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miRFA: an automated pipeline for
microRNA functional analysis with
correlation support from TCGA and TCPA
expression data in pancreatic cancer
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Abstract

Background: MicroRNAs (miRNAs) are small RNAs that regulate gene expression at a post-transcriptional level and
are emerging as potentially important biomarkers for various disease states, including pancreatic cancer. In silico-
based functional analysis of miRNAs usually consists of miRNA target prediction and functional enrichment analysis
of miRNA targets. Since miRNA target prediction methods generate a large number of false positive target genes,
further validation to narrow down interesting candidate miRNA targets is needed. One commonly used method
correlates miRNA and mRNA expression to assess the regulatory effect of a particular miRNA.
The aim of this study was to build a bioinformatics pipeline in R for miRNA functional analysis including correlation
analyses between miRNA expression levels and its targets on mRNA and protein expression levels available from
the cancer genome atlas (TCGA) and the cancer proteome atlas (TCPA). TCGA-derived expression data of specific
mature miRNA isoforms from pancreatic cancer tissue was used.

Results: Fifteen circulating miRNAs with significantly altered expression levels detected in pancreatic cancer
patients were queried separately in the pipeline. The pipeline generated predicted miRNA target genes, enriched
gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways. Predicted miRNA
targets were evaluated by correlation analyses between each miRNA and its predicted targets. MiRNA functional
analysis in combination with Kaplan-Meier survival analysis suggest that hsa-miR-885-5p could act as a tumor
suppressor and should be validated as a potential prognostic biomarker in pancreatic cancer.

Conclusions: Our miRNA functional analysis (miRFA) pipeline can serve as a valuable tool in biomarker discovery
involving mature miRNAs associated with pancreatic cancer and could be developed to cover additional cancer
types. Results for all mature miRNAs in TCGA pancreatic adenocarcinoma dataset can be studied and downloaded
through a shiny web application at https://emmbor.shinyapps.io/mirfa/.
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Background
MicroRNAs (miRNAs) are small RNAs of about 19–24
nucleotides [1]. Two miRNA isoforms, termed -3p and
-5p arms, are formed from stem-loops that originate from
miRNA genes. Usually one of the mature miRNAs, called
the passenger strand, is degraded and the other strand,
often referred to as guide strand, is playing a role in
miRNA-mediated regulation [1]. Nonetheless, both
strands may act in miRNA-mediated regulation. MiRNAs
are generally considered down-regulators of mRNAs at a
post-transcriptional level, but they can also act as up-
regulators [2, 3]. In miRNA-mediated down-regulation,
translational repression is usually the primary event
followed by mRNA degradation [4]. MiRNA-mediated up-
regulation may occur indirectly by interfering with repres-
sive miRNA ribonucleoprotein complex (miRNPs) or dir-
ectly by the activity of miRNPs [5]. Positive regulation
seems to be restricted to certain cell conditions, for in-
stance cells in G0 cell cycle state [2].
Pancreatic ductal adenocarcinoma (PDAC) is the most

common form of malignant pancreatic neoplasms [6],
often diagnosed at a late clinical stage, with very poor
prognosis due to early metastatic spread [7]. The most
commonly used diagnostic biomarker today is carbohy-
drate antigen 19–9 (CA 19–9). However, this biomarker
has several disadvantages including suboptimal specifi-
city, with elevated levels detected in other diseases, and
false negative detections [8]. Hence, research efforts
need to be directed towards finding novel, more reliable
biomarkers. MiRNAs are highly stable in blood and have
been studied as potential non-invasive biomarkers in nu-
merous diseases, including pancreatic cancer [7, 9, 10].
Recently, 15 circulating miRNAs with significantly al-
tered expression levels at PDAC diagnosis were identi-
fied and a combination of these miRNA biomarkers was
shown to outperform CA 19–9 as a diagnostic marker in
terms of area under curve (AUC) [7].
In order to understand the role of miRNA biomarkers,

in silico-based functional analysis can be performed,
which typically consists of target prediction following
functional enrichment analysis of identified miRNA tar-
gets [11]. Several R packages and web resources exist for
miRNA functional analysis. MultiMiR [12] and RBio-
mirGS [13] are R packages that perform miRNA target
prediction, while RBiomirGS performs functional enrich-
ment analysis as well. The R package MiRComb utilizes
miRNA-mRNA expression correlations followed by
miRNA target prediction based on negatively correlated
targets [14]. MiRLAB performs target prediction and en-
richment analysis in combination with mRNA and
miRNA expression data provided by the user or from
the cancer genome atlas (TCGA) to infer regulatory re-
lationships [15]. Recently, a shiny web application
named miRCancerdb was published, enabling users to

study correlations between miRNA expression to its tar-
gets or non-targets on mRNA and protein expression
levels using TCGA data [16, 17]. Another example of a
web-based tool is DNA intelligent analysis (DIANA)-
mirPath v3.0 [18], which performs miRNA target predic-
tion and functional enrichment generating a list of target
genes as well as gene ontology (GO) terms and Kyoto
encyclopedia of genes and genomes (KEGG) pathways.
MiRNA target predictions usually generate a high

false-positive rate and the most preferable way of evalu-
ating miRNA target predictions is experimental valid-
ation [19]. This is however not always possible due to a
high number of predicted targets, although databases for
collected experimentally validated miRNA targets exist
[20]. Validation of identified miRNA targets is a chal-
lenge and an intermediate step from prediction to wet
lab validation is of great benefit to narrow down inter-
esting candidates. One in silico-based validation ap-
proach is to correlate miRNA and mRNA expression
levels in combination with miRNA target prediction. A
common approach when analyzing the regulatory effect
of specific miRNAs is to study changes on mRNA level,
whereas regulatory effect of miRNA might in some cases
only impact the protein level [4]. In a correlation ana-
lysis approach, it is helpful to include protein expression
levels since mRNA levels do not always correlate with
protein expression levels [21]. Another limitation of
some studies is the assumption that miRNAs act as
down-regulators of target genes, which is why mainly
negative correlation is often considered [22, 23]. As
mentioned, positive miRNA-mediated regulation may
also occur [2, 3] and hence it is important to also in-
clude positive correlations.
Here, we describe miRNA functional analysis (miRFA),

a pipeline built in R that provides following features:

1) MiRNA target prediction using two target
prediction databases and one experimentally
validated target database

2) Correlation analysis between miRNA and its
predicted target genes on mRNA and protein
expression levels derived from TCGA pancreatic
adenocarcinoma (PAAD) project

3) Functional enrichment of significantly correlated
miRNA targets

The novelty of our pipeline is the combination of in-
cluding mature miRNA expression levels (isoform quan-
tification) from TCGA-PAAD, protein expression levels
from the cancer proteome atlas (TCPA) [24], and func-
tional enrichment of both negatively and positively cor-
related miRNA-targets. Combination of the above-
mentioned features in one tool may facilitate the re-
search in miRNA biomarker discovery in pancreatic
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cancer. The tool was built in R and to make it even
more accessible to users not familiar with R, we devel-
oped a shiny web app available at https://emmbor.shi-
nyapps.io/mirfa/, where results for all miRNAs detected
in TCGA-PAAD can be retrieved [17].

Results
An overview of the miRFA pipeline is shown (Fig. 1). The
input is a mature miRNA name and the output contains
lists of miRNA target genes, Venn diagrams of target
genes, miRNA targets correlations on mRNA and protein
expression levels, and significantly enriched GO terms
and KEGG pathways. For correlation analysis, we imple-
mented miRNA isoform quantification data from TCGA
in order to separate between expression levels of -3p and
-5p arms of mature miRNAs. To illustrate the difference
between expression levels of the precursor miRNA gene
and the mature miRNA isoforms, hsa-mir-144 was plotted
as an example together with expression levels of mature
isoforms hsa-miR-144-3p and hsa-miR-144-5p (Fig. 2).

The expression levels of the precursor hairpin hsa-mir-
144 is more similar to the mature miRNA hsa-miR-144-
5p compared to hsa-miR-144-3p.

Predicted miRNA targets partially overlap
MiRNA target prediction was performed in three databases;
DIANA-TarBase v7 [25], DIANA-microT-CDS [26] and
TargetScan v7.1 [27]. The largest number of predicted tar-
gets was generally identified from TargetScan, exceeding
3000 predicted target genes for many of the miRNAs
(Fig. 3). That said, no target gene was found in TargetScan
for hsa-miR-101-3p.
A moderately sensitive threshold of 0.7 was used for

DIANA-microT-CDS which affects the number of pre-
dicted miRNA targets. Defining a less restrictive thresh-
old could generate more targets that are also present in
DIANA-TarBase, but it could also introduce a higher num-
ber of false positives. The generated Venn diagrams show
that some of the miRNA targets in DIANA-TarBase were
not identified by the in silico prediction tools (Additional

Fig. 1 Overview of miRFA pipeline. The input is a mature miRNA name. MiRNA target prediction is performed in DIANA-Tarbase v7, DIANA-
microT-CDS and TargetScan v7.1 (1.). The union of predicted miRNA targets (2.) were established as well as correlation values for miRNA-mRNA
and miRNA-protein expression (3.). The list of correlated miRNA targets was subjected to functional enrichment analysis (4.) for gene ontology
(GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways. The output is a list of miRNA target genes, Venn diagrams of target
genes, significantly correlated target genes on mRNA and protein expression levels, and enriched GO terms and KEGG pathways
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file 6: Figure S1). The opposite scenario also occurs, that
targets predicted by TargetScan or DIANA-microT-CDS
have not been experimentally validated.

MiRNA-mRNA correlations
As miRNA target prediction tools can render many
false positives, in silico evaluation data is useful to

narrow down interesting gene candidates. To identify
target genes that may have a role in pancreatic can-
cer progression, expression data of miRNAs, mRNAs,
and proteins from pancreatic cancer tissue was used
to analyze correlations between the query miRNA
and its corresponding target genes on mRNA and
protein levels.

Fig. 2 The difference between hsa-mir-144, hsa-miR-144-3p and hsa-miR-144-5p. Expression values were plotted for 183 TCGA-PAAD samples.
Hsa-mir-144 (mir-144) represents the precursor hairpin expression, whereas hsa-miR-144-3p (miR-144-3p) and hsa-miR-144-5p (miR-144-5p)
represents the mature miRNA isoforms expression. Rpm = reads per million counts, TCGA = the cancer genome atlas,
PAAD = pancreatic adenocarcinoma

Fig. 3 Number of predicted miRNA targets by DIANA-TarBase v7, DIANA-microT-CDS and TargetScan v7.1 for 15 miRNAs. The x axis shows every
miRNA queried and the y axis shows the number of predicted miRNA targets
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In general, the number of significant correlations was
low compared to the number of predicted targets (Fig. 4).
For all 15 miRNAs combined, a total of 10,754 signifi-
cant correlations (adjusted p-value < 0.05) were found,
of which 4203 were positively correlated (Pearson’s cor-
relation coefficient; PCC > 0), and 6551 negatively corre-
lated (PCC < 0). Hsa-miR-106b-5p obtained the highest
number of negative correlations and hsa-miR-24-3p the
highest number of positive correlations.

MiRNA-protein correlation
Correlation analysis of miRNA-protein expression levels
was performed on 98 TCGA-PAAD samples. In total, 43
significant correlations (adjusted p-value < 0.05) were
identified on protein level, consisting of 22 negatively
correlated (PCC < 0) and 21 positively correlated (PCC >
0). Only five miRNAs (hsa-miR-24-3p, hsa-miR-885-5p,
hsa-miR-101-3p, hsa-miR-34a-5p and hsa-miR-22-5p)
were significantly correlated to any of its predicted
miRNA targets on protein expression level (Table 1).
Some genes, such as ‘FYN’, occurs more than once and
the reason for this is that different antibodies have been
used in reverse-phase protein arrays (RPPA) assay [24],
and thus there will be multiple correlations for some
miRNA-target pairs.

MiRNA-mRNA-protein integration
Sixteen miRNA-target gene pairs were significantly cor-
related at both mRNA and protein expression levels

(Table 2). In 12 out of 16 correlations, the Pearson’s cor-
relation coefficient had similar direction on mRNA and
protein levels. For correlation between hsa-miR-24-3p
– CDK1, the correlation is positive on mRNA expression
level (PCC = 0.35) and negative on protein expression
level (PCC = − 0.36). The opposite is observed for the
correlated pairs hsa-miR-885-5p – PRKAA1, hsa-miR-
24-3p – KDR and hsa-miR-22-5p – PIK3CA.

Functional enrichment analysis
Predicted miRNA targets that have been filtered out as
more reliable due to correlation with corresponding miR-
NAs were evaluated further by performing functional en-
richment analysis. The most commonly occurring top GO
term for all miRNA targets combined was binding (GO:
0005488) or protein binding (GO:0005515) for molecular
function (Table 3), and for biological process, no specific
GO term was overrepresented among the 15 miRNAs
studied (Table 4). For cellular compartment (Table 5), 6
miRNAs had a top GO term connected to intracellular
parts (GO:0005622 and GO:0044424). Two miRNAs (hsa-
miR-34a-5p and hsa-miR-885-5p) associated to pancreas-
related GO terms. Hsa-miR-34a-5p was associated to GO:
0031018; endocrine pancreas development and hsa-miR-
885-5p to GO:0003309; type B pancreatic cell differenti-
ation. The miRNAs that did not have any enriched targets
for GO terms or KEGG pathways were excluded from Ta-
bles 3, 4, 5 and 6.

Fig. 4 Number of predicted miRNA targets, positively correlated and negatively correlated miRNA targets on mRNA level (adjusted p-value <
0.05). The x axis shows each miRNA and the y axis shows number of genes (predicted miRNA targets or number of correlated genes). 'Unique
targets' indicate the number of miRNA targets from the union of all three miRNA target prediction databases
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The top KEGG pathway varied among the miRNAs
but the Rap1 signaling pathway (path:hsa04015) was the
only one that occurred more than once (Table 6). No
GO term or KEGG pathway enrichment was found for
correlated miRNA targets of hsa-let-7d-3p, hsa-miR-
122-5p, hsa-miR-197-3p or hsa-miR-451a.

Overlap of miRNAs
Initially, we were interested to see if there are any shared
targets between our panel of 15 differentially expressed
miRNAs. No overlap of predicted miRNA targets was
detected for all 15 miRNAs combined. However, by
studying the established list of their enriched KEGG
pathways, we could determine four miRNAs (hsa-miR-
22-5p, hsa-miR-24-3p, hsa-miR-106b-5p and hsa-miR-
885-5p) associated to hsa0512 ‘Pancreatic cancer’ (see
Additional files 1, 2, 3 and 4). Based on this finding,
miRNA target genes shared between these four miRNAs
were studied further. Sixteen overlapping significantly
correlated miRNA target genes were identified (Table 7).
Nuclear factor I B (NFIB) shows similar correlation coef-
ficients between these four miRNAs.

Survival analysis
Due to many identified correlations observed between the
miRNAs and their target genes suggesting a regulatory
role in pancreatic cancer, we further studied the fifteen
miRNAs as prognostic biomarkers by Kaplan-Meier sur-
vival analysis. The median was used as cut-off and hsa-
miR-885-5p was found to be significantly correlated to

Table 1 Significant correlations between miRNA and its target
gene on protein level
miRNA Protein PCC Adjusted P-value

hsa-miR-101-3p SRSF1 −0.32 0.023

hsa-miR-101-3p FYN 0.31 0.023

hsa-miR-101-3p FYN 0.28 0.048

hsa-miR-101-3p PDCD4 0.31 0.023

hsa-miR-101-3p MTOR 0.33 0.023

hsa-miR-885-5p EGFR −0.29 0.035

hsa-miR-885-5p RAD51 −0.32 0.015

hsa-miR-885-5p CDKN1B 0.34 0.015

hsa-miR-885-5p MSH2 0.33 0.015

hsa-miR-885-5p GSK3B 0.38 0.007

hsa-miR-885-5p PRKAA1 0.33 0.015

hsa-miR-34a-5p NDRG1 −0.33 0.035

hsa-miR-34a-5p EIF4EBP1 −0.32 0.037

hsa-miR-34a-5p EIF4EBP1 −0.35 0.026

hsa-miR-34a-5p AKT1S1 −0.36 0.026

hsa-miR-24-3p ASNS −0.31 0.021

hsa-miR-24-3p JAK2 −0.34 0.014

hsa-miR-24-3p ATM −0.30 0.024

hsa-miR-24-3p CDK1 −0.36 0.014

hsa-miR-24-3p YBX1 −0.31 0.021

hsa-miR-24-3p EIF4EBP1 −0.31 0.021

hsa-miR-24-3p FOXO3 −0.28 0.042

hsa-miR-24-3p RPS6 −0.32 0.021

hsa-miR-24-3p INPP4B 0.35 0.014

hsa-miR-24-3p KDR 0.32 0.021

hsa-miR-24-3p CCNB1 0.35 0.014

hsa-miR-24-3p EGFR 0.34 0.014

hsa-miR-24-3p IRS1 0.28 0.042

hsa-miR-24-3p ITGA2 0.41 0.004

hsa-miR-24-3p CASP3 0.31 0.021

hsa-miR-24-3p YWHAZ 0.31 0.021

hsa-miR-22-5p FYN −0.28 0.049

hsa-miR-22-5p SRC −0.28 0.049

hsa-miR-22-5p YBX1 −0.36 0.007

hsa-miR-22-5p YES1 −0.28 0.049

hsa-miR-22-5p LYN −0.28 0.049

hsa-miR-22-5p PTPN11 −0.36 0.007

hsa-miR-22-5p MYH9 0.28 0.049

hsa-miR-22-5p PEA15 0.37 0.007

hsa-miR-22-5p CASP3 0.37 0.007

hsa-miR-22-5p PIK3CA 0.29 0.049

hsa-miR-122-5p MAPK14 −0.33 0.042

hsa-miR-122-5p EIF4EBP1 0.52 0.000004

PCC Pearson’s correlation coefficient

Table 2 Significant correlations on mRNA and protein
expression levels

miRNA Gene PCC (mRNA level) PCC (protein level)

hsa-miR-101-3p FYN 0.33 0.31

hsa-miR-101-3p FYN 0.33 0.28

hsa-miR-101-3p PDCD4 0.40 0.31

hsa-miR-885-5p CDKN1B 0.25 0.34

hsa-miR-885-5p EGFR −0.46 −0.29

hsa-miR-885-5p PRKAA1 −0.28 0.33

hsa-miR-885-5p RAD51 −0.47 −0.32

hsa-miR-24-3p CCNB1 0.33 0.35

hsa-miR-24-3p CDK1 0.35 −0.36

hsa-miR-24-3p INPP4B 0.37 0.35

hsa-miR-24-3p ITGA2 0.34 0.41

hsa-miR-24-3p KDR −0.24 0.32

hsa-miR-24-3p RPS6 −0.25 −0.32

hsa-miR-24-3p YWHAZ 0.51 0.31

hsa-miR-22-5p PIK3CA −0.20 0.29

hsa-miR-22-5p PTPN11 −0.21 −0.36

PCC Pearson’s correlation coefficient

Borgmästars et al. BMC Bioinformatics          (2019) 20:393 Page 6 of 17



survival (Fig. 5, nominal p-value = 0.032). However, after
adjusting for multiple hypothesis testing, none of the 15
miRNAs analyzed was significant for overall survival in
the TCGA-PAAD dataset (Additional file 6: Figure S2).

Network analysis of hsa-miR-885-5p targets
The correlated miRNA target genes can be used for
other downstream analyses, one example used here is
network analyses. For this, we used hsa-miR-885-5p as
an example and analyzed negatively and positively corre-
lated targets separately. Hub genes were extracted
(Fig. 6), where the top 10 connected proteins are shown
together with the rank of each hub gene. ClueGO and
CluePedia were used to visualize the interplay between
significant KEGG pathways and to see which genes

connect the pathways (Fig. 7). Negatively and positively
correlated gene targets were handled separately. To nar-
row down the number of targets analyzed, a correlation
coefficient cut-off of 0.4 (positive correlations) or − 0.4
(negative correlations) was used. Consequently, only tar-
get genes correlating on mRNA expression levels were
included in these analyses as the targets correlated on
protein expression levels were below this cutoff. Three
genes are shared between many pathways in the nega-
tively correlated network (Fig. 7a); EGFR (9 pathways),
CTNNB1 (10 pathways) and NRAS (9 pathways).

Comparison to other tools
MiRFA has the strength of combining miRNA target pre-
diction and correlation analyses (positive and negative

Table 3 Top significant molecular function GO term for each miRNA. ‘Count’ represents number of miRNA targets enriched

miRNA GO term Count P-value

hsa-let-7d-3p GO:0140110 transcription regulator activity 8 0.004

hsa-miR-101-3p GO:0005488 binding 622 < 0.001

hsa-miR-106b-5p GO:0005488 binding 1633 < 0.001

hsa-miR-130b-3p GO:0005024 transforming growth factor beta-activated receptor activity 5 < 0.001

hsa-miR-144-3p GO:0005515 protein binding 91 < 0.001

hsa-miR-197-3p GO:1901363 heterocyclic compound binding 5 0.011

hsa-miR-22-5p GO:0005515 protein binding 695 < 0.001

hsa-miR-24-3p GO:0005515 protein binding 1447 < 0.001

hsa-miR-26a-5p GO:0005488 binding 423 < 0.001

hsa-miR-34a-5p GO:0005488 binding 1442 < 0.001

hsa-miR-423-3p GO:0044212 transcription regulatory region DNA binding 31 < 0.001

hsa-miR-451a GO:0005515 protein binding 23 0.011

hsa-miR-574-3p GO:0003674 molecular_function 147 0.001

hsa-miR-885-5p GO:0005488 binding 1335 < 0.001

NA not applicable

Table 4 Top significant biological process GO term for each miRNA. ‘Count’ represents number of miRNA targets enriched

miRNA GO term Count P-value

hsa-let-7d-3p GO:0051962 positive regulation of nervous system development 5 0.001

hsa-miR-101-3p GO:0019219 regulation of nucleobase-containing compound metabolic process 249 < 0.001

hsa-miR-106b-5p GO:0007399 nervous system development 356 < 0.001

hsa-miR-130b-3p GO:0046834 lipid phosphorylation 11 < 0.001

hsa-miR-144-3p GO:0072659 protein localization to plasma membrane 7 0.001

hsa-miR-22-5p GO:0051641 cellular localization 253 < 0.001

hsa-miR-24-3p GO:0023051 regulation of signaling 516 < 0.001

hsa-miR-26a-5p GO:0002009 morphogenesis of an epithelium 28 < 0.001

hsa-miR-34a-5p GO:0050794 regulation of cellular process 1084 < 0.001

hsa-miR-423-3p GO:0065009 regulation of molecular function 77 < 0.001

hsa-miR-451a GO:0000165 MAPK cascade 8 < 0.001

hsa-miR-574-3p GO:0071495 cellular response to endogenous stimulus 22 0.001

hsa-miR-885-5p GO:0031323 regulation of cellular metabolic process 603 < 0.001

NA not applicable
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correlations) on both mRNA and protein expression levels.
Furthermore, miRFA includes mature miRNA expression
in the correlation analyses and performs functional enrich-
ment of the correlated targets. Another strength of our tool
is that it is also web-based. We compared our tools to
others that perform miRNA functional analysis or func-
tional annotations (Table 8). MiRFA and miRCancerdb [16]
are both available as R packages and web-based tools. Mul-
tiMiR [12], RBiomirGS [13], MiRComb [14] and miRLab
[15] are only available as R packages, whereas MiRpath
[18], miEAA [28], TAM [29] and GeneTrail2 [30] are web-
based resources. Four tools (miRFA, miRCancerdb, miR-
Comb, miRLab) take into account correlation analysis in
combination with miRNA target prediction. Our tool does
not provide information on miRNA annotation such as
miRNA clusters or families that can be obtained using
miEAA or TAM tools. Furthermore, our tool does not offer

a functional analysis of precursor hairpin miRNAs and is
restricted to pancreatic cancer in its current form.
In addition to the feature comparison between tools,

shown in Table 8, we analyzed our list of 15 miRNAs
(Tables 9 and 10) in miRCancerdb. Since MiRCancerdb
does not provide the option to analyze functional enrich-
ment, this feature was not considered for a comparison.
In order to obtain all correlated targets in miRCancerdb,
we set a threshold to 10,000 correlations, and select pa-
rameters ‘PAAD’ for TCGA study code, ‘Targets only’ for
feature type and both direction of correlation with an
absolute minimum of 0 for correlation. MiRCancerdb
has filtered out correlations less than 0.1 so these corre-
lations were not included in our comparison since we
used the web-based tool [16]. Since miRCancerdb is
built with precursor miRNAs, we used the precursor
names of our 15 miRNAs. To benchmark miRCancerdb
with our tool, we used the genes list from KEGG path-
way hsa05212 pancreatic cancer (75 genes) and counted
how many pancreatic cancer-related genes were ob-
tained in the two tools (Tables 9 and 10). MiRNAs with
0 correlated targets in both tools were excluded from
the tables. MiRCancerdb generates some overlap of cor-
related targets between has-mir-144 (miRCancerdb) and
hsa-miR-144-3p (miRFA), but we can also find overlap
of correlated targets between mir-144 (miRCancerdb)
and the other mature miRNA; hsa-miR-144-5p (miRFA).

Discussion
The aim of this study was to build a bioinformatics pipe-
line for miRNA functional analysis and correlation ana-
lyses for in silico evaluation (Fig. 1). Expression data of
mature miRNA isoforms was included in correlation
analyses since the differentially expressed mature miR-
NAs were used as input miRNAs in the pipeline (Fig. 2).
Many of the TCGA samples showed expression in hsa-
miR-144-3p and not in hsa-miR-144-5p. Relying on the

Table 5 Top significant cellular component GO term for each
miRNA. ‘Count’ represents number of miRNA targets enriched

miRNA GO term Count P-value

hsa-let-7d-3p GO:0044459 plasma membrane part 8 0.026

hsa-miR-101-3p GO:0005654 nucleoplasm 224 < 0.001

hsa-miR-106b-5p GO:0005622 intracellular 1630 < 0.001

hsa-miR-130b-3p GO:0044444 cytoplasmic part 196 < 0.001

hsa-miR-144-3p GO:0070161 anchoring junction 14 < 0.001

hsa-miR-22-5p GO:0044424 intracellular part 828 < 0.001

hsa-miR-24-3p GO:0005737 cytoplasm 1388 < 0.001

hsa-miR-26a-5p GO:0044424 intracellular part 427 < 0.001

hsa-miR-34a-5p GO:0005622 intracellular 1431 < 0.001

hsa-miR-423-3p GO:0005737 cytoplasm 191 < 0.001

hsa-miR-451a GO:0031252 cell leading edge 6 < 0.001

hsa-miR-574-3p GO:0044424 intracellular part 132 < 0.001

hsa-miR-885-5p GO:0005622 intracellular 1322 < 0.001

NA not applicable

Table 6 Top significant KEGG pathway for each miRNA. ‘Count’ represents number of miRNA targets enriched

miRNA Pathway Count P-value

hsa-miR-101-3p path:hsa04070 Phosphatidylinositol signaling system 13 < 0.001

hsa-miR-106b-5p path:hsa04015 Rap1 signaling pathway 46 < 0.001

hsa-miR-130b-3p path:hsa04350 TGF-beta signaling pathway 8 < 0.001

hsa-miR-144-3p path:hsa05200 Pathways in cancer 7 0.041

hsa-miR-22-5p path:hsa04360 Axon guidance 23 < 0.001

hsa-miR-24-3p path:hsa05100 Bacterial invasion of epithelial cells 24 < 0.001

hsa-miR-26a-5p path:hsa04510 Focal adhesion 15 < 0.001

hsa-miR-34a-5p path:hsa04810 Regulation of actin cytoskeleton 38 < 0.001

hsa-miR-423-3p path:hsa04015 Rap1 signaling pathway 13 < 0.001

hsa-miR-574-3p path:hsa01522 Endocrine resistance 6 < 0.001

hsa-miR-885-5p path:hsa05160 Hepatitis C 28 < 0.001

NA not applicable
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precursor hsa-mir-144 expression would have caused
false-positive expression values as the precursor hsa-
mir-144 expression pattern is more similar to the ex-
pression of the -5p mature miRNA in this case. The
pipeline generated miRNA targets, correlated targets,
enriched GO terms and KEGG pathways for 15 miR-
NAs. This study utilized input miRNAs detected in

plasma samples of PDAC patients [7], whereas the ex-
pression data used for correlation analyses originated
from tumor tissue. The circulating miRNAs could be
a leakage from the tumor or a systemic response to
the cancer state.
MiRNA target prediction tends to generate a lot of

false-positives [19], which is why correlation analyses

Table 7 Pearson’s correlation coefficient shown for overlapping predicted miRNA target genes of four miRNAs

Gene hsa-miR-22-5p hsa-miR-24-3p hsa-miR-106b-5p hsa-miR-885-5p

MAP 1B - 0.24 - 0.20 - 0.40 0.33

NFIB - 0.19 - 0.33 - 0.35 - 0.29

REV3L - 0.22 - 0.28 - 0.30 0.18

LONRF2 - 0.24 - 0.26 - 0.34 0.34

TMTC1 - 0.24 - 0.22 - 0.21 0.21

MSANTD4 - 0.30 - 0.18 - 0.29 0.22

HCN1 - 0.23 - 0.24 - 0.33 0.17

SIK2 - 0.23 - 0.21 - 0.22 0.38

GABRG2 - 0.22 - 0.19 - 0.24 0.33

DCX - 0.20 - 0.21 - 0.22 0.25

KCND3 - 0.21 - 0.28 - 0.35 0.28

NTRK2 - 0.19 - 0.28 - 0.23 0.19

CNTNAP5 - 0.21 - 0.24 - 0.28 0.21

FRRS1L - 0.32 - 0.22 - 0.36 0.37

MGAT4C - 0.21 - 0.31 - 0.28 0.44

TMEM134 0.32 0.18 0.27 - 0.19

Fig. 5 Overall survival for hsa-miR-885-5p using median log2(rpm + 1) expression as cut-off. Expression = 0 is the group that has a value below
median and expression = 1 is the group that has a value above median. The nominal p-value is displayed (p = 0.032), but was not significant after
multiple hypothesis correction using Benjamini-Hochberg
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between each miRNA and its predicted targets were per-
formed as an in silico evaluation. Correlation analysis is
one way of determining the dependency between two
variables [31] and was applied on expression levels of
miRNA and its target genes on both mRNA and protein
levels in this study. Correlation analyses do not automat-
ically indicate that the dependency is direct, however,
since the miRNA-gene pairs were predicted to interact, it
gives a stronger support for a miRNA-mediated regulation
effect. Including the correlation analyses saves time in
post-processing steps of extracting interesting miRNA tar-
get candidates since the output list of interesting candi-
dates becomes shorter after in silico evaluation.
The number of correlated miRNA-target pairs (on

mRNA expression level) were not associated to the
number of targets predicted by the databases (Fig. 4), i.e.
that a higher number of predicted miRNA targets would
automatically generate a higher number of significant
correlations. In the study by Seo et al. [21], protein ex-
pression data was included in the correlations as
miRNA-mediated regulation acts post-transcriptionally
and thus mainly affects the protein expression levels.
MiRNAs regulate their targets by degradation or repres-
sion and an effect on the protein level might not always
be visible on mRNA level [4]. Hence, when possible, the
protein expression levels are useful in correlation-based
in silico evaluation. One limitation for using correlation

analyses based on mRNA and protein expression data is
the risk for false negatives, due to missing expression
data for some predicted targets, especially for the pro-
tein expression data in this case. TCPA provide expres-
sion data for around 200 proteins and resulted in only
43 significant correlations (Table 1) as compared to a
total of 10,754 correlated miRNA-target pairs on mRNA
expression level (see Additional file 5) accounting for all
15 miRNAs. Hence, there is a need for more high-
throughput proteomics for miRNA functional analysis
purposes. No feature was included in the pipeline to
show which targets were not available among mRNA or
protein expression data.
A possible drawback of our pipeline is introduction of

false positive correlations between miRNAs and its tar-
gets. The trade-off between specificity and sensitivity in
biomarker discovery is always of great importance. Our
intention with the proposed pipeline is to provide a tool
that will support an early phase of exploratory research
on candidate biomarkers in heterogeneous diseases.
Given that premise, we suggest that the value of finding
novel important biomarkers may override the concern
with introducing false connections.
Kaplan-Meier survival analysis suggests that hsa-miR-

885-5p may act as a tumor suppressor in PDAC (Fig. 5).
This is supported by previous functional studies of hsa-
miR-885-5p. Hsa-miR-885-5p was previously identified

Fig. 6 Hub genes for hsa-miR-885-5p. Top 10 hub genes and their ranks are shown for negatively correlated (a) and positively correlated
(b) targets
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to act as a tumor suppressor in hepatocellular carcinoma
[32] and hepatoblastoma [33] by targeting β-catenin.
Furthermore, a decay in expression correlated to a more
progressed hepatocellular carcinoma by correlation to
tumor-node-metastasis (TNM) stages [32]. In this study,
β-catenin (CTNNB1) was predicted as a target for hsa-
miR-885-5p by TargetScan v7.1 and DIANA-microT-
CDS, and a significant negative correlation on mRNA
level (PCC = − 0.46) was identified. In addition, hsa-miR-
885-5p has previously been found up-regulated in liver
metastases compared to the primary tumor in colorectal
cancer [34], and a regulation involving its predicted target
CPEB2 has been suggested [24]. CPEB2 was identified as a
target for hsa-miR-885-5p by TargetScan and DIANA-
microT-CDS in this study but was not significantly corre-
lated. In addition, several studies support hsa-miR-885-5p
as a circulating biomarker in PDAC [7, 9, 35, 36] .

MiRNA target prediction lacks information about
other factors that could affect the extent of miRNA-
mediated regulation. Hence, further validation is needed
to increase the reliability of the identified targets and ex-
tract genes of interest in a disease-specific context, in
this case pancreatic cancer. Experimental validation and
additional bioinformatics analyses can be applied to cor-
related miRNA targets, such as functional enrichment
(Tables 3, 4, 5 and 6) and network analyses (Figs. 6 and
7). Our network analysis resulted in the top ranked hub
genes KIF2C (kinesin family member 2C, also known as
MCAK) for negatively correlated targets (Fig. 6a) and SKP1
(S-phase kinase associated protein 1) for positively corre-
lated targets (Fig. 6b). KIF2C is involved in mitosis by asso-
ciating to the centromere [37]. BUB1 (BUB1 mitotic
checkpoint serine/threonine kinase) was found as top 2 for
the negatively correlated targets and is active in a complex

Fig. 7 Enriched KEGG pathways generated by ClueGO and Cluepedia. Networks were generated separately for (a) negatively correlated (PCC≤
−0.4) and (b) positively correlated (PCC > 0.4) targets. The size of the nodes corresponds to the significance of the KEGG pathway
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together with BUB3 [38], which is also among the hub
genes for negatively correlated targets (Fig. 6a). This com-
plex (BUB1/BUBR1/BUB3) is necessary for correct balance
of kinase-phosphatase balance during mitosis and has been
proven to have a role in chromosome instability and tumor
progression as well [38]. Skp1 has been suggested to have a

role in various cancer forms by contributing to active onco-
genic (Skp1)-Cullin1-F-box protein (SCF) complexes [39].
SCF complexes is the best characterized E3 ligases and are
involved in protein degradation.
NRAS, EGFR and CTNNB1 (β-catenin) were found to

overlap between many enriched KEGG pathways for

Table 8 Comparison of miRFA to other available tools for functional analysis of miRNAs

Feature Tool

miRFA miRCancerdb multiMiR RBiomirGS MiRComb miRLab miRpath miEAA TAM GeneTrail2

Platform R/Web-
based

R/Web-based R R R R Web-
based

Web-
based

Web-
based

Web-
based

MiRNA input/
expression

Mature miRNA ✓ ✓ ✓ ✓ a ✓ ✓ ✓

Precursor miRNA ✓ ✓ ✓ ✓ ✓

MiRNA target
prediction database

Experimentally
validated
database(s)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Target prediction
database(s)

✓ ✓ ✓ ✓ ✓ ✓ ✓

Correlation analysis
expression levels

mRNA expression ✓ ✓ ✓ ✓

Protein expression ✓ ✓

Negative correlation ✓ ✓ ✓ ✓b

Positive correlation ✓ ✓

Functional
enrichment

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Disease-specific ✓ ✓ ✓ ✓

miRNA annotation c ✓ ✓ ✓

a Based on if the user implements built in TCGA retriever
b Negative correlations are ranked at the top
c Includes cluster, family, functions, diseases, tissue specificity

Table 9 Comparison of correlated targets between miRCancerdb and miRFA on mRNA level. KEGG genes refer to genes included in
KEGG pathway pancreatic cancer

miRCancerdb miRFA

Input Cor mRNA KEGG genes Percentage (%) Input Cor mRNA KEGG genes Percentage (%)

hsa-mir-144 284 1 0.4 hsa-miR-144-3p 127 19 15.0

hsa-mir-106b 458 6 1.3 hsa-miR-106b-5p 2005 14 0.7

hsa-mir-451a 0 NA NA hsa-miR-451a 29 0 0

hsa-mir-101 0 NA NA hsa-miR-101-3p 713 5 0.7

hsa-mir-26a 0 NA NA hsa-miR-26a-5p 508 0 0

hsa-mir-574 0 NA NA hsa-miR-574-3p 156 2 1.3

hsa-mir-885 0 NA NA hsa-miR-885-5p 1642 12 0.7

hsa-mir-130b 277 3 1.1 hsa-miR-130b-3p 333 3 0.9

hsa-mir-34a 176 2 1.1 hsa-miR-34a-5p 1774 10 0.6

hsa-mir-24 0 NA NA hsa-miR-24-3p 2179 15 0.7

hsa-mir-22 261 4 1.5 hsa-miR-22-5p 977 8 0.8

hsa-let-7d 443 5 1.1 hsa-let-7d-3p 28 0 0

hsa-mir-197 57 0 0 hsa-miR-197-3p 7 0 0

hsa-mir-423 0 NA NA hsa-miR-423-3p 288 2 0.7

hsa-mir-122 50 0 0 hsa-miR-122-5p 3 0 0

Cor mRNA = number of correlated miRNA – targets on mRNA level, KEGG genes = number of genes associated to KEGG pathway hsa05212 pancreatic cancer,
percentage = percentage of KEGG genes compared to total number of correlated targets, NA = not available
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hsa-miR-885-5p negatively correlated targets (Fig. 7a).
Expression of these three genes in a PDAC context has
been studied previously. Overexpression of EGFR is de-
tected in a fraction of PDAC patients with a range of
30.4–64.2% in different PDAC cohorts [40–45]. β-
catenin expression in PDAC tissue was previously re-
ported as a prognostic marker, where a high expression
using immunohistochemistry staining predicted longer
survival [46]. NRAS has also been suggested as a pro-
tective biomarker in PDAC as assessed by immunohisto-
chemistry [47]. A high fraction of PDAC patients harbor
KRAS mutations,
91% in the TCGA-PAAD dataset, whereas NRAS

mutation are rare [47]. KRAS was identified as a
miRNA target and significantly correlated (PCC = −
0.19) with hsa-miR-885-5p (see Additional file 5).
NRAS showed stronger correlation to hsa-miR-885-5p
(PCC = − 0.42) than KRAS.
As highlighted in the comparison between our tool

and other miRNA functional analysis tools, many re-
sources exist for this type of analysis (Table 8). Although
many tools resemble each other in terms of provided
features, they still have significant differences and make
up a very broad toolkit to apply in miRNA functional
analysis. Hence, we identified an important gap to fill by
developing a tool for correlating both mRNA and pro-
tein expression levels using mature miRNA isoforms ex-
pression levels. The mechanisms behind miRNA-
mediated regulation are highly complex and act in a dis-
ease- or tissue-specific manner [48].
MiRFA was compared to miRCancerdb with regards

to our list of 15 miRNAs (Tables 9 and 10). It is difficult
to assess the performances of these tools in terms of

prediction accuracy, since we do not know true miRNA
targets in pancreatic cancer. Still, to be able to perform
an objective comparison, we selected a benchmarking
dataset consisting of 75 genes found in KEGG pathway
hsa05212 pancreatic cancer. We calculated the fraction
of pancreatic cancer pathway-associated genes identified
by each of the tool (miRCancerdb and miRFA, Tables 9
and 10). The main difference between these tools is that
miRCancerdb implements the miRNA-seq data from
TCGA-PAAD while miRFA implements pre-processed
mature miRNA isoform quantification expression data.
The correlation dataset available in miRCancerdb is re-
stricted to correlations above 0.1, whereas we have ap-
plied a threshold of adjusted p-value < 0.05.
Correlations were not obtained for all miRNAs in

miRCancerdb. The targetscan R package targetscan.
Hs.eg.db [49] was used to obtain targetscan targets in
miRCancerdb. This R package is restricted to prediction
of conserved miRNA targets only, which could explain
why we do not obtain any correlations for some miR-
NAs and why the number of correlated targets is much
higher in our tool for some miRNAs. In our tool we im-
plemented the database for non-conserved miRNA tar-
gets as well and we also implemented DIANA-Tarbase
and DIANA-microT-CDS in the miRNA target predic-
tion step. For the comparison on protein expression
levels (Table 10), a few pancreatic cancer-associated pro-
teins were found in both tools. Interestingly, each of the
tools also identified a unique set of true targets from the
defined benchmarking set of KEGG pathway pancreatic
cancer, suggesting that it might be of interest to use both
tools for studying miRNA functions in pancreatic can-
cer. In addition to genes in KEGG pathway pancreatic

Table 10 Comparison of correlated targets between miRCancerdb and miRFA on protein expression level

miRCancerdb miRFA

Input Cor
protein

KEGG
genes

Percentage
(%)

Gene names Input Cor
protein

KEGG
genes

Percentage
(%)

Gene
names

hsa-mir-144 5 0 0 NA hsa-miR-144-3p 0 NA NA NA

hsa-mir-
106b

3 2 67 AKT1/2/3, RB1 hsa-miR-106b-
5p

0 NA NA NA

hsa-mir-101 0 NA NA NA hsa-miR-101-3p 5 1 20 MTOR

hsa-mir-885 0 NA NA NA hsa-miR-885-5p 6 2 33 EGFR,
RAD51

hsa-mir-
130b

3 1 33 SMAD4 hsa-miR-130b-
3p

0 NA NA NA

hsa-mir-34a 2 1 50 SMAD4 hsa-miR-34a-5p 4 0 0 NA

hsa-mir-24 0 NA NA NA hsa-miR-24-3p 16 1 6 EGFR

hsa-mir-22 3 2 67 AKT1/2/3, CDKN1A hsa-miR-22-5p 10 1 10 PIK3CA

hsa-let-7d 4 3 75 AKT1/2/3, CDKN1A,
RB1

hsa-let-7d-3p 0 NA NA NA

hsa-mir-122 0 NA NA NA hsa-miR-122-5p 2 0 0 NA

Cor protein = number of correlated miRNA – targets on mRNA level, KEGG genes = number of genes associated to KEGG pathway hsa05212 pancreatic cancer,
percentage = percentage of KEGG genes compared to total number of correlated targets, NA = not available
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cancer, there could of course be other relevant targets to
study in a pancreatic cancer context.
The limitation of our pipeline is its current restriction

to pancreatic cancer, as the correlations are based on
data derived from pancreatic cancer tissue. To expand
the pipeline for other cancer types, the pre-processing
and inclusion of the miRNA, mRNA and protein expres-
sion levels is required for each cancer type. We are cur-
rently extending the pipeline to provide the same
functionality for breast cancer miRNAs.

Conclusions
The developed pipeline is proven useful for generating
shortlist of relevant target genes for 15 miRNAs that are
differentially expressed in PDAC, along with their
enriched GO terms, KEGG pathways, and significant
correlations. Predicted miRNA-mRNA interactions in
conjunction with correlation analyses of expression
levels provides support for miRNA-mediated regulation.
The pipeline is applicable to any mature miRNA in the
context of pancreatic cancer. In the future, this pipeline
could be further developed to include other cancer types
by incorporating the corresponding miRNA, mRNA and
protein expression levels of other TCGA cancer types.
Our results and previously published data suggest that
hsa-miR-885-5p could act as a tumor suppressor and
should be experimentally validated in PDAC.

Methods
Data
Differentially expressed microRNAs
A published dataset of 15 significantly altered miRNAs de-
tected in plasma of PDAC patients at the time of diagnosis
were used in this study (Table 11) [7]. These circulating
miRNAs have been identified in plasma samples from pa-
tients diagnosed with PDAC and admitted for surgery at
the Department of Surgery, Umeå university hospital.
MiRNA isolates from 23 PDAC patients and 22 controls
were analyzed by RT-qPCR for 372 validated miRNAs
using Human Panel I (V.4, Exiqon, Vedbaek, Denmark).
The combination of these 15 miRNAs generated an AUC
of 0.96 compared to 0.92 for CA 19–9 at time of diagnosis.

Expression data
MiRNA and mRNA expression data have previously been
generated by next-generation sequencing (seq) within
TCGA Research Network (http://cancergenome.nih.gov/).
The miRNA-seq isoform expression quantification data
files available at the GDC portal (https://portal.gdc.cancer.
gov/) from pancreatic adenocarcinoma (TCGA-PAAD)
samples were used. For mRNA expression data, log2(fpkm
+ 1) values for 183 samples were downloaded from xena
browser (https://xenabrowser.net/datapages/). TCGA-
PAAD expression data were derived from 1 epithelial

neoplasm, 5 cystic, mucinous or serous neoplasms, 31 ad-
enomas or adenocarcinomas and 146 ductal or lobular
neoplasms. The R package org. Hs.eg.db was used for con-
verting Ensembl-IDs to HUGO Gene Nomenclature
Committee (HGNC) symbols [50].
Protein expression levels of 218 proteins, analyzed by

RPPA, on tissue samples provided by TCGA were ob-
tained from 98 TCGA-PAAD samples [24]. Level 4 pro-
tein expression data was downloaded from TCPA (http://
bioinformatics.mdanderson.org/main/TCPA:Overview) by
accessing the data portal (http://tcpaportal.org/tcpa/
download.html). TCPA expression data were derived from
2 cystic, mucinous or serous neoplasms, 12 adenomas or
adenocarcinomas and 84 ductal or lobular neoplasms.
The protein names were modified to gene names by using
the information from TCPA ‘My Protein’ resource.

Annotation of mature miRNAs
MiRNA sequencing expression data found in TCGA
does not contain information about -3p or -5p arm. This
problem has previously been addressed by Kuo et al.
(2015) that developed a Python script to interrogate this
information. Their idea was applied here using R. The
miRNA isoform expression quantification data was uti-
lized from TCGA. A reads per million (rpm) threshold
of 1 for calling a gene expressed was applied [51, 52].
Kuo et al. [53] only included the top three expressions
of each isoforms for each mature miRNA, whereas here,
all values with rpm ≥ 1 were summarized for each
miRNA. A ‘gdc sample sheet’, containing information
such as file ID and sample ID for each PAAD sample,

Table 11 Significantly altered plasma miRNAs in pancreatic
cancer patients [7]. Regulation describes whether the miRNA
was found up- or down-regulated in pancreatic cancer patients

miRNA Regulation FC

hsa-miR-144-3p Down 0.4

hsa-miR-106b-5p Down 0.8

hsa-miR-451a Down 0.5

hsa-miR-101-3p Down 0.7

hsa-miR-26a-5p Down 0.6

hsa-miR-574-3p Up 1.5

hsa-miR-885-5p Up 3.9

hsa-miR-130b-3p Up 1.5

hsa-miR-34a-5p Up 2.2

hsa-miR-24-3p Up 1.2

hsa-miR-22-5p Up 1.4

hsa-let-7d-3p Up 1.3

hsa-miR-197-3p Up 1.4

hsa-miR-423-3p Up 1.3

hsa-miR-122-5p Up 2.5

FC fold change
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was also downloaded. The gdc sample sheet was used as
input for the R function. For each quantification file, the
reads per million (rpm) counts ≥1 were summarized for
each MIMA-ID using the plyr package [54]. All samples
were merged into one table using merge() function, with
option ‘all’ = T, resulting in samples as colnames and
MIMAT-IDs in the first column. After merging, data
was changed to log2(rpm + 1) and hence all ‘NA’ values
were changed to 0. The MIMAT-ID is an identity for
each unique miRNA. A file containing information on
MIMAT-ID and mature miRNA names (hsa.gff3) was
downloaded from miRBase version 22 (www.mirbase.
org). The MIMAT-IDs were translated using Perl version
5.18.2 and the miRNA nomenclature file (hsa.gff3). The
final output was a table containing the expression levels
for each mature miRNA and PAAD sample.

Bioinformatics pipeline
The pipeline was built in R version 3.5.1 [55] and
consists of miRNA target prediction, correlation ana-
lyses and functional enrichment analysis (Fig. 1). The
R script, along with instructions for installing and
running the pipeline can be accessed through https://
emmbor.shinyapps.io/mirfa/.

miRNA target prediction
In the implemented pipeline, we included following data-
bases: one experimentally validated database; DIANA-
TarBase v7 [25] and two in silico target prediction data-
bases; DIANA-microT-CDS [26] and TargetScan v7.1 [27]
for miRNA target prediction. A prediction score threshold
was set to 0.7 for DIANA-microT-CDS. DIANA-TarBase v7
(http://diana.imis.athena-innovation.gr/DianaTools/index.
php?r=tarbase/index) and DIANA-microT-CDS (http://
diana.imis.athena-innovation.gr/DianaTools/index.php)
were downloaded. In addition, three different TargetScan
v7.1 databases were downloaded; predicted targets for con-
served miRNA families, predicted conserved sites for miR-
NAs and predicted non-conserved sites miRNAs (http://
www.targetscan.org/vert_71/). The overlap of identified
miRNA target genes from Tarbase, microT-CDS and Tar-
getScan was visualized with Venn diagrams, generated by
the VennDiagram package [56].
The downloaded miRNA target prediction databases,

along with miRNA, mRNA, and protein expression levels
were combined into an sqlite database using sqlite3, called
‘mirna_database.sqlite’ available at https://1drv.ms/u/
s!Ap_ICu6nvktNgW6Y68Zkp1HTx0vE, and was queried
from the pipeline using RSQLite package [57].

Correlation analysis
Correlation analyses were performed to increase the reli-
ability of the predicted miRNA targets by correlating
miRNA expression levels to mRNA and protein

expression levels of its target genes. Correlations be-
tween expression levels of miRNA and mRNA, and
miRNA and protein expression levels were performed.
The cor() and cor.test() functions were applied using the
Pearson’s correlation method. A significance threshold
was set at α = 0.05 and multiple testing adjustment using
the Benjamini-Hochberg method was performed. Since
miRNAs can function as up- or down-regulators of
mRNAs, positive and negative correlations were in-
cluded in subsequent analyses [2, 3].

Functional enrichment
Functional enrichment analysis was performed on the
correlated miRNA targets [18]. Functional enrichment
included enrichment analyses of GO terms and KEGG
pathways. The goana() and kegga() functions from the
edgeR package were implemented [58, 59]. Criteria of at
least 5 genes significantly enriched for a given term and
a false discovery rate of 0.05 were used as cutoffs.

Shiny web app
To increase the data availability and make miRFA useful for
wider community, the pipeline was run for all microRNAs
in the TCGA-PAAD dataset (775 miRNAs). The results can
be obtained through a shiny application at https://emmbor.
shinyapps.io/mirfa/ [17]. Download of data is available at the
bottom of each table and Venn diagram plot.

Survival analysis
Kaplan-Meier curves were generated using R packages
survminer, RTCGA.clinical and survival packages with
median as cut-off [60–63]. P-values were adjusted for
multiple testing using the Benjamini-Hochberg method.

Network analysis
Hub genes were identified separately for positively and
negatively correlated targets for hsa-miR-885-5p. Posi-
tively or negatively correlated gene lists were submitted to
the STRING database version 10.5 (https://string-db.org/
cgi/input.pl) with Homo sapiens as organism and a ‘high
confidence’ interaction score (0.7) [64]. The cytohubba
plugin [65] was used in Cytoscape version 3.7.0 to show
the ranked, top 10 hub genes. ClueGO version 2.5.2 to-
gether with CluePedia version 1.5.2 were used to see the
overlapping genes between KEGG pathways for positive
and negatively correlated targets for hsa-miR-885-5p.
Only correlated targets with a Pearson’s correlation coeffi-
cient ≥ 0.4 or ≤ − 0.4 were included in the analysis.

Additional files

Additional file 1: Hsa-miR-22-5p KEGG pathways. Table of enriched
KEGG pathways for hsa-miR-22-5p. ‘N’ describes number of genes
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described for a specific KEGG pathway, ‘DE’ describes number of genes
enriched for the pathway and ‘P.DE’ is the p-value. (CSV 5 kb)

Additional file 2: Hsa-miR-24-3p KEGG pathways. Table of enriched KEGG
pathways for hsa-miR-24-3p. ‘N’ describes number of genes described for a
specific KEGG pathway, ‘DE’ describes number of genes enriched for the
pathway and ‘P.DE’ is the p-value. (CSV 3 kb)

Additional file 3: Hsa-miR-106b-5p KEGG pathways. Table of enriched
KEGG pathways for hsa-miR-106b-5p. ‘N’ describes number of genes described
for a specific KEGG pathway, ‘DE’ describes number of genes enriched for the
pathway and ‘P.DE’ is the p-value. (CSV 3 kb)

Additional file 4: Hsa-miR-885-5p KEGG pathways. Table of enriched KEGG
pathways for hsa-miR-885-5p. ‘N’ describes number of genes described for a
specific KEGG pathway, ‘DE’ describes number of genes enriched for the
pathway and ‘P.DE’ is the p-value. (CSV 3 kb)

Additional file 5: Significant correlations on mRNA expression level. This
table contains all significant correlations on mRNA expression level for all
15 miRNAs. ‘Gene’ is the predicted miRNA target, ‘PCC’ = Pearson’s
correlation coefficient, ‘adj_P_value’ = adjusted p-value. (CSV 880 kb)

Additional file 6: Figure S1. Venn diagram of DIANA-TarBase v7,
DIANA-microT-CDS and TargetScan v7.1 for each miRNA. The R package
VennDiagram was used to generate the overlap of identified miRNA tar-
get genes. DIANA-TarBase v7 = Tarbase (pink), DIANA-microT-CDS =
microT-CDS (blue), TargetScan v.7.1 = TargetScan (grey). Figure S2. Over-
all survival analysis for each miRNA. Kaplan-Meier curves were generated
with median as cut-off. Expression=0 is the group that has a value below
median and expression=1 is the group that has a value above median. P-
values are displayed before multiple hypothesis correction, after multiple
hypothesis correction with Benjamini-Hochberg, no miRNA was signifi-
cant. (DOCX 1105 kb)
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