The Effects of Percutaneous Endoscopic Gastrostomy on Quality of Life in Patients With Dementia

Yutaka Suzuki¹, Mitsuyoshi Urashima^{2, 59}, Masaki Izumi³, Yasuhiko Ito⁴, Nobuyuki Uchida⁵, Shingo Okada⁶, Hiromi Ono⁷, Satoshi Orimo⁸, Takayuki Kohri⁹, Hiroaki Shigoka¹⁰, Shuzo Shintani¹¹, Yukiko Tanaka¹², Atsushi Yoshida¹³, Masashi Ijima¹⁴, Toru Ito¹⁵, Takao Endo¹⁶, Hitoshi Okano¹⁷, Michio Maruyama¹⁸, Tsuyoshi Iwase¹⁹, Tsutomu Kikuchi²⁰, Michiaki Kudo²¹, Mikako Takahashi²², Satoshi Goshi²³, Tatsuya Mikami²⁴, Satoyoshi Yamashita²⁵, Kazuhiro Akiyama²⁶, Tetsushi Ogawa²⁷, Tomoko Ogawa²⁸, Shigeki Ono²⁹, Shigeru Onozawa³⁰, Junya Kobayashi³¹, Masami Matsumoto³², Toshifumi Matsumoto³³, Kazuaki Jomoto³⁴, Akihiro Mizuhara³⁵, Yukio Nishiguchi³⁶, Shinji Nishiwaki³⁷, Masahiko Aoki³⁸, Izumi Ishizuka³⁹, Toshiroh Kura⁴⁰, Masato Murakami⁴¹, Akihiko Murakami⁴², Tomoyuki Ohta⁴³, Koji Onishi⁴⁴, Masato Nakahori⁴⁵, Tsuyotoshi Tsuji⁴⁶, Ko Tahara⁴⁷, Ikuta Tanaka⁴⁸, Kazuhiko Kitagawa⁴⁹, Makoto Shimazaki⁵⁰, Takanori Fujiki⁵¹, Toshiro Kusakabe⁵², Takao Iiri⁵³, Shuichirou Kitahara⁵⁴, Akira Horiuchi⁵⁵, Hitoshi Suenaga⁵⁶, Naohiro Washizawa⁵⁷, Masahiko Suzuki⁵⁸

Abstract

Background: To examine the effects of percutaneous endoscopic gastrostomy (PEG) on quality of life (QOL) in patients with dementia.

Methods: We retrospectively included 53 Japanese community and tertiary hospitals to investigate the relationship between the newly developed PEG and consecutive dementia patients with swallowing

Manuscript accepted for publication January 19, 2012

¹Department of Surgery, International University of Health and Welfare Hospital 537-3 Iguchi, Nasushiobara-shi, Tochigi 329-2763, Japan ²Department of Molecular Epidemiology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan

⁵⁹Corresponding author: Mitsuyoshi Urashima. Email: urashima@jikei.ac.jp Note: all authors' affiliations are listed below

doi:10.4021/gr392w

difficulty between Jan 1st 2006 and Dec 31st 2008. We set improvements in 1) the level of independent living, 2) pneumonia, 3) peroral intake as outcome measures of QOL and explored the factors associated with these improvements.

Results: Till October 31st 2010, 1,353 patients with Alzheimer's dementia (33.1%), vascular dementia (61.7%), dementia with Lewy body disease (2.0%), Pick disease (0.6%) and others were followed-up for a median of 847 days (mean 805 ± 542 days). A total of 509 deaths were observed (mortality 59%) in full-followed patients. After multivariate adjustments, improvement in the level of independent living was observed in milder dementia, or those who can live independently with someone, compared with advanced dementia, characterized by those who need care by someone: Odds Ratio (OR), 3.90, 95% confidence interval (95%CI), 1.59 - 9.39, P = 0.003. Similarly, improvement of peroral intake was noticed in milder dementia: OR, 2.69, 95%CI, 1.17 - 6.17, P = 0.02. Such significant associations were not observed in improvement of pneumonia.

Conclusions: These results suggest that improvement of QOL after PEG insertion may be expected more in milder dementia than in advanced dementia.

Keywords: Alzheimer's dementia; Cerebrovascular dementia; Percutaneous endoscopic gastrostomy; Quality of life; Risk factor

Introduction

Percutaneous endoscopic gastrostomy (PEG) was initially developed as one of enteral nutrition techniques for patients

Ι		Daily living is almost independent in family and community
II		There are some difficulties in daily life due to dementia-specific signs, behavior and communication, but the person can live independently with someone.
	IIa	The difficulties are observed outside of home
	IIb	The difficulties are observed inside of home
III		Difficulties in daily life due to dementia-specific signs, behavior and communication are sometimes observed, and the person needs care by someone.
	IIIa	The difficulties are observed outside of home
	IIIb	The difficulties are observed inside of home
IV		Difficulties in daily life due to dementia-specific signs, behavior and communication are frequently observed, and the person always needs care by someone.
М		Due to serious mental illness and problematic behavior or diseases, the person needs medical care by specialists.

Table 1. The Level of Independent Living of Demented Elderly

with swallowing difficulty, because of reduced laryngopharyngeal discomfort and a lower risk of aspiration pneumonia compared with the nasogastric tube. Randomized studies in patients after stroke who received gastrostomy feeding have shown improved nutritional outcomes, higher likelihood of survival, and earlier discharge [1, 2]. Nowadays, numbers of PEG placement as well as its replacement are rapidly growing in Japanese aging society. In our previous study [3], using Cox proportional multi-variate analysis, we determined the risk and beneficial factors for death among Japanese geriatric patients with PEG including not only dementia but also other conditions in long term follow-up: Older ages, higher CRP and higher BUN were significant poor prognostic factors of death after PEG formation, whereas higher albumin, female gender and no previous history of ischemic heart disease were obviously better prognostic factors.

Although patients with advanced-dementia commonly develop feeding problems that lead to weight loss and nutritional deficiencies, they lack the capacity to express their wishes, thus leaving the decision of PEG usage up to family members and doctors. A Cochrane review showed no evidence of increased survival or improved quality of life (QOL) in patients with advanced dementia who were fed using gastrostomy tubes [4]. On the other hand, in a letter to the editor [5], Leeds et al implied that PEG in patients with early dementia (i.e., outpatient) may be beneficial compared to PEG in patients that have more advanced disease (i.e., inpatient). In our previous work [3], we surveyed geriatric patients with PEG and focused on long term survivals. However, in this study, we surveyed patients with dementia and focused on improvement of QOL and explored the factors associated with these improvements.

Patients and Methods

Study design and population

We conducted a retrospective cohort study of patients who underwent PEG between Jan 1st 2006 and Dec 31st 2008 at 46 community hospitals all over Japan, selected by a panel of 104 doctor-experts in PEG and the trustees of PEG Doctors' Network, a non-profit organization, which was approved by the institutional review board in each hospital. Doctors in charge of PEG in the selected hospitals were asked to examine patients with dementia with a new PEG, after excluding patients 1) who had gastrectomy in previous history, 2) who had cancer considered to affect the patient's prognosis, 3) who were performed the gastrostomy without reason of nutrition-support. The doctors were further asked to report the number of excluded cases as well as the number of patients who were considered as loss to follow-up.

Outcome measure

The primary endpoint was the improvement in 1) the level of independent living, 2) pneumonia, 3) peroral intake as outcome measures of QOL and the factors associated with these improvements were also explored. The level of independent living of the demented elderly was defined by Japanese Ministry of Health, Labor and Welfare [6, 7] (Table 1).

The secondary outcome was set as death and the cutoff date was set at October 2010. In the case where the patient was alive, the doctor was further asked the status of the patient which was selected from the following: a) admission in the current hospital, b) admission in another hospital, c) stay

Variable	Total (N = 879)	Improved (N = 75)	Not improved (N = 804)	P-value
Age (years) mean \pm s.d.	81.8 ± 9.4	79.5 ± 13.0	82.0 ± 8.9	0.02*1
Body Temperature (°C) mean \pm s.d.	36.8 ± 0.6	36.8 ± 0.5	36.8 ± 0.6	0.68*1
WBC (/uL)	7026 ± 2567	7354 ± 2593	6995 ± 2564	0.12*2
CRP (mg/dL)	1.86 ± 2.40	1.81 ± 2.10	1.87 ± 2.42	0.73*2
Hb (g/dL)	11.1 ± 1.9	11.2 ± 1.9	11.1 ± 1.9	0.49*2
ALT (IU/L)	29.8 ± 26.5	25.8 ± 12.5	30.2 ± 27.4	0.46*2
BUN (mg/dL)	21.6 ± 13.7	20.7 ± 12.2	21.8 ± 14.1	0.60*2
Cr (mg/dL)	0.84 ± 1.15	0.80 ± 0.86	0.85 ± 1.21	0.05*2
Albumin (g/dL)	3.01 ± 0.57	3.03 ± 0.58	3.01 ± 0.55	0.88*2
Total cholesterol (mg/dL)	157.2 ± 40.8	162.3 ± 38.6	156.0 ± 41.2	0.58*2
male	359 (41%)	32 (43%)	327 (40%)	0.70*3
Previous history of pneumonia	587 (68%)	50 (68%)	537 (68%)	0.94*3
Hypertension	348 (40%)	35 (47%)	313 (39%)	0.18*3
Dyslipidemia	77 (9%)	9 (13%)	68 (9%)	0.28*3
Arteriosclerosis obliterans	31 (3.7%)	5 (6.9%)	26 (3.4%)	0.14*3
Able to take perorally	324 (37%)	31 (41%)	293 (37%)	0.44*3
Diabetes	124 (14%)	11 (15%)	113 (14%)	0.90*3
Previous history of cardiovascular disease	134 (16%)	12 (16%)	122 (16%)	0.91*3
Extremely poor nutritional status	170 (20%)	16 (22%)	154 (19%)	0.66*3
Fasting period prior to operation				0.72*3
None	189 (28%)	12 (25%)	177 (29%)	
Within one week	292 (44%)	24 (50%)	268 (43%)	
Within one month	177 (27%)	12 (25%)	165 (27%)	
More than one month	8 (1.2%)	0 (0%)	8 (1.3%)	
Alzheimer's dementia	292 (33%)	27 (36%)	265 (33%)	0.56*3
Cerebrovascular dementia	554 (63%)	43 (57%)	511 (63%)	0.33*3
Dementia with Lewy bodies	15 (1.7%)	1 (1.3%)	14 (1.7%)	0.80*3

Table 2. Patients' Characteristics at Making PEG Stratified by the Level of Independent Living of Demented Elderly

*1. Student's t-test was applied because the distribution was considered as normal. *2. Mann-Whitney U test was applied because the distribution was considered as not normal.*3. Chi-square test was applied.

Variable	Ι	IIa/IIb	IIIa/IIIb/IV	Μ
No. of improved patients/no. of total patients (%)	0/2 (0)	8/32 (25)	32/375 (8.6)	7/57 (12)
Odds Ratio (95% confidence interval)*	-	3.90	1	1.36
P-value		(1.59 - 9.39)		(0.56 - 3.30)
		0.003		0.50

Table 3. Improvement of the Level of Independent Living Stratified by the Level of Independent Living at Making PEG

*Odds Ratio was adjusted with age, which was associated with the outcome.

at nursery home, d) stay at home, e) others. In case of loss to follow-up, the final date the patient was confirmed as alive was set a censor.

Variables

Following data: 1) age, 2) gender, 3) height, 4) weight, 5) body temperature, 6) white blood cell (WBC/uL), 7) hematocrit (Ht): %, 8) hemoglobin (Hg): g/dL, 9) aspartate aminotransferase (AST): IU/L, 10) alanine aminotransferase (ALT): IU/L, 11) blood urine nitrogen (BUN): mg/dL, 12) creatinin (Cr): mg/dL, 13) albumin: g/dL, 14) C-reactive protein (CRP): mg/dL, 15) previous history of pneumonia, ischemic heart disease, 16) comorbidity of diabetes, serious malnutrition judged by the doctor in charge, 17) starvation period before making PEG: none, within 1 week, within 1 month, more than 1 month, 18) primary type of dementia executable for PEG, selected from the following: a) Alzheimer's dementia, b) cerebrovascular dementia, c) Dementia with Lewy bodies, d) Pick disease, e) other type of dementia.

Statistics analysis

Student's *t*-test and Mann-Whitney test were performed for continuous variables with normal and not normal distribution, respectively. Chi-square test was calculated for dichotomous outcomes. Primary outcome was evaluated with multiple logistic regression models with multi-variate adjustments using odds ratio (OR) and 95% confidence intervals (95%CI). Cox proportional hazard models were fitted for either single or multivariate analysis using variables significant at single analyses. All statistical analyses were performed using STATA 11.0 (STATA Corp., College Station, TX). P < 0.05 was considered statistically significant.

Results

Of the 1,353 patients who underwent PEG at the selected 53

hospitals. Their mean age was 81.9 years old, which ranged from 23 to 104. Females were predominant (60%). The distribution of primary diagnosis executable for PEG was as follows: Cerebrovascular dementia, 62%: Alzheimer's dementia, 33%, dementia with Lewy bodies, 2%. In the previous history, pneumonia and ischemic heart disease were reported at 68% and 16%, respectively. Moreover, comorbidity of diabetes, hypertension, dyslipidemia, was 16%, 41%, and 10%. In 865 patients who were able to be fully followed-up, 509 deaths were observed (mortality 59%). Among 1027 patients including cases censored by moving to other hospitals, 99%, 95%, 90%, 75% and 50% survived more than 11 days, 32 days, 65 days, 268 days and 847 days, respectively.

In total, 509 deaths were observed, of which 8 deaths (1.6% of total death) occurred within 7 days, 50 (9.8%) within 30 days, 99 (19%) within 60 days, 207 (41%) within a half year, and 305 (60%) within one year. Seven deaths were considered as PEG related deaths, according to the reported doctors. On the other hand, among 28 surviving patients (6.5%), PEG was removed. Among the 1,353 patients, 879, 961 and 777 patients were evaluated for improvement of the level of independent living of the demented elderly, peroral intake, and pneumonia, respectively.

First, variables of demographic and laboratory data at PEG installation were compared between improved and not improved patients in the level of independent living of the demented elderly (Table 2). Only Age was the significant factor and younger patients had improved levels as opposed to older patients. Improvement of the level of independent living was assessed by stratification with the level of independent living at the beginning of PEG (Table 3). Dementia stages IIa and IIb showed a significantly higher ratio (OR = 3.9, 95%CI, 1.6 to 9.4, P = 0.003) compared with dementia stages IIIa and IIIb, even after adjustment with age, which was significantly associated with improvement of the level of independent living.

Next, variables of demographic and laboratory data at PEG installation were compared between improved and not improved patients in ability of peroral intake (Table 4). Patients with dyslipidemia and ability of peroral intake tended

Variable	Total (N = 961)	Improved (N = 177)	Not improved (N = 784)	P-value
(Age years) mean \pm s.d.	81.7 ± 9.3	80.6 ± 11.1	82.0 ± 8.8	0.07*1
Body Temperature (°C) mean \pm s.d.	36.8 ± 0.6	36.8 ± 0.6	36.8 ± 0.6	0.12*1
WBC (/µL)	7041 ± 2702	6869 ± 2364	7080 ± 2773	0.62*2
CRP (mg/dL)	1.90 ± 2.38	1.69 ± 2.08	1.95 ± 2.45	0.39*2
Hb (g/dL)	11.6 ± 1.9	11.1 ± 2.1	11.1 ± 1.9	0.99*2
ALT (IU/L)	30.4 ± 28.7	29.6 ± 34.7	30.6 ± 27.2	0.13*2
BUN (mg/dL)	21.5 ± 13.8	21.3 ± 14.9	21.5 ± 13.7	0.94*2
Cr (mg/dL)	0.83 ± 1.16	0.70 ± 0.36	0.84 ± 1.20	0.09*2
Albumin (g/dL)	3.02 ± 0.57	3.03 ± 0.46	3.02 ± 0.58	0.52*2
Total cholesterol (mg/dL)	157.5 ± 40.6	160.7 ± 37.1	157.2 ± 40.8	0.14*2
male	396 (41%)	66 (37%)	330 (42%)	0.24*3
Previous history of pneumonia	645 (68%)	107 (62%)	538 (70%)	0.051*3
Hypertension	389 (41%)	78 (45%)	311 (40%)	0.29*3
Dyslipidemia	88 (10%)	30 (17%)	58 (8%)	< 0.001*3
Arteriosclerosis obliterans	31 (3.4%)	8 (4.7%)	23 (3.1%)	0.29*3
Able to take perorally	350 (37%)	95 (54%)	255 (33%)	< 0.001*3
Diabetes	150 (16%)	35 (20%)	115 (15%)	0.093*3
Previous history of cardiovascular disease	152 (16%)	29 (17%)	123 (16%)	0.80*3
Extremely poor nutritional status	189 (20%)	39 (22%)	147 (19%)	0.34*3
Fasting period prior to operation				0.11*3
None	216 (30%)	46 (34%)	170 (29%)	
Within one week	316 (43%)	65 (47%)	251 (42%)	
Within one month	188 (26%)	25 (18%)	163 (27%)	
More than one month	12 (1.6%)	1 (0.7%)	11 (1.9%)	
Alzheimer's dementia	310 (32%)	76 (43%)	234 (30%)	0.001*3
Cerebrovascular dementia	610 (63%)	95 (53%)	515 (65%)	0.003*3
Dementia with Lewy bodies	18 (1.9%)	2 (1.1%)	16 (2.0%)	0.42*3

Table 4. Patients' Characteristics at Making PEG Stratified by the Improvement of Peroral Intake

*1. Student's t-test was applied because the distribution was considered as normal. *2. Mann-Whitney U test was applied because the distribution was considered as not normal.*3. Chi-square test was applied.

to have improved in the level of independent living. Patients with Alzheimer's dementia improved significantly more than those with cerebrovascular dementia. Improvement of the peroral intake was assessed by stratification with the level of independent living at the beginning of PEG (Table 5).

Dementia stages IIa and IIb showed a significantly higher ratio (OR = 2.7, 95%CI, 1.1 to 6.2, P = 0.02) as compared with dementia stages IIIa and IIIb, even after adjustment with dyslipidemia, peroral intake, Alzheimer's dementia and cerebrovascular dementia that were significantly associated

Variable	I	IIa/IIb	IIIa/IIIb/IV	М
No. of improved patients/no. of total patients (%)	1/2 (50)	12/34(35)	70/419 (17)	13/62 (21)
Odds Ratio (95% confidence interval)*	-	2.69	1	1.39
		(1.17 – 6.17)		(0.70 -2.77)
P-value		0.02		0.35

Table 5. Improvement of Peroral Intake Stratified by the Level of Independent Living at Making PEG

*Odds Ratio was adjusted with dyslipidemia, able to take perorally, Alzheimer's dementia, and cerebrovascular dementia, which were associated with the outcome.

with improvement of the level of independent living.

Then, variables of demographic and laboratory data at PEG installation were compared between improved and not improved patients with pneumonia (Table 6). Patients who have previous history of pneumonia or cardiovascular disease as well as dyslipidemia and/or diabetes had more improvement in pneumonia. Improvement of pneumonia was assessed by stratification with the level of independent living at PEG installation (Table 7). However, improvement of pneumonia in dementia with IIa and IIb was not significantly different from that in dementia with IIIa and IIIb, even after adjustment with dyslipidemia, peroral intake, Alzheimer's dementia and cerebrovascular dementia which were factors significantly associated with improvement of the level of independent living.

Finally, using variables significant in above analyses, Cox proportional hazard models were computed in singleand multi-variate analyses (Table 8). In single variate hazard models, patients with older ages, male patients, higher CRP, AST and BUN did show a significantly enhanced crude hazard ratio, whereas higher Hb, albumin, and total cholesterol reduced the crude hazard ratio. Moreover, history of pneumonia or ischemic heart disease and extremely poor nutritional status increased, but ability of peroral intake significantly decreased crude hazard ratios of death. However, in a multivariate hazard model using significant factors in single variate analyses, older ages, higher BUN, lower albumin, male gender and diabetes were significant risk factors of death after PEG formation.

Discussion

In this study, improvement in the level of independent living was observed in 8.5% of the whole and in 25% of milder dementia, or those who can live independently with someone, compared with 8.6% of advanced dementia, or those who need care by someone. The difference was almost 4 times between mild and advanced dementia, even after multivariate adjustment. Similarly, improvement of peroral intake was noticed in 18.4% of the whole and in 35% of the milder dementia, compared with 17% of advanced dementia. The difference was 2.7 times between them. Thus, severity of dementia may be a very important factor in the decision making of PEG formation. Improvement of pneumonia was observed in 72% of all patients who inserted PEG, but such significant associations with the level of dementia were not observed in the improvement of pneumonia. Yokoyama et al showed that a total of 15% of PEG cases were able to ingest orally after PEG [8], of which ratio was close to our data of 18%.

For survival analysis, more than half of dementia patients treated with PEG may survive more than 2.3 years, which is almost equivalent to our previous study [3] and better than a previous retrospective study of 361 patients which found that patients with dementia who had a PEG inserted had higher mortality than other patient subgroups (54% 30 day mortality and 90% at one year) [9]. In a multi-variate Cox hazard model, older age, male gender, comorbidity of diabetes, higher BUN and lower albumin were significant risk factors of death, which is not inconsistent with our previous results [3] and others [10, 11]. Of interest, important factors to predict improvement of QOL after PEG insertion such as levels of dementia and underlying disease of dementia were not included in these prognostic factors.

When the dementia levels are mild for patients enough to live independently with someone, insertion of PEG may improve the level of independent living and ability of peroral intake. However, these improvements were observed in some cases of advanced dementia. Moreover, prognostic factors for survival were different from key factors in improvement of QOL. In addition to these evidences, moral and ethical issues, as well as respecting the patient's wishes should be considered in the decision making of PEG insertion. As Kurien et al [12] insisted, guidelines exist to aid clinicians in making decisions on PEG feeding, but the decision to insert a PEG tube should always be made on an individual basis.

The results of this study should be interpreted in the con-

Variable	Total (N = 777)	Improved (N = 557)	Not improved (N = 220)	P-value
Age (years) mean \pm s.d.	82.1 ± 9.0	82.1 ± 9.3	81.9 ± 8.4	0.73*1
Body Temperature (°C) mean \pm s.d.	36.8 ± 0.6	36.8 ± 0.6	36.8 ± 0.6	0.79*1
WBC (/µL)	7101 ± 2745	7222 ± 2847	6797 ± 2454	0.08*2
CRP (mg/dL)	2.01 ± 2.45	2.00 ± 2.43	2.05 ± 2.04	0.85*2
Hb (g/dL)	11.0 ± 1.9	11.0 ± 1.8	10.9 ± 2.0	0.47*2
ALT(IU/L)	30.7 ± 29.5	30.6 ± 30.7	30.7 ± 26.4	0.60*2
BUN (mg/dL)	21.5 ± 13.4	21.3 ± 12.7	21.8 ± 14.9	0.63*2
Cr (mg/dL)	0.84 ± 1.15	0.85 ± 1.17	0.83 ± 1.09	0.92*2
Albumin (g/dL)	2.98 ± 0.58	2.97 ± 0.54	3.01 ± 0.68	0.69*2
Total cholesterol (mg/dL)	155.5 ± 40.3	154.5 ± 40.1	158.1 ± 40.8	0.29*2
male	343 (44%)	240 (43%)	103 (46%)	0.38*3
Previous history of pneumonia	628 (81%)	480 (86%)	148 (69%)	< 0.001*
Hypertension	315 (41%)	225 (41%)	90 (41%)	0.99*3
Dyslipidemia	73 (10%)	61 (11%)	12 (6%)	0.015*3
Arteriosclerosis obliterans	28 (3.8%)	19 (3.6%)	9 (4.2%)	0.70*3
Able to take perorally	270 (35%)	188 (34%)	82 (38%)	0.29*3
Diabetes	113 (15%)	93 (17%)	20 (9%)	0.006*3
Previous history of cardiovascular disease	121 (16%)	98 (18%)	23 (11%)	0.01*3
Extremely poor nutritional status	158 (21%)	106 (20%)	52 (24%)	0.20*3
Fasting period prior to operation				
None	170 (29%)	130 (32%)	40 (24%)	
Within one week	244 (42%)	147 (36%	97 (57%)	
Within one month	159 (27%)	130 (32%)	29 (17%)	
More than one month				
Alzheimer's dementia	248 (32%)	182 (33%)	66 (30%)	0.45*3
Cerebrovascular dementia	484 (62%)	340 (61%)	144 (65%)	0.28*3
Dementia with Lewy bodies	13 (1.7%)	10 (1.8%)	3 (1.4%)	0.67*3

Table 6. Patients' Characteristics at Making PEG Stratified by the Improvement of Pneumonia

*1. Student's t-test was applied because the distribution was considered as normal. *2. Mann-Whitney U test was applied because the distribution was considered as not normal.*3. Chi-square test was applied.

text of the study strengths and limitations. We researched in multiple community and tertiary hospitals spread over Japan, which enhanced generalizability. To minimize selection bias, collaborating doctors were asked to choose 20 consecutive patients. The sample size was 1,353 and the results of the statistical analyses were considered relatively robust. On the other hand, due to the retrospective nature of the study, we could collect only basic clinical information that might

Variable	I	IIa/IIb	IIIa/IIIb/IV	М
No. of improved patients/no. of total patients (%)	1/1 (100)	18/27 (67)	229/351 (65)	30/50 (60)
Odds Ratio (95% confidence interval)*	-	1.33	1	0.61
Davalue		(0.45 - 3.89)		(0.28 - 1.31)
P-value		0.60		0.20

Table 7. Improvement of Pneumonia Stratified by the Level of Independent Living at Making PEG

*Odds Ratio was adjusted with previous history of pneumonia, dyslipidemia, diabetes, previous history of cardiovascular disease and fasting period prior to operations, which were associated with the outcome.

include recall bias in areas such as previous histories and diagnosis of underlying diseases. Most importantly, because this study is not randomized and just a single arm of PEG insertion, we can not conclude the superiority of PEG to nasogastric tube and peroral feeding.

In conclusion, these results suggest the following in QOL of patients: the level of independent living and peroral intake improved in patients with milder dementia, compared with patients with advanced dementia.

Acknowledgement

The source of financial grant: Health Labour Sciences Research Grant.

Authors' Affiliations

¹Department of Surgery, International University of Health and Welfare Hospital 537-3 Iguchi, Nasushiobara-shi, Tochigi 329-2763, Japan

²Department of Molecular Epidemiology, Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan

³Department of Internal Medicine, Tokyo-Musashino Hospital, 4-11-11 Komone, Itabashi-ku, Tokyo, 173-0037, Japan ⁴Suzuki Internal Medicine Clinic, 4-5-43 Heiwadai, Nagareyama-shi, Chiba, 270-0157, Japan

⁵Department of Surgery, Haramachi Red-Cross Hospital, 698 Haramachi, Higashi-Agatsuma-machi, Gunma, 377-0882, Japan

⁶Department of Surgery, Kitamihara Clinic, 18-350 Ishikawa-cho, Hakodate-shi, Hokkaido, 041-0802, Japan

⁷Department of Internal Medicine, Seiwa Memorial Hospital, 5-1-1 Kotoni1,Nishi-ku, Sapporo-shi, Hokkaido, 063-0811, Japan

⁸Department of Neurology, Kanto Central Hospital, 6-25-1

Kami-Yoga, Setagaya-ku, Tokyo, 158-8531, Japan

⁹Department of Surgery, Tone chuou hospital, 1855-1 Higashiharashinmachi, Numata-shi, Gunma, 378-005, Japan ¹⁰Division of Gastroenterology, Department of Internal Medicine, Toho University Ohashi Medical Center, 2-17-6 Ohashi, Meguro-ku, Tokyo, 153-8515, Japan

¹¹Department of Neurology, JA Toride Medical Center, 2-1-1 Hongoh, Toride City, Ibaraki, 302-0022, Japan

¹²The Internal Department, Uchida hospital, 345-1 Kuyahara, Numata-shi, Gunma, 378-0005, Japan

¹³Center for Digestive and Liver Diseases, Ohfuna Chuo Hospital, 6-2-24 Ohfuna, Kamakura, Kanagawa, 247-0056, Japan

¹⁴Department of Internal Medicine, Isesaki Municipal Hospital, 12-1 Tsunatorihonmachi, Isesaki-shi, Gunma, 372-0812, Japan

¹⁵Department of Surgery, Nakamura Memorial Hospital, Nishi-14,Minami-1,Chuo-ku, Sapporo-shi, Hokkaido, 060-8570, Japan

¹⁶Department of Gastroenterology, Sapporo Shirakaba-dai hospital, 2-18-7-26 Tukisamu-Higash,Toyohira-ku, Sapporo-shi, Hokkaido, 062-0052, Japan

¹⁷Department of Gastroenterology, Okano clinic, 3 Higashida-cho,Jodoji, Sakyo-ku, Kyoto-shi, Kyoto, 606-8411, Japan
¹⁸Deaprtment of Surgery, Tokyo Metropolitan Ohkubo Hospital, 2-44-1 Kabukicho, Sinnjyukuku, Tokyo, 160-8488, Japan

¹⁹Department of Internal medicine, Kyoto kujo hospial, 10 Karahashi Rajomon-cho Minami-ku, Kyoto-shi, Kyoto, 601-8485, Japan

²⁰Department of Surgery, Kanazawa Nishi Hospital, 6-15-41 Ekinishihonmachi, Kanazawa-shi, Ishikawa, 920-0025, Japan

²¹Department of Surgery, Onishi Hospital, 139-1 Onishi, Fujika-shi, Gunma, 370-1401, Japan

²²Department of Internal Medicine, Tsuruika Kyouritsu Hospotal, 9-34 Fumizono-cho, Tsuruoka-shi, Yamagata, 997-0816, Japan

Variable	Single-variate analyses	S		Multivariate analysis		
	Crude HR	95% CI	P value	AHR	95% CI	P value
Age (year)	1.03	1.02 - 1.04	< 0.001	1.04	1.02 - 1.06	< 0.001
Body mass index (kg/m ²)	0.96	0.93 - 0.99	0.04	0.98	0.94 - 1.03	0.46
Body Temperature (°C)	0.93	0.80 - 1.09	0.39			
WBC (/uL)	1.00	0.99 - 1.00	0.31			
CRP (mg/dL)	1.07	1.03 - 1.10	< 0.001	1.00	0.95 - 1.06	0.86
Hb (g/dL)	0.88	0.84 - 0.92	< 0.001	1.03	0.94 - 1.14	0.48
ALT (IU/L)	1.00	1.00 - 1.01	0.001	1.00	0.99 - 1.01	0.10
BUN (mg/dL)	1.02	1.01 - 1.02	< 0.001	1.02	1.01 - 1.03	< 0.001
Cr (mg/dL)	1.04	0.98 - 1.11	0.23	0.94	0.84 - 1.06	0.30
Albumin (g/dL)	0.64	0.55 - 0.76	< 0.001	0.51	0.36 - 0.73	< 0.001
Total cholesterol (mg/dL)	0.99	0.99 - 1.00	0.001	1.00	0.99 - 1.00	0.90
Male	1.56	1.31 - 1.86	< 0.001	2.01	1.49 - 2.92	< 0.001
Previous history of pneumonia	1.42	1.16 - 1.73	0.001	1.10	0.79 - 1.54	0.56
level of independent living of demented elderly	1.05	0.97 - 1.15	0.25			
Hypertension	1.17	0.98 - 1.39	0.09			
Dyslipidemia	1.20	0.91 - 1.60	0.20			
Arteriosclerosis obliterans	1.21	0.78 - 1.88	0.39			
Able to take perorally	0.76	0.63 - 0.92	0.004	0.82	0.59 - 1.12	0.21
Diabetes	1.61	1.29 - 1.99	0.10	2.17	1.46 - 3.25	< 0.001
Previous history of cardiovascular disease	1.45	1.16 - 1.81	0.001	1.09	0.73 - 1.65	0.67
Extremely poor nutritional status	1.40	1.13 - 1.73	0.002	1.31	0.92 - 1.88	0.14
Fasting period prior to operation	1.05	0.98 - 1.11	0.14			
Alzheimer's dementia	0.93	0.78 - 1.12	0.47			
Cerebrovascular dementia	1.17	0.98 - 1.41	0.08			
Dementia with Lewy bodies	0.81	0.40 - 1.63	0.55			
Level of independent living						
Ι		ı				
IIa/IIb	0.59	0.34 - 1.00				
IIIa/IIIb		ı				
M	1.03	0.72 - 1.47				

Table 8. Cox Proportional Hazard Models

²³Department of Gastroenterology and Hepatology, Japan Agricultural Cooperatives of Niigata Joetsu General Hospital, 148-1 Daidoufukuda, Joetsu-shi, Niigata, 943-8507, Japan

²⁴Department of Gastroenterology, Hirosaki Municipal Hospital, 1-8-3 Ohmachi, Hirosaki- shi, Aomori, 036-8004, Japan

²⁵Department of Gastroenterology, Social Insurance Shimonoseki Welfare Hospital, 3-3-8 Kamishinchi, Shimonoseki-shi, Yamaguchi, 750-0061, Japan

²⁶Department of Surgery, Tokatsu-clinic Hospital, 865-2 Hinokuchi, Matsudo-shi, Chiba, 271-0067, Japan

²⁷Department of Surgery, Maebashi Red Cross Hospital,
3-21-36 Asahi-cho, Maebashi-shi, Gunma, 371-0014, Japan
²⁸Department of Neurology, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobarashi, Tochigi, 329-2763, Japan

²⁹Department of Gastroenterology, Ako City Hospital, 1090 Nakahiro, Ako-shi, Hyogo, 678-0232, Japan

³⁰Department of HomeCareMedicine, Kameda Medical Center, 929 Higashicho, Kamogawa-shi, Chiba, 292-8601, Japan ³¹Department of Surgery, Fujiyoshida Municipal Hospital, 6530 Kamiyoshida, Fujiyoshida-shi, Yamanashi, 403-0005, Japan

³²Department of Internal Medicine, Nara Prefectural Gojo Hospital, 5-2-59 Noharanishi, Gojo-shi, Nara, 637-8511, Japan

³³Department of Surgery, National Hospital Organization Beppu Medical Center, 1473 Uchikamado, Beppu, Oita, 874-0011, Japan

³⁴Director, Jomoto Gastroenteric & Internal Medical Clinic, 5-8-9 Kuhonnji, Kumamoto-shi, Kumamoto, 862-0976, Japan

³⁵Department of Cardiology and Vascular Surgery, Higashi-Washinomiya Hospital, 3-9-3 Sakurada, Kuki-shi, Saitama, 340-0203, Japan

³⁶Department of Gastro-enterological Surgery, Osaka City General Hospital, 2-13-22 Miyakojima-Hondori Miyakojima-ku, Osaka-shi, Osaka, 534-0021, Japan

³⁷Department of Internal Medicine, Nishimino Kosei Hospital, 986 Oshikoshi, Yoro-gun Yoro-cho, Gifu, 503-1394, Japan

³⁸Department of Surgery, Ohtawara Red Cross Hospital, 2-7-3 Sumiyoshi-cho, Ohtawara-shi, Tochigi, 324-8686, Japan

³⁹Department of Internal medicine, Kohka Public Hospital, 3-39 Rokushin,Minakuchi-cho, Kohka-shi, Shiga, 528-0014, Japan

⁴⁰Department of Gastroenterology, Naganuma Municipal Hospital, 2-2-1 Chuo-minami,Naganuma-cho, Yubari-gun, Hokkaido, 069-1332, Japan

⁴¹Department of Internal Medicine, Murakami Memorial Hospital, 739 Oomachi, Saijo-shi, Ehime, 793-0030, Japan
⁴²Endoscopy unit, Iwate prefectural central Hospital, 1-4-1 ueda, Morioka-shi, Iwate, 020-0066, Japan ⁴³Center for Gastroenterology, Sapporo Higashi-Tokushukai Hospital, 3-1 North33-East14,Higashi-ku, Sapporo-shi, Hokkaido, 065-0033, Japan

⁴⁴Internal Medicine, Matsue Seikyo General Hospital, 8-8-8 Nishitsuda, Matsue-shi, Shimane, 690-8522, Japan

⁴⁵Digestive Endoscopy Center, Sendai Kousei Hospital, 4-8 Hirose-machi,Aoba-ku, Sendai-shi, Miyagi, 980-0873, Japan

⁴⁶Department of Gastroenterology, Akita City Hospital, 4-30
Kawamotomatsuoka-cho, Akita-shi, Akita, 010-0933, Japan
⁴⁷Department of Surgery, Kure Kyosai Hospital, 2-3-28
Nishichuou, Kure-shi, Hiroshima, 737-8505, Japan

⁴⁸Department of Gastroenterology, Japan Red Cross Date General Hospital, 81 Suenaga, Date-shi, Hokkaido, 052-8511, Japan

⁴⁹Department of Surgery, Tsuchida Hospital, 2-11,South-21,West-9,Chuo-ku, Sapporo-shi, Hokkaido, 064-0921, Japan

⁵⁰Department of Gastroenterology, Hirano General Hospital, 176-5 Kurono, Gifu-shi, Gifu, 501-1192, Japan

⁵¹Department of Gastroenterology, Japanese Red Cross Society Shimizu Hospital, 2-2 minami, Shimizu-cho, Kamikawagun, Hokkaido, 089-0195, Japan

⁵²Department of Gastroenterology, Higashi Sapporo Hospital, 3-3-7-35 Higashi-Sapporo,Shiroishi-ku, Sapporo-shi, Hokkaido, 003-8585, Japan

⁵³Department of Gastroenterology, Tachikawa General Hospital, 3-2-11 Kandamachi, Nagaoka-shi, Niigata, 940-8621, Japan

 ⁵⁴Department of Pediatric Surgery, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano-shi, Nagano, 380-8582, Japan
 ⁵⁵Digestive Disease Center, Showa Inan General Hospital, 3230 Akaho, Komagane-shi, Nagano, 399-4117, Japan

⁵⁶Department of Surgery, Hitachikoh Hospital, 3-4-22 Kujichou, Hitachi-shi, Ibaraki, 319-1222, Japan

⁵⁷Nutritional Therapy Center, Toho University Omori Medical Center, 6-11-1 Omorinishi, Ota-ku, Tokyo, 143-8541, Japan

⁵⁸Department of Neurology, The Jikei University School of Medicine, Aoto Hospital, 6-41-2 Aoto, Katsushika-ku, To-kyo, 125-8506, Japan

References

- Norton B, Homer-Ward M, Donnelly MT, Long RG, Holmes GK. A randomised prospective comparison of percutaneous endoscopic gastrostomy and nasogastric tube feeding after acute dysphagic stroke. BMJ. 1996;312(7022):13-16.
- 2. Dennis MS, Lewis SC, Warlow C. Effect of timing and method of enteral tube feeding for dysphagic stroke patients (FOOD): a multicentre randomised controlled trial. Lancet. 2005;365(9461):764-772.

- Suzuki Y, Tamez S, Murakami A, Taira A, Mizuhara A, Horiuchi A, Mihara C, et al. Survival of geriatric patients after percutaneous endoscopic gastrostomy in Japan. World J Gastroenterol. 2010;16(40):5084-5091.
- 4. Sampson EL, Candy B, Jones L. Enteral tube feeding for older people with advanced dementia. Cochrane Database Syst Rev. 2009(2):CD007209.
- John S Leeds MBChB(Hons), MRCP, Mark E McAlindon FRCP, MD and David S Sanders FRCP, MD, FACG PEG Feeding and Dementia—Results Need to Be Interpreted With Caution. Is This the Time for a Randomized Controlled Study? PMID: 18796110 doi:10.1111/j.1572-0241.2008.01982 1.x
- 6. Homma A, Hasegawa K. Recent developments in gerontopsychiatric research on age-associated dementia in Japan. Int Psychogeriatr. 1989;1(1):31-49.
- Tsai N, Gao ZX. Validity of Hasegawa's Dementia Scale for screening dementia among aged Chinese. Int Psychogeriatr. 1989;1(2):145-152.
- 8. Yokohama S, Aoshima M, Koyama S, Hayashi K, Shin-

do J, Maruyama J. Possibility of oral feeding after induction of percutaneous endoscopic gastrostomy. J Gastroenterol Hepatol. 2010;25(7):1227-1231.

- Sanders DS, Carter MJ, D'Silva J, James G, Bolton RP, Bardhan KD. Survival analysis in percutaneous endoscopic gastrostomy feeding: a worse outcome in patients with dementia. Am J Gastroenterol. 2000;95(6):1472-1475.
- Blomberg J, Lagergren P, Martin L, Mattsson F, Lagergren J. Albumin and C-reactive protein levels predict short-term mortality after percutaneous endoscopic gastrostomy in a prospective cohort study. Gastrointest Endosc. 2011;73(1):29-36.
- 11. Tominaga N, Shimoda R, Iwakiri R, Tsuruoka N, Sakata Y, Hara H, Hayashi S, et al. Low serum albumin level is risk factor for patients with percutaneous endoscopic gastrostomy. Intern Med. 2010;49(21):2283-2288.
- Kurien M, McAlindon ME, Westaby D, Sanders DS. Percutaneous endoscopic gastrostomy (PEG) feeding. BMJ. 2010;340:c2414.