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Binocular summation of chance 
decisions
Oren Yehezkel1,*, Anna Sterkin1,*, Dov Sagi2 & Uri Polat1

Seeing with two eyes usually helps one respond faster. Here we show that with ambiguous stimuli, 
binocular viewing can paradoxically slow down reaction time. This is explained by the observers 
basing their decision on a noisy neuronal representation within the visual system, with the added 
noise breaking the symmetry between the two possible interpretations. Binocular integration 
improves the representation by reducing the noise, increasing ambiguity, and decision time. The 
neuronal Accumulator (Race) model is applied to quantify the underlying binocular integration. The 
model accounts for the distributions of reaction times, and predicts suboptimal integration between 
eyes. We conclude that under ambiguous stimulation neuronal noise within the visual system 
determines responses.

Commonly, performance benefits from binocular viewing as compared to monocular by about 20–40%1–3.  
Reaction time (RT) is also usually faster with two eyes compared to one4. Binocular integration has been 
widely studied in neurophysiology5,6 and psychophysics1 in a variety of tasks, with integration factors 
depending on tasks7 and stimulus contrast8,9. Here, we aimed at testing the advantage of binocular deci-
sions under conditions of uncertainty. In the experiments, observers judged a dot matrix as perceptually 
grouped into “Columns” or “Rows” (Fig. 1; see Experimental procedures in Methods). Such a decision 
is affected by the ratio between vertical and horizontal dots spacings, with equal vertical and horizontal 
spacings allowing nothing but guessing. Human observers were tested under monocular and binocular 
viewing conditions using a randomized design with all different stimuli mixed in each block of trials 
(spacing ratios, monocular/binocular).

As expected10, the observers displayed a sharp transition between columns and rows perceptions 
(Fig.  2a): for larger spacing in the horizontal direction, dots grouped into columns, whereas for larger 
spacing in the vertical direction dots grouped into rows, with accuracy above 90%. However, in the ambig-
uous grouping condition, with equal spacing, the perception was at chance level (accuracy of ~50%). The 
results are similar for both monocular (Right eye or Left eye) and binocular viewing conditions.

However, reaction time measurements revealed a counterintuitive pattern of results. While RTs were 
similar for all unequal spacing displays, for both monocular and binocular trials (Fig. 2b), responses for 
ambiguous displays were significantly slower than any of the unequal spacing displays (p ≤  0.013), as 
expected from the RT literature showing increased RT with decreasing performance level11. But, among 
ambiguous grouping trials, the binocular responses were unexpectedly slower by 89.4 ±  17.6 milliseconds 
(Mean ±  SE, N =  21) compared to the average of the monocular trials (p =  5.6 ×  10−5); 2/3 of the subjects 
had slower binocular responses, but no one had faster binocular RTs. One possible explanation is that 
observers base their decision on a noisy neuronal representation of the stimulus, with the noise level 
serving as a “signal”. Binocular integration is expected to reduce the noise and thus the strength of the 
signal used for decision, leading to slower RTs.

Temporal aspects of decision making are well captured by a family of “Accumulator” or “Race” mod-
els11–15 (see RT distribution and Accumulator (Race) model fit in Methods). According to this theory, 
evidence accumulates with time separately for each possible decision (in our case Columns and Rows). 
The winning accumulator is the one that reaches first a threshold level, and thus determines the decision. 
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The critical parameter here is the accumulation rate, which sets the speed of the decision process. We 
suggest that in ambiguous grouping conditions, the evidence accumulated is determined by neuronal 
noise added to the otherwise equal stimulus-evoked responses. This noise is reduced by binocular inte-
gration, thus making the neuronal responses supporting the two decision outcomes more similar.

To test the applicability of the accumulator model to our data, we fitted model predictions for RT 
distributions to our experimental results in the ambiguous conditions (the non-ambiguous conditions 
produced close to perfect discriminations thus are not informative). The model assumes that each accu-
mulator is governed by a diffusion-like process to a single boundary, where the accumulated evidence is 
incremented on each time step by an amount representing the momentary evidence (μ h, μ v corresponding 

Figure 1. Proximity grouping. A forced-choice procedure was used, in which subjects had to decide 
whether they perceive brief matrices of white dots on black background as rows or columns. The proximity 
grouping performance was assessed at different inter-dot spacing ratios along the horizontal vs. the vertical 
axes. The ratio could be (a) equal, i.e., 0 change in any direction, producing an ambiguous grouping, with an 
equal probability of perceiving rows or columns, or (b) changed by 10% and (c) by 20% in each direction. 
Trials were presented, either to both eyes (binocularly), or only to one (monocularly), while the other 
exposed to background luminance, randomized, using stereo goggles to keep the observer unaware of the 
trial type. To avoid the global matrix shape cues, dot matrices were presented via a round window with a 
5-cm radius occupying 3.8 degrees of the visual field. Each trial consisted of a binocular central fixation 
mark, followed by an observer-triggered 80-millisecond dot matrix. Observers received no feedback on their 
responses.

Figure 2. Slower binocular responses during ambiguous grouping. The X axis represents changes in 
inter-dot spacing in the horizontal (positive) and the vertical (negative) directions, as the percent of the 
spacing used for equally spaced displays. (a) The Y axis represents the percentage of horizontal judgments 
(Rows), and (b) the mean RT (N =  21; 40 trials per datum point/observer). Regarding grouping reports 
(a), for the 5 spacing ratios, observers showed no significant trial type effect (F2,19 =  1.6, P =  0.21) and a 
significant spacing ratio effect (F4,17 =  720.5, P <  0.001), with no interaction. For spacing ratio of 1, observers 
showed no significant trial type effect (F2,19 =  2.135, P =  0.136). Regarding RT (b), for the 5 spacing ratios, 
observers showed no significant trial type effect (F2,19 =  2.9, P =  0.065) and a significant spacing ratio effect 
(F4,17 =  28.7, P <  0.001), with interaction (P =  0.008). For spacing ratio of 1, observers showed a significant 
trial type effect (F2,19 =  11.5, P <  0.001). All pairwise comparisons used paired t-test. Non-significant effects 
indicate P >  0.05. Error brackets are SE.



www.nature.com/scientificreports/

3Scientific RepoRts | 5:16799 | DOI: 10.1038/srep16799

to the horizontal and the vertical accumulators), added with Gaussian noise (σ  =  1), and terminated 
when the first accumulator reaches the decision boundary (λ ). Fig. 3a presents the outcome of these fits, 
showing an excellent match between model and data. We assumed μ h =  μ v =  μ  for ambiguous grouping, 
as expected from balanced stimuli, and since all experimental conditions were randomly mixed in one 
experimental session, the decision boundary (λ ) was kept constant across conditions (see RT distribu-
tion and Accumulator (Race) model fit in Methods). The fitted parameters show μ R =  0.057, μ L =  0.059, 
and μ B =  0.048, for the right-eye, left-eye, and two-eyes conditions respectfully (Fig. 3b). Thus, while the 
monocular accumulation rates are very similar, the binocular rate is 21% lower (95% confidence range 
of 13–31%), which we interpret as 21% noise reduction due to information averaging between the eyes. 
This value broadly agrees with several published values of binocular summation9,16.

Our results suggest that binocular integration leads to noise-reduction, in agreement with previous 
results showing improved detection thresholds with two eyes1–3. A noisy system optimally integrating 
two noisy sources would show 41% gain (√2), thus the summation factor found here is sub-optimal, pos-
sibly pointing to a correlation between the two noise sources. It is noteworthy that the current accumula-
tor model was only applied here to demonstrate the very ability to quantify the summation factor. Other 
models may provide a theoretical support for the predicted inter-ocular integration, such as Bayesian or 
sensory recalibration models13,17–22, but these models are not directly applicable to RT.

Using a very simple perceptual grouping task we showed that observers’ guessing behavior can be 
explained by them accessing neuronal noise within the visual system. This proposal, combined with the 
Race model of human decision, explains the paradoxical slow-down of reaction times for decisions based 
on binocular viewing relative to monocular viewing.

Methods
Experimental procedures. Observers. Twenty one observers participated in the experiments (ages 
ranged from 17 to 35), with normal or corrected-to-normal visual acuity, unaware of the purpose of the 
study. Each observer signed an informed consent form approved by the local Institutional Review Board 
of Sheba Medical Center.

Apparatus. The experiments were controlled by a PC and the stimuli were displayed as a gray-level mod-
ulation on a Philips 107P color monitor, 100 Hz refresh rate. The mean display luminance was 20 cd/m2  
in an otherwise dark environment. Screen resolution was 1024 ×  768 pixels; gamma correction was 
applied. The stimuli were viewed from a distance of 150 cm.

Figure 3. (a) RT distributions, data (N =  16 observers) and model (see Methods), shown for the right eye 
(R), left eye (L), and for the two eyes (binocular, B) viewing conditions. (b) Accumulation rates obtained 
from fitting model to RT data from ambiguous grouping trials, with error bars showing 95% confidence 
intervals.
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Stimuli. A matrix of white dots was presented on a gray background, each dot occupying 3 ×  3 pixels 
(Fig.  1). Dot size was 2.5 min of arc. Dots intensity was 45 cd/m2. The experimental variable was the 
ratio of vertical to horizontal spacing between the centers of the dots23. According to the Gestalt law of 
proximity, when a dot matrix is presented with a different gap size in the horizontal or vertical direction, 
the more proximal dots tend to form perceptual groups, in such a way that the matrix can be perceived 
as columns, rows, or as an ambiguous matrix pattern. The distance between the dots was changed along 
both the vertical and the horizontal direction; the 5 spacing ratios tested were 20 and 10 percent in each 
direction and equal spacing (i.e., 0 change in either direction). The spacing between the dots within the 
dot-array was 33.75 min of arc for the equal spacing. Stimuli were presented, in a random order either to 
both eyes, or only to one while the other exposed to background luminance, using stereo goggles (Crystal 
eyes 3, StereoGraphycs). Observers were unaware of the eyes targeted on each trial.

Visual task. The task was to report the perceptual organization of the display as horizontal Rows or 
vertical Columns, without feedback, using a forced-choice paradigm, by pressing a computer mouse 
button immediately after making their decision using the dominant hand. Each trial was preceded by a 
binocular fixation mark at the center of the display until the observer signaled their readiness using the 
computer mouse. Fixation mark disappeared and after 300 msec a stimulus was presented for 80 msec. 
The matrix had a rectangular shape in most cases, due to the unequal spacing between the rows and 
columns, which may have interfered with the observers’ judgment. To avoid such interference, the screen 
was covered with a round window, so that the global form of the stimulus was circular across all exper-
iments, occupying 3.8 deg of the visual field.

Data were collected in sessions of at least 600 trials per observer (all but 5, for which 300 trials were 
collected) that lasted ~15 minutes (the actual number of trials was larger than 600 in order to keep block 
randomization to the end of the session). Within each session, trials of all 15 conditions (5 distance ratios 
and 3 eye combinations) were randomly mixed. Observers’ performance, quantified as the percentage of 
trials reported as Rows (horizontal), was calculated for each spacing ratio. Reaction times were measured 
as the time from stimulus onset to response. Group results (Fig. 2) are averages of individual observers’ 
means.

Statistical analysis. ANOVA results are reported with Greenhouse-Geisser Epsilon adjustment. Paired 
two-tailed t-test was used for pairwise comparisons. ANOVA included 3 trial types (right-eye, left-eye 
and binocular) and 5 spacing ratios. The significance of the bias for ambiguous grouping was calculated 
using a one-sample t-test compared to the predicted value of 50. The bias was 0.67 ±  3.75%, 2.24 ±  3.9%, 
− 4.1 ±  3.3% (mean ±  SE, N =  21) for the trials viewed with the right eye, the left eye or binocularly, 
respectively (p =  0.86, 0.57 and 0.23 for the trials viewed with the right eye, the left eye or binocularly, 
respectively).

RT distribution and Accumulator (Race) model fit. To model reaction time distributions in our 
2-alternative forced choice experimental paradigm, we assume a “race” between two independent accu-
mulators (i.e. one for Rows and one for Columns), with a response produced according to the first one 
to reach the boundary11. Each accumulator is modeled by a single-boundary diffusion whose comple-
tion time (i.e., time to boundary) is Wald distributed. In the ambiguous condition, both accumulators 
received equal supporting evidence, and hence equal drift rate, thus the decisions were driven by the 
added noise. The decision time probability density function for such a race model can be computed as 
the product of two terms: the first describing the probability that one accouter reached its boundary at 
time t, and the second that the other accumulator is still running.
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where Φ  is the standard normal (Gaussian) distribution c.d.f.
The distribution of the observers’ reaction times were fitted to eq. (1) using a maximum likelihood 

estimation algorithm (Matlab©, mle()). Of interest here is the conditions with equal vertical and hori-
zontal spacing, producing chance-level performance, modelled using two accumulators with equal drift 
rates, assuming the same decision boundary for all conditions (left-eye, right-eye, binocular). In the 
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fitting process we included two additional parameters, assumed to be equal in all conditions: the decision 
boundary (λ  =  40), and the minimum RT accounting for visual transmission time and motor reaction 
(often termed “non-decision time”, rt0 =  300 milliseconds) subtracted from the measured RT (these two 
parameters were estimated separately for each condition, found to be very similar thus the averaged esti-
mates were used as constants while refitting the drift-rate parameters). For the analysis we ignored the 
first 5 trials of each session, and RTs within the lower and upper 2.5% percentiles24. Observers having a 
strong bias in the ambiguous conditions (N =  5), deviating significantly from the expected chance per-
formance, were not included in this analysis. Their bias was strong and consistent across viewing condi-
tions (right-eye/left-eye/binocular) and is thus suspected to reflect an automatic response in case of high 
uncertainty (i.e., “I don’t know so I press right key”) and their distributions may differ. Therefore, in order 
to be sure that chance performance is at the individual-observer level, not a result of averaging between 
strongly biased observers of opposite biases, for the sake of model’s clear application to unbiased chance 
responses, observers with these biases were excluded25. To identify strongly biased observers, response 
distributions of the individual observers were compared to a binomial process over the same number of 
trials. The critical bias was set to 4SEbinom, with SEbinom calculated according to the expected SE from the 
binomial processes. Overall, the RT distribution analysis was based on 2030 trials. The goodness of fit 
was assessed using the Chi-squared test, performed on 5 equally spaced bins to meet the minimal count 
requirement, according to the 0.2, 0.4, 0.6 and 0.8 quantiles24. For the resulting p-value of 0.27 we do 
not reject the null hypothesis, indicating a good fit.
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