong
projections to the CSF-contacting nucleus (cell density: AO
15.33 ± 3.87, Cl 11.67 ± 3.44, and AcbSh 19 ± 4.86). The
endopiriform nucleus (En), ventral pallidum (VP), substantia
innominata (SI), the nucleus of the vertical limb of the diagonal
band (VDB), and nucleus of the horizontal limb of the
diagonal band (HDB) had moderate projections (cell density: En
7.06 ± 2.48, VP 7.17 ± 1.17, SI 8.83 ± 2.48, VDB 8.33 ± 2.66,
and HDB 9.67 ± 1.97), whereas the basal nucleus (B) had
sparse projections to the CSF-contacting nucleus (cell density: B
2.17± 1.17; Figure 3).

In the septum, 10 sub-regions had projections of the
CSF-contacting nucleus. CB-positive neurons were found in the
lateral septal nucleus dorsal part (LSD); lateral septal nucleus
intermediate part (LSI); lateral septal nucleus ventral part (LSV);
septohippocampal nucleus (SHi); septofimbrial nucleus (SFi);
septohypothalamic nucleus (SHy); triangular septal nucleus (TS);
medial septal nucleus (MS); lambdoid septal zone (Ld); and
paralambdoid septal nucleus (PLd). Among these, the LSV, SFi,
and SHy sent strong and dense projections (cell density: LSV
10.67 ± 1.86, SFi 12 ± 3.46, and SHy 14.33 ± 2.34); the

LSI, TS, MS, and PLd sent moderate projections (cell density:
LSI 9.67 ± 3.08, TS 8.33 ± 1.17, MS 7.83 ± 1.72, and PLd
6.5 ± 1.87); and the LSD, SHi, and Ld sent sparse projections
to the CSF-contacting nucleus (cell density: LSD 4.33± 1.86, SHi
2.17± 1.83, and Ld 4.67± 2.07; Figure 4).

For the circumventricular organs, the vascular organ of the
lamina terminalis (VOLT) sent moderate projections to the
CSF-contacting nucleus, whereas the subfornical organ (SFO)
sent strong projections (cell density: VOLT 9.5 ± 1.05 and SFO
12.17± 2.71; Figure 5).

Extensive and plentiful CB-positive neurons could be found
in the preoptic area, where 12 sub-regions had projections
to the CSF-contacting nucleus. CB-positive neurons were
found in the median preoptic nucleus (MnPO), medial
preoptic area (MPA), medial preoptic nucleus (MPO), lateral
preoptic area (LPO), ventromedial preoptic nucleus (VMPO),
ventrolateral preoptic nucleus (VLPO), MCPO, alar nucleus
(Al), parastrial nucleus (PS), strial part of the preoptic
area (StA), anteroventral periventricular nucleus (AVPe), and
striohypothalamic nucleus (StHy). Among these, the MnPO,
MPA, MPO, LPO, VMPO, VLPO, MCPO, Al, PS, and StHy sent
strong projections to the CSF-contacting nucleus (cell density:
MnPO 14.5 ± 3.67, MPA 15 ± 2.83, MPO 18.28 ± 2.85,
LPO 11.17 ± 1.17, VMPO 11.17 ± 2.93, VLPO 11.83 ± 1.33,
MCPO 14.5 ± 3.02, Al 10.17 ± 1.33, PS 13.83 ± 2.23, and
StHy 10.17 ± 1.47), whereas the StA and AVPe sent moderate
projections (cell density: StA 6 ± 1.41 and AVPe 7.83 ± 0.75;
Figures 6, 7).

In the amygdaloid structures, 13 sub-regions had projections
of the CSF-contacting nucleus. CB-positive neurons were
detected in the central amygdaloid nucleus (Ce), medial
amygdaloid nucleus (Me), basomedial amygdaloid nucleus
anterior part (BMA), basomedial amygdaloid nucleus posterior
part (BMP), intercalated nuclei of the amygdala (I), bed
nucleus of the stria terminalis (BNST), sublenticular extended
amygdala (EA), interstitial nucleus of the posterior limb of
the anterior commissure (IPAC), anterior amygdaloid area
(AA), anterior cortical amygdaloid nucleus (ACo), posterolateral
cortical amygdaloid nucleus (PLCo), posteromedial cortical
amygdaloid nucleus (PMCo), and amygdalohippocampal area
(AHi). The AA sent strong projections to the CSF-contacting
nucleus (cell density: AA 13.33 ± 2.5), whereas the Ce,
Me, BMA, EA, ACo, and AHi sent moderate projections
(cell density: Ce 7.22 ± 2.05, Me 6.92 ± 2.76, BMA
6.67 ± 2.16, EA 7.67 ± 1.61, ACo 9.17 ± 1.33, and AHi
5.22 ± 3.42), and the BMP, I, IPAC, PLCo, and PMCo
sent sparse projections (cell density: BMP 2.33 ± 0.52, I
2.83 ± 0.94, IPAC 4.22 ± 1.48, PLCo 3.33 ± 0.82, and PMCo
2.67± 0.82; Figure 8).

3D Reconstruction of the Subcortex and
Limbic System Projections
The densities of the subcortex and limbic system projections
were obvious in the 3D view, where the red areas represent
highly dense projections (AO, Cl, AcbSh, LSV, SFi, SHy, SFO,
MnPO, MPA, MPO, LPO, VMPO, VLPO, MCPO, Al, PS, StHy,
and AA), the green areas represent moderately dense projections
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FIGURE 2 | Cellular morphology of the cholera toxin subunit B-positive neurons. The representative photographs were captured from the anterior olfactory nucleus
(AO; A) claustrum (Cl; B) bed nucleus of the stria terminalis (BNST; C) and magnocellular preoptic nucleus (MCPO; D). Bar = 40 µm.

(En, VP, SI, VDB, HDB, LSI, TS, MS, PLd, VOLT, StA, AVPe,
Ce, Me, BMA, BNST, EA, ACo, and AHi), and the blue areas
represent sparsely dense projections (B, LSD, SHi, Ld, BMP, I,
IPAC, PLCo, and PMCo; Figure 9).

DISCUSSION

This present study systematically reveals that the CSF-contacting
nucleus receives projections from the subcortex and limbic
system (Figure 10). Many basic and clinical studies have focussed
on these areas and reported some of their functions. Therefore,
the biological functions of the CSF-contacting nucleus can be
predicted according to their connection patterns in these regions.

Functional Implications
Emotion
The CSF-contacting nucleus receives extensive projections from
the septum and amygdaloid structures, which may participate

in the modulation of emotions. The septum, a key component
of the limbic system (Talishinsky and Rosen, 2012), is not
a homogeneous structure (Risold and Swanson, 1997). It can
be divided into different subregions. The lateral septal nuclei
participate in depression-related behavior and are supposed to
be a target for antidepressant drugs (Contreras et al., 1989,
2018). The MS has also been suggested to be a subcortical
node in the modulation of anxiety (Zhang et al., 2017), as its
ablation or pharmacological inhibition reduced the anxiety-like
behavior of rats (Menard and Treit, 1996; Lamprea et al.,
2010). The amygdaloid structures play important roles in
emotional perception and expression (Shirasu et al., 2011). In
anxiety disorders, the activities of the amygdaloid structures
are significantly changed (Shin and Liberzon, 2010). The Ce
in the amygdala has been ascribed an important role in the
aversive states and behavioral dysregulation associated with
stress (Gilpin et al., 2015). The neurons in the Me are activated
by fear conditioning, and lesions in the Me can significantly
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FIGURE 3 | Distribution of cholera toxin subunit B-positive neurons in the
basal forebrain. (A–F) The positive neurons in AO, AcbSh, VDB, HDB, Cl, and
En. (G) Statistics of the input amounts of cholera toxin subunit B-positive cells
from the basal forebrain to the CSF-contacting nucleus (mean ± SD, n = 6;
AO, anterior olfactory nucleus; aca, anterior commissure anterior part; AchSh,
accumbens nucleus shell; VDB, nucleus of the vertical limb of the diagonal
band; HDB, nucleus of the horizontal limb of the diagonal band; Cl,
claustrum; En, endopiriform nucleus). Bar = 100 µm.

disrupt the fear behavior (Tsuda et al., 2015). The BNST, which
participates in the formation of the forebrain unit, is described as
the ‘‘extended amygdala’’ (Alheid and Heimer, 1988), implying
that it plays a pivotal role in the regulation of anxiety and
mood, as well as in the pathophysiology of mood disorders
(Fitzgerald et al., 2018).

Cognition
The CSF-contacting nucleus receives input from the basal
forebrain and amygdaloid structures, which may participate
in cognition. The cholinergic neurons of the basal forebrain
are functionally related to attention and cognition, and their
degeneration is implicated in Alzheimer’s and Parkinson’s
diseases (Bohnen and Albin, 2011). The MS, VDB, HDB, and B,
which are areas that are rich in cholinergic neurons in the basal
forebrain, are strongly associated with learning and memory

FIGURE 4 | Distribution of cholera toxin subunit B-positive neurons in the
septum. (A–F) The positive neurons in LSD, LSI, LSV, MS, SFi, and TS. (G)
Statistics of the input amounts of cholera toxin subunit B-positive cells from
the septum to the CSF-contacting nucleus (mean ± SD, n = 6; LSD, lateral
septal nucleus dorsal part; LSI, lateral septal nucleus intermediate part; LSV,
lateral septal nucleus ventral part; MS, medial septal nucleus; SFi,
septofimbrial nucleus; TS, triangular septal nucleus; f, fornix). Bar = 100 µm.

processing (Reznikov et al., 2009; Gratwicke et al., 2013; McHugh
et al., 2015).

Studies of rodents and primates have shown that the amygdala
is required for fear learning (Antoniadis et al., 2009; Salzman and
Fusi, 2010). The Ce of the amygdala is the main output of this
region (Sah et al., 2003), where its pharmacological intervention
significantly changed the memory processes of rats (Hasanein
and Sharifi, 2015). Apart from bidirectionally regulating various
anxiety-like responses (Mazzone et al., 2018), the BNST has
diverse contributions to aversive learning and memory (Goode
and Maren, 2017), integrating the information from the
amygdala, hippocampus, and prefrontal cortex (Weller and
Smith, 1982; McDonald et al., 1999; Goode and Maren, 2017).
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FIGURE 5 | Distribution of cholera toxin subunit B-positive neurons in the circumventricular organs. (A,B) The positive neurons in VOLT and SFO. (C) Statistics of
the input amounts of cholera toxin subunit B-positive cells from the circumventricular organs to the CSF-contacting nucleus (mean ± SD, n = 6; VOLT, vascular
organ of the lamina terminalis; SFO, subfornical organ). Bar = 100 µm.

FIGURE 6 | Distribution of cholera toxin subunit B-positive neurons in the preoptic area Part I. (A–D) The positive neurons in MnPO, Al, MPO, MPA, and LPO
(MnPO, median preoptic nucleus; Al, alar nucleus; MPO, medial preoptic nucleus; MPA, medial preoptic area; LPO, lateral preoptic area). Bar = 100 µm.

Homeostasis
Our previous study showed that the CSF-contacting nucleus
participates in sodium sensing and appetite (Xing et al., 2015).
The CSF-contacting nucleus receives input from the septum
and preoptic area and circumventricular organs, which may
participate in the regulation of homeostasis. The lateral septal
nucleus (LS) is involved in the control of feeding behavior and
energy homeostasis (Sweeney et al., 2017). Intra-LS infusions of
gamma-aminobutyric acid (GABA) or acetylcholine increased
feeding, whereas glucagon-like 1 peptide infusions decreased
feeding (Scopinho et al., 2008; Mitra et al., 2014; Terrill et al.,
2016). The MS is involved in fluid control and electrolyte
balance, where its activation induces water intake, antidiuresis,
natriuresis, and pressor responses (Melo et al., 2015).

The preoptic area sends dense and extensive projections
to the CSF-contacting nucleus. This area contains intrinsically
thermosensitive neurons which can sense the brain temperature
(Boulant, 2000). The preoptic area is also a key component
within the hierarchical organization of the neural circuits, which
controls the thermoeffector activity (Morrison, 2016). Apart
from thermal homeostasis, the preoptic area also participates in
fluid balance. Use of the neurotoxin, ibotenic acid to destroy
neuronal cell bodies in the MnPO in rats abolished their ability
to drink in response to systemic hypertonic saline (Cunningham
et al., 1992). The LPO is also regarded as a functional region that
participates in drinking behavior (Saad et al., 1996).

The circumventricular organs SFO and VOLT also send
numerous projections to the CSF-contacting nucleus. These two
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FIGURE 7 | Distribution of cholera toxin subunit B-positive neurons in the preoptic area Part II. (A–C) The positive neurons in AVPe, VMPO, MPA, MPO, MCPO, and
SI. (D) Statistics of the input amounts of cholera toxin subunit B-positive cells from the preoptic area to the CSF-contacting nucleus (mean ± SD, n = 6; MPA, medial
preoptic area; MPO, medial preoptic nucleus; AVPe, anteroventral periventricular nucleus; VMPO, ventromedial preoptic nucleus; SI, substantia innominata; MCPO,
magnocellular preoptic nucleus). Bar = 100 µm.

organs are regarded as the major osmosensory sites within
the brain because they lack the normal blood-brain barrier
(Augustine et al., 2018). VOLT has a causal role in the regulation
of drinking behavior (Augustine et al., 2018). The optogenetic
and chemogenetic activation of SFO neurons drives immediate
and robust drinking behavior (Betley et al., 2015; Oka et al., 2015;
Nation et al., 2016).

Visceral Activity
The CSF-contacting nucleus receives input from the MS,
VDB, HDB, LPO, MPA, Me, Ce, and BNST, which may
participate in visceral/autonomic activity. The MS, VDB, and
HDB have been shown to participate in cardiovascular regulation
(Calaresu et al., 1976; Nasimi and Hatam, 2005; Tavares
et al., 2007), where chemical stimulation of these regions
produced depressor and bradycardic responses (Gelsema and
Calaresu, 1987; Kirouac and Ciriello, 1997). Microinjection
of glutamate into the LPO decreased the heart rate, whereas
local microinjection of GABAergic agonists evoked the opposite
response (Osaka, 2012). For the MPA, microinjection of
CoCl2 (a non-selective synapse blocker) caused tachycardia
without altering the mean arterial pressure (Fassini et al.,
2017). The Me also participates in cardiovascular responses,
where its electrical stimulation has been reported to induce
a mean arterial pressure and heart rate. Also, microinjection
of noradrenaline into the Me caused significant cardiovascular

changes (Fortaleza et al., 2011). The Ce and BNST are involved
in visceral hypersensitivity in visceral nociception (Su et al., 2015;
Ide et al., 2018).

Pain and Addiction
The CSF-contacting nucleus participates in pain modulation
(Wang et al., 2014; Liu et al., 2017; Zhou et al., 2017), and
it receives several pain-related regions in the subcortex and
limbic system. The MS and diagonal band complex is crucial
for information processing and chronic pain behavior (Jiang
et al., 2018). These brain regions are involved in nociception
modulation, especially that of affective, motivational, and
cognitive behaviors (Ang et al., 2017). Pharmacological
and electrophysiological experiments have revealed that
the MPO and LPO participate in pain control and in
periaqueductal grey-mediated endogenous analgesia (Silva
et al., 2004). The Ce in the amygdala is termed the ‘‘nociceptive
amygdala’’ (Neugebauer, 2015), as extensive research has
shown that Ce neurons are sensitized in different pain models
(Li and Sheets, 2018).

Several regions that participate in drug or alcohol addiction
send extensive projections to the CSF-contacting nucleus. The
nucleus accumbens is composed of two main regions, the shell,
and the core. Specifically, the AcbSh is involved in contextual
control over the extinction and reinstatement of drug-seeking
for various drug classes (Gibson et al., 2019). The VP is a

Frontiers in Neuroanatomy | www.frontiersin.org 7 August 2020 | Volume 14 | Article 57

https://www.frontiersin.org/journals/neuroanatomy
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroanatomy#articles


Song et al. Novel Projections to CSF-Contacting Nucleus

FIGURE 8 | Distribution of cholera toxin subunit B-positive neurons in the amygdaloid structures. (A–D) The positive neurons in Ce, Me, I, BMA, ACo, and BNST.
(E) Statistics of the input amounts of cholera toxin subunit B-positive cells from the amygdaloid structures to the CSF-contacting nucleus (mean ± SD, n = 6; Ce,
central amygdaloid nucleus; Me, medial amygdaloid nucleus; I, intercalated nuclei of the amygdala; BMA, basomedial amygdaloid nucleus anterior part; ACo,
anterior cortical amygdaloid nucleus; BNST, bed nucleus of the stria terminalis). Bar = 100 µm.

major target of the nucleus accumbens (Creed et al., 2016).
VP neurons respond greatly to reward and reward-predictive
cues (Tindell et al., 2005), and lesions of the VP reduce the
hedonic impact and motivation for reward (Cromwell and
Berridge, 1993). Activation of the Ce by optogenetic stimulation
generates an addiction-like preference for reward (Tom et al.,
2019). Moreover, the BNST is critical for the reinstatement
of drug-seeking behavior and has shown changes in plasticity
during abstinence from extended drug abuse (Harris and
Winder, 2018).

CONCLUSION

In summary, this study mapped the novel projections from
the subcortex and limbic system to the CSF-contacting
nucleus. According to the projection patterns, we hypothesize
that the nucleus participates in the modulation of emotion,
cognition, homeostasis, visceral activity, pain, and addiction.
The results of this study provide a neuroanatomical basis
for the explanation of neural or body fluids changes under
these life activities and also provide the basis for intervening
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FIGURE 9 | Three-dimensional view of the projection patterns from the subcortex and limbic system to the cerebrospinal fluid (CSF)-contacting nucleus. (A) Dorsal
view, (B) anterior view, (C) ventral view, and (D) lateral view. The red areas represent strong projections, the green areas represent moderate projections, and the
blue areas represent weak projections to the CSF-contacting nucleus.

FIGURE 10 | The schematic diagram of projections from the subcortex and
limbic system to the CSF-contacting nucleus. Among them, basal forebrain
contains nine sub-regions, septum contains 10 sub-regions,
circumventricular organs contain two sub-regions, the preoptic area contains
12 sub-regions, and amygdaloid contains 13 sub-regions.

in the CSF-contacting nucleus in the treatment of the
neurologic diseases. In the future, the advanced neural circuit
intervention methods will be applied to further study the

mechanism of the CSF-contacting nucleus in the above
life activities.
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