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Abstract
In the testing of food quality and safety, we contrast the contents of the newly proposed

food (genetically modified food) against those of conventional foods. Because the contents

vary largely between crop varieties and production environments, we propose a two-sample

test of substantial equivalence that examines the inclusion of the tolerance intervals of the

two populations, the population of the contents of the proposed food, which we call the tar-

get population, and the population of the contents of the conventional food, which we call

the reference population. Rejection of the test hypothesis guarantees that the contents of

the proposed foods essentially do not include outliers in the population of the contents of

the conventional food. The existing tolerance interval (TI0) is constructed to have at least a

pre-specified level of the coverage probability. Here, we newly introduce the complemen-

tary tolerance interval (TI1) that is guaranteed to have at most a pre-specified level of the

coverage probability. By applying TI0 and TI1 to the samples from the target population and

the reference population respectively, we construct a test statistic for testing inclusion of the

two tolerance intervals. To examine the performance of the testing procedure, we con-

ducted a simulation that reflects the effects of gene and environment, and residual from a

crop experiment. As a case study, we applied the hypothesis testing to test if the distribution

of the protein content of rice in Kyushu area is included in the distribution of the protein con-

tent in the other areas in Japan.

Introduction
The safety assessment of genetically modified (GM) foods was confirmed as an important issue
in the Organization for Economic Cooperation and Development (OECD) discussion resumed
in 1988. Substantial equivalence has been a starting point for the safety assessment for GM
foods which is used worldwide since this approach was first suggested in 1993 [1]. Substantial
equivalence embodies the concept that if a new food or food component is found to be substan-
tially equivalent to an existing food or feed component, it can be treated in the same manner

PLOSONE | DOI:10.1371/journal.pone.0141117 October 28, 2015 1 / 11

OPEN ACCESS

Citation: Chen H, Kishino H (2015) Hypothesis
Testing of Inclusion of the Tolerance Interval for the
Assessment of Food Safety. PLoS ONE 10(10):
e0141117. doi:10.1371/journal.pone.0141117

Editor: Guangyuan He, Huazhong University of
Science and Technology, CHINA

Received: March 26, 2015

Accepted: October 5, 2015

Published: October 28, 2015

Copyright: © 2015 Chen, Kishino. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Third-party data are
available from the Food Composition Database for
Safety 184 Assessment of Genetically Modified
Crops as Foods and Feeds and are listed as
reference 24 and 25.

Funding: This work was supported by funding from
the Japan Society for the Promotion of Science to HK
(grant number 25280006). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0141117&domain=pdf
http://creativecommons.org/licenses/by/4.0/


with respect to safety [2]. To decide if a modified product is substantially equivalent, the prod-
uct is tested by the manufacturer for unexpected changes in a limited set of components such
as toxins, nutrients, or allergens that are present in the unmodified food. Piaggio et al. [3] gave
a clear framework of reporting of equivalence randomized trials. Ennis and Ennis [4,5] used an
open interval to define equivalence and provided methods for testing a null hypothesis of non-
equivalence. McNally et al. [6] proposed applying the generalized test function method in com-
parison to the confidence interval for assessing population bioequivalence. Herman and Price
[7] examined research that has occurred over the past two decades relative to the mechanisms
that affect crop composition in GM and traditionally bred crops.

In substantial equivalence tests of the population means, it is impossible to prove exact
equality, so a buffer margin (c) for the treatment effect is defined. The equivalence is defined as
the treatment effect being between c and −c.

H0 : jm1 � m2j � c

H1 : jm1 � m2j < c
ð1Þ

A broad range of factors affect crop compositions, such as the genetic background [8,9],
environmental factors [10,11], and agronomic practices [12,13]. Ricroch et al. [14] reviewed
the published studies regarding the effect of genetic modification in comparison with the envi-
ronmental and intervariety variations. Because the contents vary largely between crop varieties
and production environments, the test of substantial equivalence should examine the inclusion
of the tolerance intervals of the samples from the two populations, the population of the con-
tents of the proposed food or feed, which we call the target population and denote as POPtar,
and the population of the contents of the conventional food or feed, which we call the reference
population and denote as POPref (Fig 1).

Statistical tolerance intervals are useful in practical applications in many areas and the con-
struction of tolerance intervals has been extensively studied [15]. Formula for tolerance inter-
vals (regions) for known and unknown mean and variance was given by Proschan [16] for
univariate normal distribution and by Chew [17] for multivariate normal distribution. The tol-
erance interval procedure was developed for balanced one-way randommodel [18], general
linear mixed models for balanced data [19] and unbalanced data [20]. A (1 − γ, 1 − α) tolerance
interval (TI0) based on a sample is constructed so that it would include at least a proportion 1
− γ of the sampled population with confidence 1 − α [21]. Such a tolerance interval is usually
referred to as (1 − γ)-content-(1 − α)-confidence (coverage) tolerance interval.

We introduced the complementary tolerance interval that is guaranteed to have at most a
pre-specified level of the coverage probability. A (1 − γ, 1 − α) tolerance interval (TI1) based on
a sample is constructed so that it would include at most a proportion 1 − γ of the sampled pop-
ulation with confidence 1 − α. By applying TI0 and TI1 to the samples from the target popula-
tion and the reference population respectively, the rejection of the test guarantees that the
target population essentially does not include outliers in the reference population.

Material and Methods

Two complementary tolerance intervals and two-sample hypothesis
testing
We consider a sample X from a Gaussian population N(μ, σ2). When the sample is collected by
simple random sampling, the sample mean m̂ follows N(μ, σ2/R0), and the sample variance ŝ2

follows (σ2/m) w2m. R0 is the sample size, and the degree of freedom,m, is R0 − 1. By allowing
for the uncertainty of the sample mean and the sample variance, the conventional two-sided
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(1 − γ)-content, (1 − α)-confidence tolerance interval is defined as

TI0 ¼ m̂ � ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � w21:1�gðncp ¼ 1=R0Þ

w2
m;aðncp ¼ 0Þ

s
; m̂ þ ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � w21:1�gðncp ¼ 1=R0Þ

w2
m;aðncp ¼ 0Þ

s !
; ð2Þ

where w2
1;1�g;1=R0

denotes the upper 100(1 − γ)% point of the non-central chi-squared distribu-

tion with degree of freedom one and non-centrality parameter 1/R0, and w2m;a denotes the upper

100α% point of chi-squared distribution with degree of freedomm [22]. The notation ncp
stands for non-centrality parameter. R0 is the ratio of σ

2 over the variance of m̂, andm repre-

sents the ratio of 2ðŝ2Þ2 over variance of σ2. The tolerance interval TI0 covers at least 1 − γ of
the population with the probability of 1 − α.

Here, we introduce a new tolerance interval TI1 defined by

TI1 ¼ m̂ � ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � w21:1�gðncp ¼ 1=R0Þ

w2m;1�aðncp ¼ 0Þ

s
; m̂ þ ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m � w21:1�gðncp ¼ 1=R0Þ

w2m;1�aðncp ¼ 0Þ

s !
; ð3Þ

where w2
m;1�a denotes the lower 100α% point of Chi-squared distribution with degree of free-

domm. As is seen below, the tolerance interval TI1 covers at most 1 − γ of the population with

Fig 1. The distributions of two normal populations, the target population (POPtar) and the reference
population (POPref), and the tolerance intervals TI(γtar, POPtar) and TI(γref, POPref). As an example, γtar
and γref were set to 0.05 and 0.01 respectively.

doi:10.1371/journal.pone.0141117.g001
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the probability of 1 − α. By increasing the sample size, the two complementary tolerance inter-
vals both converge to the population tolerance interval.

We contrast the tolerance interval of the target population, POPtar, with the tolerance inter-
val of the reference population, POPref. Given the values of γtar and γref (γtar > γref), the null
hypothesis is that the tolerance interval of POPtar is not included in the tolerance interval of
POPref. The alternative is that the tolerance interval of POPtar is included in the tolerance inter-
val of POPref. To make the dependence of the tolerance intervals on the sample X and popula-
tion P explicit, we express them as TI0(α, γ, X), TI1(α, γ, X), and TI(γ, P). Our framework of
testing substantial equivalence is to test the null hypothesis, H0, against the alternative hypoth-
esis, H1.

H0 : TIðgtar;POPtarÞ 6� TIðgref ; POPrefÞ
H1 : TIðgtar;POPtarÞ � TIðgref ; POPrefÞ

: ð4Þ

We define the test statistic as,

aTI01 ¼ aTI01ðXtar;XrefÞ
¼ arg minfajTI0ða=2; gtar;XtarÞ � TI1ða=2; gref ;Xref Þg

; ð5Þ

where Xtar and Xref are the sample from POPtar and POPref respectively. The p value is obtained
by locating the test statistic on its distribution for the case of TI(γtar, POPtar) = TI(γref, POPref).

Mixed effect model and the coverage probabilities of the tolerance
intervals
The two complementary tolerance intervals (Eqs (2) and (3)) can be generalized for the non-
iid samples. The effective sample size, R0, is obtained by comparing the variance of the esti-
mated global mean with the total variance: V ½m̂� ¼ ðŝ2

TÞ=R0. The effective degree of freedom,
m, is obtained by equating the estimated variance of the estimated total variance and the
expected variance of the estimated total variance by the Satterthwaite’s chi-square approxima-

tion: V ½ŝ2
T � � 2ðŝ2

TÞ2=m.
As an example, we consider the hypothetical samples with random genetic and environ-

mental effects. The hypothetical samples reflect the maize samples of 61 lines from eight multi-
site field studies. The field sites represented 47 unique environments in the commercial maize-
growing regions of the United States, Canada, Chile and Argentina [23]. The experimental
design used at each field site was a randomized complete block design containing three of four
blocks. Variances of random components of concentrations of two analytes (tryptophan and
oleic acid) were used to generate the simulated data. Table 1 shows the variances of random
components of tryptophan and oleic acid. The variance component of environmental effect is
large for tryptophan, whereas the genetic effect is the major component for oleic acid.

Table 1. Variance of random components of a maize experiment.

% Total variance

Analyte G E GxE B ε

Tryptophan 6.7 71.6 3.5 0.1 18.1

Oleic acid 55.6 16.4 8.7 0.1 19.3

G, genotype; E, environment; GxE, interaction of genotype and environment; B, block; ε, residual.

doi:10.1371/journal.pone.0141117.t001
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Table 2 shows the simulation setting with total number of environment, nE = 50, total num-
ber of genotype, nG = 50 and number of blocks per environment, nB = 4. We generated 1,000
sample datasets by normal random numbers with the variances in Table 1. We applied a linear
mixed model to each of the dataset, and estimated the total mean and the variance compo-
nents. The variance of total mean and the total variance, which are required for the calculation
of R0 andm, were estimated by the variance among the 100 runs of parametric bootstrap.

The estimatedm and R0 were distributed widely (Fig 2). The means of the estimatedm were
98.0 for tryptophan and 149.3 for oleic acid. The means of the estimated R0 were 65.4 for tryp-
tophan and 70.8 for oleic acid. Fig 3 shows the median, lower and upper 5 percentiles of the
coverage probabilities of the tolerance intervals, TI0 and TI1. The coverage probability of TI0 is
larger than the nominal coverage probability (1 –γ) with probability 0.95. For the value of γ =
0.01 (see the first dotted vertical line from the left on both panels), with probability 95%, the
lower 5 percentiles of coverage probabilities of TI0 were larger than 98.9% and 98.9% for tryp-
tophan and oleic acid respectively; the upper 5 percentiles of coverage probabilities of TI0 were

Table 2. Design setup for the simulation study.

Genotype

Environment G01−G10 G11−G20 G21−G30 G31−G40 G41−G50

E01−E10
p p

E11−E20
p p

E21−E30
p p

E31−E40
p p

E41−E50
p p

doi:10.1371/journal.pone.0141117.t002

Fig 2. The distributions of the estimated effective sample size (R0) and the effective degree of freedom (m) for tryptophan and oleic acid
separately.

doi:10.1371/journal.pone.0141117.g002
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smaller than 99.9% and 99.8% for tryptophan and oleic acid respectively; the medians were
99.6% for both tryptophan and oleic acid. This means that TI0 covers at least 1 − γ of the popu-
lation with the probability 95%.

On the other hand, the coverage probability of TI1 is smaller than the nominal coverage
probability (1 –γ) with probability 0.95. For the value of γ = 0.01 (see the first dotted vertical
line form the left on both panels), with probability 95%, the upper 5 percentiles of coverage
probabilities of TI1 were smaller than 99.0% for both tryptophan and oleic acid; the lower 5
percentiles of coverage probabilities of TI1 were larger than 95.9% and 96.7% for tryptophan
and oleic acid respectively; the medians were 97.8% and 98.1% for tryptophan and oleic acid
respectively. This means that TI1 covers at most 1 − γ of the population with the probability
95%.

Results

The p values and the power of the hypothesis test: a simulation study
To investigate the performance of the test procedure, we conducted a simulation study of
contrasting two normal populations. The value of γtar and γref were set to 0.05 and 0.01
respectively. The POPtar and POPref are assumed to follow normal distribution with means
μtar = μref = 0. By solving the relation TI(γtar, POPtar) = TI(γref, POPref), we obtained σtar0 =
1.41σref0 as the population parameter of the null hypothesis. The sample sizes were fixed to
50 for both POPtar and POPref. The distribution under the null hypothesis was obtained by
10,000 simulation trials. For each value of σtar = (1 − 0.05i)σtar0, i = 0, 1, 2, . . ., 10, 1,000 values
of αTI01 were generated randomly.

Fig 3. Themedian, lower and upper 5 percentiles of the coverage probabilities of the tolerance intervals, TI0 (dark gray area) and TI1 (light gray
area). For each area, middle, lower, and upper curves represent the median, lower and upper 5 percentiles of the coverage probabilities respectively. The 5
dotted horizontal lines represent the nominal coverage probability (1 –γ) for the 5 marked γ (0.01, 0.02, 0.03, 0.04, and 0.05).

doi:10.1371/journal.pone.0141117.g003
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Fig 4A shows the distribution of the p-values and the power of the test with the significance
level of 0.05. The p-value followed mostly the uniform distribution when the null hypothesis is
real (σtar /σref = 1.41). The power at the null hypothesis was 0.051, which was slightly larger
but close to the significance level of 0.05 (Fig 4B). The power increased to 0.606 for the case of
σtar /σref = 1.06, and to 0.999 for the case of σtar /σref = 0.78.

To see the effect of sample size, we conducted the simulation for the cases of sample sizes to
100, 150 and 200 for both POPtar and POPref. The power to reject the null hypothesis with the
significance level of 0.05 is shown in Table 3. The power for the case of σtar /σref = 1.06 became
0.852 when the sample size was doubled, and 0.987 when the sample size was 200. On the
other hand, the power for the case of σtar /σref = 1.41 stayed nearly at the value of 0.05.

A case study of testing inclusion of tolerance intervals: Contrasting
protein composition of rice in Kyushu against other areas in Japan
As an example of empirical study, we applied the hypothesis testing to test if the protein value
of rice in Kyushu area (Kyushu, including prefectures Fukuoka and Kagoshima) was included
in the other areas in Japan (Japan). We downloaded the rice component data for Japan from

Fig 4. The p value (A) and the power (B) of the test with sample size 50 for both target population and reference populations. See Material and
methods for the definition of the defined test statistics αTI01. The dotted line represents the significance level of 0.05.

doi:10.1371/journal.pone.0141117.g004

Table 3. The power to reject the null hypothesis with significance level of 0.05 for each combination of sample size and the size of σtar/σref.

Sample size σtar/σref

1.06 1.13 1.20 1.27 1.34 1.41

50 0.606 0.449 0.287 0.171 0.097 0.051

100 0.852 0.684 0.456 0.246 0.114 0.053

150 0.948 0.816 0.578 0.343 0.164 0.045

200 0.987 0.915 0.708 0.390 0.183 0.058

doi:10.1371/journal.pone.0141117.t003
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The Food Composition Database for Safety Assessment of Genetically Modified Crops as
Foods and Feeds [24,25]. It is third-party data and not owned by the authors. Major varieties of
non-glutinous rice cultivated and distributed in Japan were collected from 1999 to 2009 (except
for 2003 and 2004). A total of 15 or 16 samples consisting of 10−12 varieties were collected
every year. The production areas are located in Japan stretching from the far north to south of
the country. Table 4 shows the number of samples of different varieties and production areas.
In total, the sample XJapan includes 120 rice samples of varieties and the sample XKyushu

includes 18 rice samples of varieties.
To test if the protein value of rice in Kyushu was included in Japan, we applied TI0 and TI1

to the samples from Kyushu and Japan respectively. The null hypothesis is that the tolerance
interval of the protein of rice in Kyushu was not included in the tolerance interval of that in
Japan. The alternative is that the tolerance interval of the protein of rice in Kyushu was
included in the tolerance interval of that in Japan. The value of γKyushu and γJapan were set to
0.05 and 0.01 respectively.

Using a linear mixed-effect model we estimated the total mean of POPJapan as μJapan = 6.60
and random effects s2

G;Japan; s
2
E;Japan and s

2
GxE;Japan = 0.05, 0.07 and 0 respectively, and the error

term, s2
ε;Japan = 0.19. The total variance s2

T;Japan = 0.31. The variance of the estimated total mean

and that of the estimated total variance were estimated as V ½m̂Japan� ¼ 0:0128 and V ½ŝ2
T;Japan� ¼

0:00365 respectively by 1,000 runs of parametric bootstrap. These values provide the effective
sample size, R0;Japan ¼ ŝ2

T;Japan=V ½m̂Japan� ¼ 24:28 and the effective degree of freedom,

m ¼ 2ðŝ2
T;JapanÞ2=V ½ŝ2

T;Japan� ¼ 52:70. The sample from POPKyushu is assumed to be an iid sam-

ple from normal distribution with mean μKyushu = 6.92 and variance s2
T;Kyushu = 0.22. In this

case, R0,Kyushu is the sample size, 18, andmKyushu is R0,Kyushu − 1 = 17. With these values of R0’s

Table 4. Number of rice sample of varieties and production areas.

Production area Variety

(Prefecture) Aic Aki Don Hae Han Hin Hit Hos Kin Kir Kos Mas Tsu Yum Total

Aichi 5 5

Akita 9 9

Aomori 2 4 2 8

Fukui 9 1 10

Fukuoka 9 9

Hokkaido 9 9 18

Hyogo 1 1

Ibaraki 8 8

Iwate 9 9

Kagoshima 9 9

Miyagi 9 9

Nagano 2 2

Niigata 4 9 13

Shiga 9 9

Tochigi 9 9

Yamagata 1 9 10

Total 5 12 5 9 9 18 18 9 9 9 27 2 4 2 138

Aic, Aichinokaori; Aki, Akitakomachi; Don, Dontokoi; Hae, Haenuki; Han, Hanaechizen; Hin, Hinohikari; Hit, Hitomebore; Hos, Hoshinoyume; Kin,

Kinuhikari; Kir, Kirara397; Kos, Koshihikari; Mas, Masshigura; Tsu, Tsugaruroman; Yum, Yumeakar.

doi:10.1371/journal.pone.0141117.t004
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andm’s, we obtained TI1(α = 0.05, γ = 0.01, XJapan) as (5.34, 7.86) and TI0(α = 0.05, γ = 0.05,
XKyushu) as (5.59, 8.24). The latter does not include the former.

The value of the test statistic, αTI01, was numerically obtained as 0.247 by solving the Eq (3).
We obtained the p value by locating the value of αTI01 on the distribution under the null
hypothesis. We generated this distribution by parametric bootstrap, assuming μKyushu = μJapan
and σT,Kyushu = 1.41σT,Japan. Without losing generosity, we assumed μKyushu = μJapan = 0 and
σT,Japan = 1. The iid sample of Kyushu was generated by normal random numbers with mean 0
and standard deviation 1.41. As for the sample of Japan, we generated the genetic effect (G),
environmental effect (E), the G×E interaction and the error term, by decomposing the total
variance into the variance components by the relative size of the estimated variance compo-
nents. We generated 1,000 sets of the data. For each of the simulated data, we estimated the
means and the total variances of Kyushu and Japan. We estimated their variances by 100
parametric bootstrap. With these estimates, we obtained R0’s andm’s, and the value of αTI01.
From 1,000 values of αTI01, we obtained the cumulative distribution of αTI01 under the null
hypothesis (Fig 5). As a result, we obtained the p value as 0.195.

Conclusion
In this study, we proposed a hypothesis test of inclusion of tolerance interval using the existing
tolerance interval and a newly introduced the complementary tolerance interval. The result of
simulation showed that the power of the test for the case of σtar /σref = 1.41 stayed nearly at the

Fig 5. Distribution of αTI01 obtained by 1,000 simulation trials under the null hypothesis. The dotted line
represents the value of 0.247.

doi:10.1371/journal.pone.0141117.g005
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value of 0.05 (Fig 4), which means that the testing procedure is almost unbiased. However, the
test statistic, αTI01, is complex in form, and we could not attach a direct interpretation to it. We
need make further effort to develop candidates of test statistics that measure the extent of cov-
erage or non-coverage of the target population by the reference population. The mixed effect
model enables unbiased estimation of the effective sample size and the effective degree of free-
dom, when the samples consist of subsamples collected in various conditions of genetic factors
and environmental factors. However, a survey may be designed to collect the samples of
matched controls. Another promising project is to develop a testing procedure for such
samples.

As an alternative to the testing non-inferiority or substantial equivalence of the population
mean, the proposed test examines the “range” of the distribution. A statistical test on the range
of the distribution may be useful, especially when it is difficult to formulate the distribution by
a simple statistical model. If a large sample is available, it is possible to construct non-paramet-
ric tolerance intervals [26,27]. The future study will investigate the statistical property of the
non-parametric testing procedure.
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