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The concerted activity of intestinal microbes is crucial to the health and development

of their host organisms. Investigation of microbial interactions in the gut should deepen

our understanding of how these micro-ecosystems function. Due to advances in Next

Generation Sequencing (NGS) technologies, various bioinformatic strategies have been

proposed to investigate these microbial interactions. However, due to the complexity

of the intestinal microbial community and difficulties in monitoring their interactions,

at present there is a gap between the theory and biological application. In order

to construct and validate microbial relationships, we first induce a community shift

from simple to complex by manipulating artificial hibernation (AH) in the treefrog

Polypedates megacephalus. To monitor community growth and microbial interactions,

we further performed a time-course screen using a 16S rRNA amplicon approach and a

Lotka-Volterra model. Lotka-Volterra models, also known as predator–prey equations,

predict the dynamics of microbial communities and how communities are structured

and sustained. An interaction network of gut microbiota at the genus level in the

treefrog was constructed using Metagenomic Microbial Interaction Simulator (MetaMIS)

package. The interaction network obtained had 1,568 commensal, 1,737 amensal,

3,777 mutual, and 3,232 competitive relationships, e.g., Lactococcus garvieae has

a commensal relationship with Corynebacterium variabile. To validate the interacting

relationships, the gut microbe composition was analyzed after probiotic trials using single

strain (L. garvieae, C. variabile, and Bacillus coagulans, respectively) and a combination

of L. garvieae, C. variabile, and B. coagulans, because of the cooperative relationship

among their respective genera identified in the interaction network. After a 2 week trial,

we found via 16S rRNA amplicon analysis that the combination of cooperative microbes

yielded significantly higher probiotic concentrations than single strains, and the immune

response (interleukin-10 expression) also significantly changed in a manner consistent

with improved probiotic effects. By taking advantage of microbial community shift from

simple to complex, we thus constructed a reliable microbial interaction network, and

validated it using probiotic strains as a test system.
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INTRODUCTION

Gut microbes and their hosts exist in a symbiotic relationship.
Gut microbes contribute to important host functions, including
fermenting unused energy substrates, training the immune
system, preventing growth of pathogenic bacteria, and regulating
gut development (Hooper et al., 2002; Xu and Gordon,
2003; Li et al., 2008; Perez et al., 2010; Ye et al., 2014).
Although recent studies using 16S rRNA amplicon sequencing
have emphasized the importance of microbes for their hosts
(Manichanh et al., 2006; Peterson et al., 2009; Round and
Mazmanian, 2009; Turnbaugh and Gordon, 2009; Turnbaugh
et al., 2009; Arumugam et al., 2011), the functional roles of
most gut microbes remain unknown. One approach to explore
this question is through network inference. This approach
has been widely used to explore interactions between various
organisms (Newman, 2003; Proulx et al., 2005; Shafiei et al.,
2014). To uncover hidden patterns beyond the animal world, the
generalized Lotka-Volterra (gLV) equations have recently been
adopted as a dynamic model for studying microbial communities
(Faust and Raes, 2012; Stein et al., 2013). The gLV model uses
non-linear differential equations, which govern prey-predator
relations. The gLV equations have been used successfully to
predict temporal dynamics of microbiota in the mouse intestine
(Stein et al., 2013), and within a cheese-making environment
(Mounier et al., 2008), by analyzing microbiome time-series data.
Time-series data inherently contain information including the
statistical dependency of observations as a function of time.
When these features of time-series data are properly modeled,
it is possible to gain substantial new insights into the behavior
of the system under study. Some studies even suggested that
the distribution of interaction pairs (also obtained using a gLV
dynamic model) in an ecological system can be used to predict
microbiota stability (Coyte et al., 2015).

Network inference methods are commonly distinguished into
two groups. The first approach is similarity-based network
inference, which assesses the co-occurrence and/or mutual
exclusion pattern of two species over multiple samples, using
a measure that quantifies the similarity of two species’
distributions. However, pairwise relationships do not capture
more complex forms of ecological interactions, in which one
species is influenced by (or depends on) multiple other species
(Faust and Raes, 2012). To infer these types of interactions, the
second approach is to apply regression-based networks, in which
the abundance of one species is predicted from the combined
abundances of other organisms. The latter is more convincing
and was used by Stein et al. (2013) to reanalyze the Clostridium
difficile infection data generated by Buffie et al. (2012). Marino
et al. (2014) also used the gLV equations to model population
dynamics of the gut microbiota in mice. However, these works
generated interaction networks but did not further validate the
inferred relations. To explore how the biological outcomes are
directly related to the specific inferred microbial interactions,
a well-investigated in vivo system describing the effects of
gut microbes on their host must be applied for validation.

Abbreviations: IIP, inferred interaction partner; AH, artificial hibernation.

Conventionally, the prevention and control of aquaculture
diseases has focused on the use of vaccines or antibiotics (Pasteris
et al., 2009b). However, treating or feeding frogs with antibiotics
may cause the development of resistant bacteria (Akinbowale
et al., 2006). Further evidence has shown that antibiotics can
cause a decrease in the biodiversity of gut bacteria and increase
the risk of bacterial infections (Buffie et al., 2012; Taur et al.,
2012). Antibiotics and their effects can also persist for several
days after the end of treatment (Jernberg et al., 2007; Dethlefsen
and Relman, 2011; Buffie et al., 2012). An alternative solution is
the use of probiotics (Reid et al., 2003), which are able to inhibit
gut colonization by pathogens and to exert inhibitory effects
against undesired micro-organisms, as well as to support natural
host microbial defense mechanisms (Hernandez et al., 2005).
Thus, a wide range of Gram (+) and Gram (−) bacteria, yeast,
microalgae, and bacteriophages have been evaluated as probiotics
(Pasteris et al., 2009b).

In this study, we highlight the feasibility of conducting
network inference at the genus level to decipher the possible
interactions within the microbial ecosystem of the amphibian
gut. We took advantage of a well-investigated probiotic system
to validate the inferred microbial interactions. Compared
to the conventional strategy that orally introduces specific
single bacterial species as probiotics, we emphasize the power
of inferred network by simultaneously applying interacting
microbial partners that can be used together to enhance the
growth and beneficial effects of target probiotics. In addition to
the validation of the inferred network, this test is also the first
attempt to use a combination of cooperative strains as probiotics
in raniculture.

The innate immune system is the first line of an organism’s
defense against infection. Probiotics interact with immune
cells, such as mono-nuclear phagocytes, polymorphonuclear
leukocytes, and natural killer cells, to enhance innate immune
responses. Studies have shown that probiotics can increase
the numbers of erythrocytes, granulocytes, macrophages, and
lymphocytes (Balcazar et al., 2006; Akhter et al., 2015). The
most commonly used probiotics in amphibians are lactic acid
bacteria (LAB). LAB produce a range of important molecules
such as organic acids, hydrogen peroxide, diacetyl, antimicrobial
peptides (AMPs), and bacteriocins (Verschuere et al., 2000; Küng
et al., 2014). The characterization of these compounds explains
the beneficial effects of LAB; thus, some bacterial species with
similar functions have been introduced as probiotics to restore
beneficial microbial populations (Balcázar et al., 2007a; Pasteris
et al., 2009b; Ringø et al., 2010; Mendoza et al., 2012). In this
study, we induced a community shift from simple to complex
via artificial hibernation (AH) in the treefrog and performed
16S rRNA amplicon analysis on the gut microbiome. Through
the use of MetaMIS, a package that employs the gLV model to
infer microbial interactions (Shaw et al., 2016), we generated
the microbial interaction data and constructed the interaction
network. In order to validate the microbial interactions, instead
of the conventional strategy that only introduces bacteria with
similar functions as probiotics, we selected a target LAB, and
selected bacteria of the genera Corynebacterium and Bacillus as
functional partners based on the network analysis. Our results
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showed that the combination of three representatives of these
genera, L. garvieae, C. variabile, and B. coagulans, works more
efficiently than any single strain, reflecting the reliability of the
inferred microbial interaction.

MATERIALS AND METHODS

Sample Collection
Eighty adult treefrogs (Polypedates megacephalus) were collected
from New Taipei City and Taichung City, Taiwan. All animals
were housed in 240-l glass tanks at 23◦C under a 8:16 h light:dark
cycle. Turkestan cockroach nymphs (Finke, 2013) were fed to
the treefrogs at a quantity of 10% of treefrog biomass twice a
week. The treefrogs were acclimatized for 3 months prior to
experiments.

Microbiome 16S rRNA Amplicon Analysis
Fecal samples were collected from treefrog guts within 20 min
after euthanasia. To avoid cross-contamination, each sample was
collected using a fresh pair of sterile tweezers. The contents
of each gut were emptied into a sterile vial and immediately
stored at –80◦C. DNA was subsequently extracted with the
QIAamp DNA Stool Mini Kit (Qiagen, Valencia, CA, USA).
The V4 region (292 bp) of 16S rRNA gene was PCR-amplified
with 515F (5′−GTGCCAGCMGCCGCGGTAA−3′) and 12-
base barcoded 806R (5′−GGACTACHVGGGTWTCTAAT−3′)
primers (Caporaso et al., 2012). Following PCR, samples
were gel extracted with the NucleoSpin Gel Extraction kit
(Macherey-Nagel, Germany). The purified samples were pooled
in equal concentrations and sequenced using an Illumina MiSeq
(Illumina, San Diego, CA, USA) with a V2 PE500 cartridge (500
cycles). All datasets have been deposited in GenBank under the
BioProject ID PRJNA341914 and BioSample ID SAMN05730167
and SAMN05730170.

All paired-end sequences were merged by FLASH (Magoč and
Salzberg, 2011), and all merged sequences were further analyzed
by conducting the Quantitative Insights Into Microbial Ecology
(QIIME) pipeline (Caporaso et al., 2010b). In the QIIME analysis
pipeline, the low-quality sequences (sequences that were <200
bp in length, had a quality score <25, contained ambiguous
characters, had an unreadable barcode, or did not contain the
primer sequence) were removed using the USEARCH quality
filter (Edgar, 2010). The UCLUST (Edgar, 2010) function in
QIIME was used to cluster the remaining sequences, with a
minimum coverage of 99% and minimum sequence identity of
97%. The longest sequences from each phylotype were selected to
perform sequence identification, and PyNAST (Caporaso et al.,
2010a) and UCLUST were selected to perform the sequence
alignment and taxonomy assignment.

Microbial Community Shift from Simple to
Complex and the Generalized
Lotka-Volterra Model
A concept for improvement of the investigation of the functional
roles of gut microbiota is to explore the microbial world from
a simple to complex state, from an initial stage to homeostasis.
Hibernation is considered as a survival strategy designed to
conserve energy when conditions are harsh. During hibernation,

animals can adapt to temperature perturbations and extend
their lifespan by slowing their heartbeat, reducing metabolic
activity and their energy requirements (Book, 1974). At the
same time, most microorganisms in the gut of a host decline in
numbers due to extreme temperature and low nutrient supply
(Gossling et al., 1982a). Hibernation of treefrogs, therefore,
provides a natural model for monitoring microbial growth
starting from inoculation (i.e., the beginning of a developing
microbial interaction network) to homeostasis, and could
provide an opportunity to shed light on our understanding of
how microorganisms form their interaction networks.

To stimulate AH, wemodified a program previously described
in leopard frogs (Rana pipiens) (Gossling et al., 1982a). Fasting
is known to reduce microbial complexity in amphibians, as well
as fish, reptiles, birds, and mammals (Gossling et al., 1982b;
Sonoyama et al., 2009; Costello et al., 2010; Kohl et al., 2014).
Therefore, prior to stimulation of AH, food was withheld from
the treefrogs kept in the same housing for 7 days to reduce
overall diversity. All fasting treefrogs were then transferred into
an incubator kept in constant darkness. AH was stimulated
initially at 21◦Cwith a relative humidity of 90%. During day 1, the
temperature was maintained. During days 2–3, the temperature
was gradually reduced to 4◦C. Thereafter, treefrogs were housed
in the same manner for 7 days. During days 11–12 (i.e., after
7 days of AH described above), the temperature was gradually
increased to 21◦C, and the treefrogs returned to their active
status. Each active treefrog was fed with Turkestan cockroach
nymphs (∼0.25–0.3 g). Post-feeding samples were collected
within 2.5 days. All protocols were approved by the Academia
Sinica Biosafety Committee and Institutional Animal Care and
Utilization Committee.

To collect time series samples for generating the microbial
interaction network, we collected the gut contents of the treefrogs
over a total of 12 time points spanning 15 days over the AH
period, including day 1 (fasting for 7 days before AH), day 11–
11.75 (every 6 h), and days 12–15 (every 12 h). For each time
point, three to five treefrogs were euthanized. Details of treefrog
body mass, sampling size, and time points of fecal collection over
the AH period are presented in Supplementary Table 1.

We used the Metagenomic Microbial Interaction Simulator
(MetaMIS) with a user friendly interface (Shaw et al., 2016)
to infer microbial relations by introducing a single time-series
dataset of microbial composition containing 12 time points.
MetaMIS is a tool based on the generalized Lotka-Volterra model
(Bhargava, 1989), and designed to infer underlying microbial
interactions according to metagenomic abundance profiles.
Lotka-Volterra equations have been widely used to infer animal
interactions in dynamic systems, and recently have been applied
to reveal microbial interacting relationships between operational
taxonomic units (OTUs). The detailed algorithms and equations
were described by Bucci et al. (Stein et al., 2013). Due to the
limitation of computing power (Interl R© CoreTM i7-4770 CPU
@3.40 GHz processor and 32 Gb RAM), it is not feasible to infer
interaction network at the species level. Therefore, we assumed
that in general, all species in a genus identified in our amplicon
study share similar functions. According to the compositional
profiles among 12 time points at the genus level, MetaMIS can
systematically examine interaction patterns, such as mutualism
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or competition; only the top 25% of interacting relationships were
considered in this study. We used the mfinder tool (Milo et al.,
2002) to identify significant 3-node directed motifs that contain
two directed edges pointing to the same node. This process was
repeated 100 times and all relationships that passed the criteria
described above at least 50 times (permutation cutoff > 0.5) were
considered to be reliable interacting relationships.

Probiotic Selection and Culturing
There are several genera of bacteria characterized as probiotic
in amphibians (Pasteris et al., 2009a,b; Dias et al., 2010; Becker
et al., 2011; Mendoza et al., 2012; Bletz et al., 2013). LAB have
been considered as the major probiotics for the treatment of
raniculture (Dias et al., 2010; Mendoza et al., 2012). In this study,
L. garvieae was selected as a probiotic strain because Lactococcus
was present in at least 85% of all the samples with a relative
abundance of 0.14 ± 0.39%, and L. garvieae has been identified
as a biological control agent in bullfrogs (Mendoza et al., 2012).
According to the interacting relationships inferred by MetaMIS,
Corynebacterium showed beneficial effects on Lactococcus, while
Bacillus was found to have a beneficial interacting relationship
with Corynebacterium. We decided to use three representative
species of the three mentioned genera for further validation.
Therefore, L. garvieae, C. variabile, and B. coagulans were chosen
to validate the inferred interacting relationships. These three
species were selected by their abundance ranking within the
genus according to 16S rRNA amplicon data. We reasoned that
if the inferred interacting relations were correct, the cooperative
combination would yield a higher probiotic concentration than
using a single strain.

To prepare for oral administration, L. garvieae and B.
coagulans were grown in Tryptic Soy broth at 30 and 55◦C
respectively.C. variabilewas grown in BrainHeart Infusion broth
at 30◦C. All strains were grown overnight with agitation in a
shaking incubator. After incubation, the cells were harvested by
centrifugation at 2,500 × g for 20 min at 4◦C. The cell pellets
were washed twice with 0.9% saline and resuspended using the
same buffer. The measured population level of bacteria in the test
diet was 107 CFU g−1 (colony-forming unit).

Treefrogs were divided into five groups (N = 8 per group),
and acclimated for 1 week before the start of the trial. The
trial was conducted for a 2-week period. Each test group of
treefrogs was dosed with L. garvieae (G1), C. variabile (G2), or
B. coagulans (G3) singly, or with a combination of the three
strains (G4) once per day by direct oral gavage. The control (G5)
was fed with 0.9% saline during the entire trial period. After
the trial, four fecal samples were collected from four treefrogs
in each group (Supplementary Table 2) for further 16S rRNA
amplicon analysis, and the other four treefrogs were used to
perform quantitative PCR for interleukin 10 (IL-10) expression
as described in the following section.

Quantitative Real Time PCR for IL-10
In order to test the immune response after oral administration
with probiotic, the expression level of IL-10 was measured
after LPS (lipopolysaccharide) stimulation (Qi et al., 2015).
To characterize the change of treefrog IL-10 expression after
LPS stimulation, four treefrogs in each group were injected

intraperitoneally (i.p.) with LPS (150 µg/100 g body weight).
Animals were anesthetized and euthanized 24 h after injection.
All fecal contents were removed and the remaining tissue
samples of gut were collected (weight range 0.03 to 0.08 g)
(Supplementary Table 3). All tissue samples were homogenized
and total RNA was extracted from homogenized samples using
Trizol reagent (Invitrogen, USA), quantified using a Nanodrop–
1000 spectrophotometer, and reverse transcribed into cDNA
using the Superscript II reverse transcription system (Invitrogen,
USA) according to the manufacturer’s instructions. Quantitative
real time PCR was performed using Power SYBR green PCR
Mastermix (Applied Biosystems) on a real-time instrument (ABI
mode 7300 Sequence Detector) in 96-well reaction plates. The
reaction mixture included 10 ml of Power SYBR green PCR
Mastermix, 1µl of forward and reverse primer (10µM each) and
1ml of cDNA, and then brought up to a final total volume of 20µl
with ultra pure water. The sequence of IL-10 in P. megacephalus
was described in previous study (Huang et al., 2016) and the
forward and reverse primers were designed by NCBI Primer-
BLAST (Ye et al., 2012). β-actin was used as a housekeeping
control. The primer sequences for amplification of IL-10 and
β-actin were as follows: (F, 5′-ACGACCCTGCTCACGTTATG-
3; R, 5′-TCCGGGATGGAGTAAGAGGG-3′) and (F, 5′-GGTC
GCCCAAGACATCAG-3; R, 5′-GCATACAGGGACAACACA-
3′) (Hamdan et al., 2016), respectively. The relative expression
of IL-10 in gut tissue samples was normalized to the expression
of β−actin. The change of gene expression was expressed as fold
change (log base 2) and calculated as described (Qi and Nie,
2008; Qi et al., 2010, 2015). A paired Student’s t-test was applied
to analyze the significance and fold change (log base 2), with a
p-value less than 0.05 considered to be statistically significant.

Statistical Analysis
To estimate the change of microbial complexity throughout
the AH period, alpha-diversity was determined using the
Shannon index, Simpson index, and the Inversed Simpson
index. To determine the differences in bacterial community
composition during AH, we used the Bray-Curtis similarity
index (a taxonomic metric), which provides a measure of
phylogenetic distance between communities from individual
samples (Lozupone et al., 2007). To test the differences in richness
and phylogenetic indices between time points, Student’s t-test was
used to determine the significance (p-value < 0.05) between time
points. For comparison between each bacterial challenge and
controls, we determined the fold-change in relative abundance
to demonstrate a response to the stimulus relative to the
background. Fold-change significantly higher than 2 or smaller
than 0.5 was considered to be relevant. Differences between the
two groups were analyzed for significance (p-value < 0.05) by
Wilcoxon’s test.

RESULTS

In this study, we conducted a continuous 15-day time series
data collection through communities from simple to complex
to infer interacting relationships of microbes in the gut
of treefrogs. We obtained an average of 128,608 ± 32,367
high quality, classifiable 16S rRNA gene sequences, with an
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average count per time point ranging from 91,908 ± 7,767 to
161,142 ± 45,301. At the numbers of reads generated for each
sample, the numbers of genera were in the saturation phase
(Supplementary Figure 1), indicating that genera from each
sample had been sufficiently recovered in MiSeq sequencing. We
observed that the phylogenetic indices, including the Shannon
index and the Simpson Index, were significantly increased at
all time points after day 12 (24 h after AH), compared with
day 11.25 (6 h after AH). The Inverse Simpson Index was also
significantly increased at days 12, 13.5, 14, 14.5, 15, compared
with day 11.25 (Table 1). In addition, three predominant phyla
were significantly altered in their relative abundance (Student’s t-
test, p-value < 0.05) from day 11.25 at all time points after day
13.5 (Figure 1). For example, the increased relative abundance
of Bacteroidetes at days 13.5, 14, 14.5, and 15 were 23 ± 4.2%,
24 ± 2.5%, 18 ± 5.6%, and 31 ± 3.6%, compared with 1.7
± 0.8% at day 11.25. The relative abundance of Firmicutes at
day 11.25, 13.5, 14, 14.5, and 15 were 3.9 ± 1.3, 18 ± 3.6, 25
± 6.5, 53 ± 8.2, and 20 ± 6.2%, while the relative abundance
of Proteobacteria at day 11.25, 13.5, 14, 14.5, and 15 were 90
± 1.6, 49 ± 6.6, 37 ± 6.3, 8.4 ± 1.3, and 34 ± 7.2%. We
also found that other phyla were significantly increased, such
as Tenericutes and Verrucomicrobia, or significantly decreased,
such as Thermi, in relative abundance after day 13.5 compared
to day 11.25. These observations suggest that AH successfully
reduced the microbial complexity, which may enhance the
accuracy of inferred interactions.

The Inferred Interacting Relations
To infer microbial interactions, we focused on the level of genera.
Overall, 325 genera that were characterized via the QIIME
pipeline were used to construct the interacting relationships
network using MetaMIS. In each run, pairwise interacting
relationships with defined criteria (such as commensalism or
amensalism) were generated. We obtained interacting paired
relationships for 26,320 to 26,327 pairs in 100 permutations.

TABLE 1 | Time-dependent phylogenetic diversity spanning 15 days

over AH.

Time Richness Shannon Simpson Inverse Simpson

(day) index index index

1 14 ± 1.47 1.32 ± 0.1 0.68 ± 0.03 3.17 ± 0.33

11 13.67 ± 1.45 0.94 ± 0.4 0.47 ± 0.21 2.56 ± 0.87

11.25 13.25 ± 0.25 0.41 ± 0.07a 0.18 ± 0.03a 1.22 ± 0.04a

11.5 12.67 ± 0.88 1.15 ± 0.2 0.63 ± 0.06b 2.81 ± 0.43

11.75 13.67 ± 0.67 0.3 ± 0.19 0.13 ± 0.09 1.18 ± 0.14

12 15 ± 1.15 1.36 ± 0.06b 0.69 ± 0.03b 3.32 ± 0.34b

12.5 17.33 ± 2.96 1.14 ± 0.12b 0.56 ± 0.08b 2.41 ± 0.42

13 19.33 ± 3.38 1.2 ± 0.17b 0.62 ± 0.09b 2.87 ± 0.57

13.5 11.75 ± 0.75 1.24 ± 0.05b 0.64 ± 0.04b 2.91 ± 0.31b

14 14 ± 0.41 1.32 ± 0.07b 0.69 ± 0.03b 3.36 ± 0.32b

14.5 14.25 ± 1.11 1.31 ± 0.14b 0.63 ± 0.07b 2.93 ± 0.49b

15 13.4 ± 1.21 1.31 ± 0.03b 0.68 ± 0.01b 3.17 ± 0.13b

Within each column, values not sharing superscripts (a and b) differ significantly (p-value

< 0.05, Student’s t-test). Values are expressed as mean values ± SD.

After analysis, 10,314 inferred interaction pairs (IIPs) passed
the permutation criterion (cutoff > 0.5 described in Methods),
including 1,568 commensal, 1,737 amensal, 3,777 mutual, and
3,232 competitive relationships (Supplementary Table 4). For
reference, we also constructed the interaction network at the
species level (Supplementary Table 5). Most inferred relations
are consistent in both networks generated in the level of genera
and species.

To choose probiotic bacteria for the validation of IIPs,
we surveyed the literature and selected three genera, i.e.,
Lactococcus, Lactobacillus, and Pediococcus that have been
commonly used in probiotic treatments in raniculture (Dias
et al., 2010; Mendoza et al., 2012). In our dataset, there were
84, 64, and 60 IIPs correlated to Lactococcus, Pediococcus, and
Lactobacillus, respectively. Therefore, we selected Lactococcus
as the target probiotic. In order to select the commensal
partners for Lactococcus, we further surveyed the genera that
directly imposed beneficial effects on Lactococcus (inferred
from the interaction network). Corynebacterium was selected
due to the fact it had the highest beneficial effects in
the network. Additionally, Bacillus imposed beneficial effects
on Corynebacterium and was selected from 69 IIPs of
Corynebacterium. Consequently, in this study, we performed
oral administration using three representatives of these genera,
i.e., L. garvieae, C. variabile, and B. coagulans to validate
the inferred interacting relations in gut microbes of the
treefrogs.

To further describe probiotic networks, we identified specific
IIPs for Lactococcus, Corynebacterium, and Bacillus from
1,012 IIPs to pinpoint the genera that directly or indirectly
interact with our selected bacteria (Supplementary Table 6).
There were 84 IIPs interacting with Lactococcus, including
one commensal, 41 mutual, one amensal, and 41 competitive.
From the 84 interacting partners with Lactococcus, three
of them were predominant genera (relative abundance on
average was larger than 5%), Bacteroides (20.8 ± 16.2%),
Citrobacter (6.6 ± 10.4%), and Shewanella (16.3 ± 24.1%),
and were all inferred as competing partners, suggesting that
a considerable population that colonized the treefrog intestine
may intrinsically inhibit the genus Lactococcus. The number
of IIPs with Corynebacterium and Bacillus were 69 and 60
respectively. It is worth noting that compared with Lactococcus,
Corynebacterium had more mutual relations with other intestinal
bacteria; there were no amensal relationships and only 21 of 69
IIPs were competitive. A small group of microbes that interact
with Lactococcus, Corynebacterium, and Bacillus is shown in
Figure 2.

Oral Administration of L. Garvieae,
C. variabile, and B. Coagulans
From the inferred interactions, 84, 69, and 60 IIPs were correlated
to Lactococcus, Corynebacterium, and Bacillus, respectively. After
oral administration of the three representative probiotics of
these genera (L. garvieae, C. variabile, and B. coagulans), 65,
57, and 52 IIPs of Lactococcus, Corynebacterium, and Bacillus
were identified in the trial by 16S rRNA amplicon analysis.
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FIGURE 1 | Time dependent taxonomic composition spanning 15 days over AH. Taxonomic composition of fecal microbiota over 12 time points including pre-

and post-artificial hibernation (AH) at the phylum level. Each bar represents one individual.

FIGURE 2 | Inferred interaction partners of Bacillus, Corynebacterium, and Lactococcus. Complex relationships were inferred from gut bacterial communities

in the 15-day time series data. Each node represents an inferred interaction partner (IIP) and each edge represents an inferred interaction relation between them. The

edges in green represent commensal or mutual interactions, and the edges in red represent amensal or competitive interactions. Only the IIPs that contained two

inferred interaction relationships are shown.

The IIPs with abundance data of zero were excluded from
the following analysis. Oral administration of three distinct
bacterial species representative of each genus led to successful
gut colonization, and led to a reasonable change in IIPs. In
the G1 treatment group (oral administration of L. garvieae),

Lactococcus significantly increased in relative abundance 9.88
± 2.1-fold compared with control (G5 treatment group)
(Supplementary Table 6). In the G2 treatment group (oral
administration of C. variabile), Corynebacterium significantly
increased in relative abundance 160.51 ± 58.54-fold (data
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insufficient to test the change of Lactococcus). On the other
hand, in the G3 treatment group (oral administration of B.
coagulans), the relative abundance of Bacillus decreased 0.59 ±

0.49-fold, with no change in Corynebacterium, and a 1.91± 0.49-
fold increase in Lactococcus. In the G4 treatment group (oral
administration of a combination of L. garvieae, C. variabile, and
B. coagulans), as expected, Lactococcus significantly increased in
relative abundance 26.17 ± 6.96-fold (Wilcoxon’s test, p-value
< 0.05), 2.64 times greater increase than see for L. garvieae
alone, reflecting the positive effects of the commensal partners.
Also in the G4 treatment group,Corynebacterium increased 95.99
± 9.57-fold in relative abundance (Wilcoxon’s test, p-value =

0.0625), while Bacillus decreased 0.09 ± 0.04-fold in relative
abundance in comparison with controls, reflecting the inhibitory
effect of Lactococcus. Figure 3 and Supplementary Table 7

illustrated the relative abundances of microbes that interact with
Lactococcus, Corynebacterium, and Bacillus after the two-week
oral trials.

The inferred network describes the potential interactions
among genera, in addition to the interactions mentioned above,
more information remained to be discussed (Figure 3). For
example, a recent in vitro experiment showed an inhibition of
L. garvieae K2 against Klebsiella pneumoniae U11468 (Olaoye,
2016), and our network inference also suggests a similar

interaction between these two species. To test the whole
immune response after oral probiotic administration, IL-10, an
immunoregulatory cytokine involved in immune response in
amphibians, was used as an index. The frog IL-10 contains
conserved amino acid residues and motifs that are essential
for bioactivity. The same residues have been proved to be
necessary for immunostimulatory function of human IL-10.
Studies have been done using IL-10 expression to examine the
host immune response to bacterial infection (Qi et al., 2015).
In our study, we found that IL-10 expression variation was
consistent with the level of Lactococcus in G1 to G4 treatment
groups (Table 2). For example, IL-10 expression was increased
in the G1 treatment group, while the corresponding level of
Lactococcus in G1 was upregulated by 9.88, and the change was
significant compared with controls (Wilcoxon’s test, p-value <

0.05). In addition, IL-10 level in the G4 treatment group was
significantly higher than in controls, also reflecting the high
Lactococcus level in G4. These results also support the idea that
a cooperative combination of Lactococcus triggered significantly
higher expression of IL-10 than observed when using a single
strain.

To validate the inferred interaction network, the
corresponding changes of all IIPs were evaluated by calculating
the fold changes between the test and control groups. In

FIGURE 3 | Relative abundance of IIPs of Bacillus, Corynebacterium, and Lactococcus after two-week oral trials. Five oral administrations included (A)

G1: L. garvieae (107 CFU g−1) in 0.9% saline, (B) G2: C. variabile (107 CFU g−1) in 0.9% saline, (C) G3: B. coagulans (10
7 CFU g−1) in 0.9% saline, (D) G4: A

combination of B. coagulans, C. variabile, and L. garvieae (each contains 107 CFU g−1) in 0.9% saline, and (E) G5: Control (0.9% saline). Each node represents an IIP

that is correlated with Bacillus, Corynebacterium, or Lactococcus, and each edge represents an inferred interaction relation between them. The edges in green

represent commensal or mutual interactions, and the edges in red represent amensal or competitive interactions. To better visualize the distribution, the size of each

node represents the relative abundance of gut microbes in logarithmic scale.
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TABLE 2 | Expression analysis of IL-10 and level of Lactococcus.

Treatment N Fold change of IL-10 Fold change

(log base 2) of Lactococcus

G1 4 1.64 ± 1.64 9.88 ± 2.1*

G2 4 1.48 ± 2.11 NA

G3 4 2.34 ± 1.81* 1.91 ± 0.49

G4 4 1.68 ± 1.22* 26.17 ± 6.96*

Gut tissues sampled for quantitative PCR analysis. The expression levels of IL-10 were

determined relative to β-actin. The expression changes of IL-10 were expressed as fold

change (log base 2) relative to controls. p-values generated by paired sample Student’s

t-test between test groups and controls are shown (*p-values < 0.05). The relative

abundance changes of Lactococcus by 16S rRNA amplicon analysis were expressed as

fold change relative to controls. Values are expressed asmeans±SD. NA, data insufficient

for test. L. garvieae (G1 ), C. variabile (G2 ), B. coagulans (G3 ), and a combination of the

three strains (G4 ).

the G1 group, after oral administration of L. garvieae for 2
weeks, 52.3% (34 out of 65) of IIPs correlated with Lactococcus
responded consistently with our inferred relations, including one
commensal, 10 competitive, and 23 mutual interactions (Table 3
and Supplementary Table 6). There were 47.4% (27 out of 57)
and 46.2% (24 out of 52) of IIPs correlated with Corynebacterium
and Bacillus, respectively, which also responded consistently
with our inferred relations. However, there were 23.1% (15 out
of 65), 31.6% (18 out of 57), and 34.6% (18 out of 52) IIPs that
correlated with Lactococcus, Corynebacterium, and Bacillus,
presenting a conflicting response with our inferred relations,
respectively. Overall, in the G1 treatment group, the ratio of
IIPs that responded according to the inferred relationship
was 48.9% (85 out of 174), the ratio of IIPs that showed a
conflicting response to the inferred relationships was 29.3% (51
out of 174) (Table 3). In the evaluations for the G2, G3, and
G4 treatment groups, we found 43.1–54.4% of corresponding
changes of IIPs were consistent with the inferred interaction
(Table 3).

DISCUSSION

Recent advances in sequencing technology have created a
new opportunity to explore population of microbes and
their associations with environmental changes. Combining
mathematical and computational models to infer the interacting
networks reveals more details of microbe-microbe and microbe-
host interactions. For example, Stein et al. (2013) extended
generalized Lotka-Volterra equations to study the mechanism
of C. difficile colonization in mice. They inferred that the
genera Akkermansia, Blautia, and Coprobacillus had inhibitory
interactions on C. difficile. In contrast, Enterococcus and
Mollicutes could positively affect the growth of C. difficile,
while the genus Barnesiella was predicted to inhibit growth
of the genus Enterococcus. The results highlight a multi-
layered sub-network associated with C. difficile. A study by
Trosvik et al. (2010) also inferred microbial interactions in
human infant gut using a dynamic systems modeling approach
called time-dependent generalized additive models (GAM).
They showed an agreement between predictions by dynamic

TABLE 3 | Validation of IIPs that correlate with Lactococcus,

Corynebacterium, or Bacillus.

Total Treatment Consistent Conflict No

IIPs IIPs IIPs difference

Lactococcus 65 G1 34 (52.3%) 15 (23.1%) 16 (24.6%)

G2 30 (46.2%) 14 (21.5%) 21 (32.3%)

G3 28 (43.1%) 19 (29.2%) 18 (27.7%)

G4 31 (47.7%) 16 (24.6%) 18 (27.7%)

Corynebcaterium 57 G1 27 (47.4%) 18 (31.6%) 12 (21.1%)

G2 27 (47.4%) 13 (22.8%) 17 (29.8%)

G3 31 (54.4%) 17 (29.8%) 9 (15.8%)

G4 31 (54.4%) 13 (22.8%) 13 (22.8%)

Bacillus 52 G1 24 (46.2%) 18 (34.6%) 10 (19.2%)

G2 24 (46.2%) 14 (26.9%) 14 (26.9%)

G3 23 (44.2%) 19 (36.5%) 10 (19.2%)

G4 27 (51.9%) 13 (25%) 12 (23.1%)

Values are number of IIRs that correlate with Lactococcus, Corynebacterium, or Bacillus

in each treatment group. The value in parentheses corresponds to the ratio of consistent

IIPs, conflict IIPs, and no difference. L. garvieae (G1 ), C. variabile (G2 ), B. coagulans (G3 ),

and a combination of the three strains (G4 ).

interaction modeling and observed data of Firmicutes and
Proteobacteria, suggesting that microbe-microbe interactions
were sufficient to explain the growth patterns via modeling
from time-series data. However, due to the complexity of
microbial composition and difficulty in handling intestinal
colonization, there was no experimental data to examine the
inferred interactions (Mounier et al., 2008; Trosvik et al., 2010;
Stein et al., 2013; Marino et al., 2014). To fill the gap, in this
study, we used a user-friendly tool, MetaMIS (Shaw et al., 2016),
to apply the Lotka-Volterra equations to infer the microbial
interaction. The results were further validated by manipulating
the gut bacteria and examine the corresponding changes in
microbial composition.

Although MetaMIS is a versatile tool for predicting
microbial relationships, Lotka-Volterra equations still have some
weaknesses, for example, bias resulting from the complexity of
microbiota. For data input, gLV equations require knowledge
of the growth rates of all community members, and the
complexity of microbiota may cause difficulties in determining
the dynamic growth rate calculated from relative abundance,
especially in the case of rare species (Pedrós-Alió, 2012). To
improve the accuracy of MetaMIS, we implemented a time
series data with the microbial communities from simple to
complex for network inference. We firstly used AH in the
treefrog to reduce the microbial diversity, and consequently
less species were involved in the interaction network. After
AH, increased temperature triggered bacterial turnover
in composition, making it possible to reveal the evolving
interactions between bacteria over time. The data also allowed
us to collect time-series data after the perturbation to generate
more dynamic fluctuations and provide deeper insights,
compared with static communities (Holling, 1973; May, 1973,
1974; Ives and Carpenter, 2007). We therefore collected fecal
samples in a 15-day time series, and increased the density of

Frontiers in Microbiology | www.frontiersin.org 8 March 2017 | Volume 8 | Article 525

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Weng et al. Inferring Microbial Interactions and Validation

sampling points after AH to monitor dynamic changes. The
experimental design of the data input could lead to a low ratio of
inconsistent IIPs.

To validate the interactions, we focused on a small group
of microbes that interact with the probiotic strains, which
have been well-studied and applied in raniculture (Dias
et al., 2010; Mendoza et al., 2012). The well-known LAB,
Bacillus, Enterococcus, and Lactococcus, have been described
and applied in many organisms (Balcázar et al., 2007b;
Pasteris et al., 2009a; Dias et al., 2010; Nayak, 2010; Mendoza
et al., 2012). Their inhibitory mechanisms against pathogenic
bacteria have also been discussed (Hyronimus et al., 1998;
Payot et al., 1999; Kesarcodi-Watson et al., 2008; Pasteris
et al., 2009a). Our results indicated that the inferred network
is biologically significant, and the compositional change of
probiotics and the immune responses consistently supported our
inference. In addition, our inferred relations were supported
by the literature. For instance, Enterococcus competed with
Citrobacter and Staphylococcus according to the inferred
interaction, and these relationships were supported by previous
studies showing that Enterococcus spp. 334 maintained its
inhibitory effect against Citrobacter freundii and Staphylococcus
epidermidis in Lithobates catesbeianus (Mendoza et al., 2012).
Another evidence also showed that Enterococcus faecium
imposed an inhibitory effect against C. freundii in Rana
catesbeiana (Pasteris et al., 2009a). In addition, L. garvieae
was found to inhibit C. freundii by the production of
organic acid (Mendoza et al., 2012), and this correlation
between Citrobacter and Lactococcus is in agreement with
our IIPs. Furthermore, the inferred network suggested that
Corynebacterium and Lactococcus were mutually beneficial
partners. This is consistent with the culture-based studies
showing that the culturable microbiota of milk consists of
primarily of LAB such as Enterococcus and Lactococcus, and were
often accompanied by the presence ofCorynebacterium (Coppola
et al., 2008).

In this study we generated a microbial interaction network
of gut microbiota in the treefrog, and sub-groups of inferred
relations were also validated. The experimental approach
using probiotic administration indicated that the inferred
interactions were reliable, and the results were also supported
by the literature. However, there are still some puzzles
remaining. For example, in the G2 treatment group, oral
administration with C. variabile caused barely any beneficial
effects on Lactococcus colonization. Although unexpected
changes of gut probiotic levels were commonly observed
after probiotic treatment (Hai, 2015; Ramos et al., 2015;
Yang et al., 2015), we reasoned that more complex factors
derived from other indirect IIPs also imposed various effects
(commensalism, mutualism, amensalism, and competition) on
these targets. The study is the first attempt to manipulate
gut bacteria composition according to the inferred microbial
interactions. We demonstrated the possibility that the gut
microbiome can be changed accordingly. Moreover, our study
provides a new potential strategy for the use of probiotics in
raniculture.
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Supplementary Figure 1 | Rarefaction analyses for the observed number

of genera from 12 time points. The rarefaction curves for each sample of 12

time points were displayed by different colors.

Supplementary Table 1 | Summary of sample information of 12 time

points spanning 15 days over AH. Values are expressed as mean

values ± SD.

Supplementary Table 2 | Summary of sample information of oral

administration for bacterial composition. Oral administration of five

treatments was carried out for 2 weeks. G1: L. garvieae (107 CFU g−1) in 0.9%

saline. G2: C. variabile (107 CFU g−1) in 0.9% saline. G3: B. coagulans (10
7 CFU

g−1) in 0.9% saline. G4: A combination of B. coagulans, C. variabile, and L.

garvieae (each contains 107 CFU g−1) in 0.9% saline. G5:Control (0.9% saline).

Values are expressed as mean ± SD.

Supplementary Table 3 | Summary of sample information of oral

administration for quantitative PCR. Oral administration of five treatments was

performed over 2 weeks. G1: L. garvieae (107 CFU g−1) in 0.9% saline. G2: C.

variabile (107 CFU g−1) in 0.9% saline. G3: B. coagulans (10
7 CFU g−1) in 0.9%

saline. G4: a combination of B. coagulans, C. variabile, and L. garvieae (each

contains 107 CFU g−1) in 0.9% saline. G5: Control (0.9% saline). Values are

expressed as mean ± SD.

Supplementary Table 4 | Ten thousand and three hundred fourteen

significant inferred interacting pairs (IIPs) identified by MetaMIS. 10,314

IIPs passed the permutation criterion (cutoff > 0.5 described in Methods),

including 1,568 commensal relationships (represented by O), 1,737 amensal

relationships (represented by A), 3,777 mutual relationships (represented by M),

and 3,232 competitive relationships (represented by C).

Supplementary Table 5 | The raw data for the interaction network at the

species level. 1,568 IIPs passed the permutation criterion (cutoff > 0.5

described in Methods), including 174 commensal relationships (represented by O),

211 amensal relationships (represented by A), 461 mutual relationships

(represented by M), and 722 competitive relationships (represented by C).

Supplementary Table 6 | Fold change of the inferred relationships with

Lactococcus, Corynebacterium, and Bacillus. Commensalism is represented

by O, amensalism by A, mutualism by M, and competition by C. Fold changes are

expressed as mean values ± SD. NA, data insufficient for test.

Supplementary Table 7 | Relative abundance of IIPs of Bacillus,

Corynebacterium, and Lactococcus after 2-week oral trials. Five oral

administrations included G1: L. garvieae (107 CFU g−1) in 0.9% saline. G2: C.

variabile (107 CFU g−1) in 0.9% saline. G3: B. coagulans (10
7 CFU g−1) in 0.9%

saline. G4: A combination of B. coagulans, C. variabile, and L. garvieae (each

contains 107 CFU g−1) in 0.9% saline. G5: Control (0.9% saline). Values are

expressed as mean values ± SD.
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