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Abstract. Respiratory disease is a common disease with a 
high incidence worldwide, which is a serious threat to human 
health, and is considered a societal and economic burden. 
The application of nanotechnology in drug delivery systems 
has created new treatments for respiratory diseases. Within 
this context, the present review systematically introduced the 
physicochemical properties of nanoparticles (NPs); reviewed 
the current research status of different nanocarriers in the 
treatment of respiratory diseases, including liposomes, solid 
lipid nanocarriers, polymeric nanocarriers, dendrimers, inor‑
ganic nanocarriers and protein nanocarriers; and discussed the 
main advantages and limitations of therapeutic nanomedicine 
in this field. The application of nanotechnology overcomes 
drug inherent deficiencies to a certain extent, and provides 
unlimited potential for the development of drugs to treat respi‑
ratory diseases. However, most of the related research work 
is in the preclinical experimental stage and safety assessment 
is still a challenging task. Future studies are needed to focus 
on the performance modification, molecular mechanism and 
potential toxicity of therapeutic nanomedicine.
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1. Introduction

With the rise in air pollution levels, rapid changes in lifestyle 
and frequent outbreaks of microbial infections, the morbidity of 
respiratory diseases is increasing, particularly among children 
and the elderly population with weakened immune systems (1). 
Almost 4,000,000 people die from respiratory diseases every 
year worldwide (2). The main respiratory diseases include acute 
and chronic respiratory infections, lung cancer, asthma, chronic 
obstructive pulmonary disease, cystic fibrosis and tuberculosis (2). 
Although the current diagnostic and therapeutic techniques have 
improved, effective treatment of severe and chronic disease is still 
lacking (3,4). In addition, it is difficult for most drugs to reach 
the lower respiratory tract with adequate dose and minimum side 
effects. Therefore, there is an urgent need to efficiently and afford‑
ably enhance the quality of treatments for respiratory disease.

Nanoparticles (NPs) refer to particles ranging between 
1 and 100 nm in size (5). Due to the increase in relative surface 
area and quantum effects, nanomaterials have special physical 
and chemical properties. The nanodrug delivery system is the 
application of nanotechnology in the pharmaceutical field, and 
has shown development prospects in targeted diagnosis and 
treatment, delaying drug release, improving drug solubility 
and availability, reducing drug side effects and overcoming 
barriers of the human body (6). The large contact surface area 
of airways is constructed by alveolar cells and goblet cells, 
whereas the main bronchiole cells consist of bronchial epithe‑
lial cells and Clara cells (mucus‑producing cells). Alveolar 
type I epithelial cells and endothelial cells share a basement 
membrane. The air‑blood barrier inside the lungs, with a size 
of 0.1‑0.2 µm, is comprised of epithelial and endothelial tissue 
sharing the basement membrane (7). The thin barrier and high 
permeability of this membrane make the lungs an optimal site 
for systemic and local delivery of drugs. Furthermore, pulmo‑
nary delivery offers improved bioavailability, biocompatibility 
and distribution of drugs to lung sites (8). The development of 
nanotechnology brings a novel broad perspective for improving 
the effects of treatment and diagnosis of respiratory diseases.
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However, the possible negative effects of NPs as drug 
carriers should also be considered. It is well known that the 
toxicity of inhaled NPs has a long history. For example, some 
NPs, similar to fine dusts and fibers in nature, may induce 
respiratory and cardiovascular diseases as environmental 
pollutants (9,10). Although these data cannot be directly 
transferred to inhaled therapeutic NPs, before practical appli‑
cation, different in vitro and in vivo methods should be used 
in preclinical research and clinical trials to systematically 
detect the interaction between nanomedicines and various 
components of the respiratory system. In this context, the 
present review summarizes the properties of NPs; discusses 
the research status and main points of different nanocarriers 
in drug delivery systems for respiratory diseases, such as lung 
cancer, asthma, chronic respiratory diseases, cystic fibrosis, 
tuberculosis and respiratory infection; and discusses the 
advantages and limitations of therapeutic nanomedicine in the 
field of respiratory diseases.

2. Application of NPs in respiratory systems 

Characteristics of NPs for efficient respiratory disease 
treatment design. NPs can be inhaled, diffused into the 
respiratory tract and deposited in the alveoli, where they can 
approach and interact with the epithelial cells and pulmonary 
surfactant (PS) (11). The characteristics of NPs, including 
size, shape, surface charge and wettability, serve a critical 
role in understanding the interaction between NPs and organ‑
isms (12). Appropriate properties can not only facilitate their 
direct delivery to targeted tissues and cells, but also limit their 
adverse side effects by decreasing drug concentrations in other 
tissues of the body (13).

Size. Among the different characteristics of NPs, particle size 
is a remarkable characteristic. Inhaled NPs are deposited on 
the pulmonary airway mainly via diffusional displacement by 
the thermal motion between air molecules and the NPs (14). 
The nasopharyngeal and tracheobronchial deposition of NPs 
have been reported to be negatively correlated with their 
size (15). A previous animal study in pigs performed by 
Murgia et al (16) revealed that only extremely small carbox‑
ylated NPs (<100 nm) were able to penetrate into mucus. 
Compared with large NPs (>100 nm), NPs with smaller size 
(<30 nm) were more suitable at penetrating biological barriers, 
including the air‑blood barriers.

After intranasal immunization of polystyrene particles 
(20‑1,000 nm), Blank et al (17) compared the size‑dependent 
cellular absorption of these particles on antigen‑presenting 
cells at respiratory sites in BALB/c mice. In the trachea and 
lung parenchyma, most of the smaller particles (20 and 50 nm) 
were absorbed by dendritic cells (DCs) compared with larger 
ones (1,000 nm), and the smaller ones were also observed in 
lung‑associated lymph nodes. However, the uptake of cells by 
alveolar macrophages did not depend on the size of particles 
and larger particles could easily be phagocytized by lung 
macrophages. In addition, Ghaffar et al (18) demonstrated that 
the cellular uptake of smaller polystyrene particles (50 nm) 
by DCs was better than that of larger ones (500 nm) through 
intratracheal administration in mice, which resulted in more 
active lymphatic transport, improved maturation of DCs and 

production of cytokines. Furthermore, NPs with smaller 
particle size had a higher surface/volume ratio and were more 
likely to aggregate than larger ones. The aggregation of NPs 
not only affects their deposition in the lung and association 
with PS, but also changes the clearance mechanisms of NPs.

Shape. Shape is another important property that affects 
the interaction of NPs and cells, and the fate of NPs in the 
human body. Previous studies reported that spherical particles 
were more conducive to cellular internalization than shaped 
particles (19,20). However, Gratton et al (21) reported that 
rod‑shaped, cationic, cross‑linked NPs modified with poly‑
ethylene glycol (PEG) were internalized at a higher rate 
than particles of other shapes (spheres, cylinders and cubes). 
In contrast, it was reported that gold nanospheres had better 
blood circulation and higher overall tumor accumulation rate 
than other shapes (nanodiscs, nanorods and nanocages) (22). 
Moreover, shape may also be involved in regulating the trans‑
port of NPs on the PS monolayer. A previous study revealed 
that NPs smaller than the thickness of the PS layer tended to 
be submerged and hardly transported through the PS layer, 
whereas NPs larger than the thickness of the lung surfactant 
layer tended to be encapsulated by the PS layer (23). The 
results of coarse‑grained molecular dynamics simulations 
suggested that rod‑like NPs exhibited stronger penetration 
and less adverse effects on the dipalmitoylphosphatidylcholine 
(DPPC) monolayer compared with other shapes (24,25).

Surface charge. The surface charge of NPs determines the 
interaction between NPs and anionic cell membranes. Since 
positively charged NPs have the potential to induce damage 
to cell membranes and organelles, nanocarriers with stronger 
positive charges may not be an ideal choice for drug delivery 
systems (26). For example, Mousseau and Berret (27) observed 
a stronger interaction between positively charged NPs and PS 
compared with negatively charged NPs in vitro, which resulted 
in the aggregation of NPs and reduced their transfer efficiency.

However, in some specific fields, positively charged NPs 
have shown obvious advantages. A previous study in mice 
revealed that cationic NPs were mostly associated with DCs, 
whereas anionic particles were mainly internalized by alveolar 
macrophages (28). It is possible that the different cellular 
uptake mechanisms of cationic and anionic NPs might lead to 
different immune effects following pulmonary administration. 
Through animal experiments in mice, Tada et al (29) demon‑
strated that cationic liposomes induced higher antigen‑specific 
antibody levels compared with anionic and neutral liposomes. 
Similarly, Fromen et al (30) reported that cationic NPs 
(~37 mV) conjugated with model antigen ovalbumin induced a 
higher level of antigen‑specific IgG and local mucosal IgA in 
the plasma and bronchoalveolar lavage fluid (BALF) of mice 
after pulmonary immunization. In addition, cationic NPs could 
produce a large number of CD4+ T cells and a high level of 
chemokines or cytokines, whereas negatively charged counter‑
parts (~‑38 mV) could not induce the same level of immunity 
response. Notably, positively charged cationic nanocarriers are 
widely used in drug delivery systems for gene therapy (31).

Wettability. The differences in wettability of NPs are often 
associated with different treatment outcomes. Hydrophobic 
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NPs are deemed to interact more closely with the negatively 
charged cell membrane when compared with hydrophilic 
NPs. However, the hydrophobicity of NPs can mimic a 
danger signal to stimulate the immune system (32). Nanogels 
comprised of hydrophilic polymers [poly (sulfobetaine), PEG 
or poly (carboxybetaine)] were found to be effective in inhib‑
iting immune responses after pulmonary administration, via a 
reduction in the degree of infiltration of inflammatory cells in 
the BALF and the expression of cytokines (TNF‑α and IL‑6) 
in a lipopolysaccharide (LPS)‑induced inflammatory mouse 
model (33). Guzmán et al (34) reported that NPs incorporated 
into Langmuir monolayers of DPPC could alter the interfacial 
organization of the molecules. When compared with hydro‑
phobic carbon black, hydrophilic silica had stronger influence 
on DPPC phase behavior.

Classification and advantages of NPs as drug delivery systems 
for treating respiratory diseases. NPs have great potential to 
be applied as pulmonary delivery systems for the diagnosis 
and treatment of local respiratory diseases and may even exert 
systemic actions, such as blood coagulation (35) and cardio‑
vascular effects (36). Delivery of therapeutic drugs to target 
sites may be important for efficient treatment of tuberculosis, 
lung cancer, cystic fibrosis, and other acute and chronic respi‑
ratory infections. As early as 1654, an inhalation device was 
first designed by Bennet to produce opium vapor for cough 
treatment (37). The Food and Drug Administration (FDA) has 
already approved several materials as drug delivery systems, 
including liposomal, polymeric, dendrimers, inorganic and 
protein materials. More complex materials comprised of 
micelles, proteins, and a variety of inorganic or metallic mate‑
rials are currently in development for assessment in clinical 
trials (38).

Liposomes. The application of liposomes as a drug delivery 
system has a significant impact on pharmacology. Liposomes 
are a class of lipid vesicles composed mainly of phospho‑
lipids and cholesterol. This colloidal form is comprised of 
a self‑assembled lipid bilayer with amphiphilic domains, 
including an inner aqueous core and an outer shell of the lipid 
bilayer (39). According to the physical properties of the drug, 
liposomes can encapsulate drugs with different solubility in the 
water core or bilayer interface of the phospholipid bilayer, and 
enhance the solubility of the loaded drug through the co‑solu‑
bility effect (37). The lipid bilayer of liposomes is similar to 
the composition of cell membranes in the body, which can 
not only reduce its toxicity, but can also enable liposomes to 
cross numerous biological barriers (40), thereby increasing 
absorption and ultimately enhancing the therapeutic effect of 
loaded drugs. In addition, liposomes can be used as carriers 
for other functional groups, such as targeted ligands, to create 
new properties for the delivery of therapeutic drugs (41). 
Furthermore, a previous study by Garbuzenko et al (42) 
tested a variety of nanomaterials to select the best inhala‑
tion carrier for anticancer drugs, and revealed that compared 
with non‑lipid‑based carriers, lipid‑based nanocarriers had 
advantages in terms of accumulation and retention time in 
the lungs. Based on these advantages, liposomes became the 
earliest nanocarriers approved by the FDA in 1995, including 
liposome formulations of doxorubicin (DOX; Doxil®) (43) 

and amphotericin B (44). In the past few decades, nanomedi‑
cine based on the liposome delivery system has generated 
the interest of scientists and clinicians in different fields of 
respiratory diseases (Table I). For example, in an orthotopic 
mouse model of human lung A549 non‑small cell lung 
cancer (NSCLC) cells, Garbuzenko et al (45) compared the 
effects of intravenous and intratracheal administration of 
liposome‑encapsulated DOX, antisense oligonucleotides 
and small interfering RNA (siRNA) on lung cancer, and 
demonstrated that compared with systemic administration by 
intravenous injection, intratracheal administration resulted in 
much higher peak concentrations and longer retention time of 
three drugs in the lungs, which indicated that local intratra‑
cheal administration was better than systemic administration 
of the same drug. Similarly, Koshkina et al (46) proved that 
the pulmonary delivery of paclitaxel (PTX) in liposome 
aerosol formulations was more efficient than intravenous 
injection in mice. In a carbamate‑induced lung tumor mouse 
model, Fritz et al (47) showed that clodronate encapsulated 
with liposomes reduced the number of macrophages by 50% 
after 4‑6 weeks of treatment and significantly weakened the 
proliferative ability of tumor cells. Besides, a phase I clinical 
trial carried out by Wittgen et al (48) explored the applica‑
tion of cisplatin liposomal formulation in lung cancer. Their 
results indicated that this drug delivery system could enhance 
the drug accumulation and reduce the systemic side effects.

Several types of antimicrobials for the treatment of 
airway infections can also be delivered by liposomes. A 
double‑blind, randomized, phase Ⅱ clinical trial conducted by 
Olivier et al (49) applied inhaled liposomal amikacin in the 
treatment of nontuberculous mycobacterial lung disease; the 
results revealed that the drug promoted the negative conver‑
sion of sputum and induced lower toxicity compared with 
parenteral amikacin. Similarly, Zhang et al (50) explored the 
efficacy of liposomal amikacin in nontuberculous mycobac‑
teria both in vivo (rat model) and in vitro, and their results 
showed that this nanodrug could effectively enter bacterial 
biofilms, improve cellular uptake of amikacin in macrophages 
and inhibit the distribution of amikacin to other tissues. 
Additionally, through a randomized controlled clinical 
trial, Okusanya et al (51) reported that liposomal amikacin 
improved lung function and reduced bacterial density in the 
lung of patients with chronic Pseudomonas infection.

Furthermore, liposomal drug delivery systems have been 
applied to inflammatory respiratory diseases. For example, 
Konduri et al (52) investigated the effect of liposomal 
budesonide on the treatment of asthma using a mouse model; 
the results revealed that this drug delivery system signifi‑
cantly improved lung inflammation and reduced the toxicity 
of inhaled steroid asthma drugs. Chen et al (53) designed 
liposomes to encapsulate salbutamol sulfate (SBS) in aerosol 
form and demonstrated that the complexes exhibited longer 
anti‑asthmatic effects than free SBS. Furthermore, Ng et al (54) 
demonstrated that liposome‑encapsulated curcumin exerted 
an inhibitory effect on LPS‑induced airway inflammation 
via cell experiments in vitro. A recent study performed by 
Komalla et al (55) through cell and animal experiments found 
that empty liposomes (UTS‑001) could be used to treat chronic 
respiratory diseases by inhibiting epithelial pro‑inflammatory 
cytokines and reducing the number of eosinophils.
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In addition to simple liposomal nanocarriers, numerous 
groups have successfully modified liposomes to improve their 
properties, including cellular uptake, stability and targeting. 
For example, Nahar et al (56) demonstrated that starch‑coated 
magnetic liposomes could be used as an inhalable carrier to 
deliver fasudil to treat pulmonary hypertension through in vitro 
cell experiments and rat animal models. In addition, a previous 
study reported that the cellular uptake of mannosylated lipo‑
somes by alveolar macrophages was higher compared with 
that of non‑modified ones after intratracheal administration 
both in vivo and in vitro (57). Through in vitro experiments, 
Cryan et al (58) showed that octaarginine‑coated liposomes 
could increase intracellular targeting, improve cellular uptake 
and reduce drug toxicity in airway cells.

Solid lipid nanocarriers (SLNs). SLNs are another type 
of lipid‑based material, which are slightly different from 
liposomes in structure. SLNs may represent an alternative to 
traditional carrier systems due to their numerous advantages, 
including targeted drug delivery, controlled‑release, high drug 
stability, high drug loading, encapsulation of hydrophilic and 
lipophilic drugs, low carrier toxicity, avoidance of organic 
solvents in production (such as high‑pressure homogenization) 
and large‑scale industrial production (59,60). Nassimi et al (61) 
evaluated the toxicity of SLNs as potential nanocarriers in 
in vitro and ex vivo lung models, and their results showed that 
SLN20 (20% phospholipids included in particle lipid matrix) 
could be used as a safe pulmonary drug delivery system.

In the past few years, as a colloidal drug delivery system, 
SLNs have promoted the development of the treatment of 
respiratory diseases (Table II). For example, Videira et al (62) 
investigated the antitumor effect of PTX‑loaded SLNs on 
lung cancer, and revealed that the pulmonary delivered nano‑
drug efficiently reduced cellular toxicity and suppressed the 
progression of lung metastases in vitro and in vivo. In addi‑
tion, Castellani et al (63) designed SLN‑encapsulated grape 
seed‑derived proanthocyanidins to treat chronic respiratory 
diseases, and confirmed that the complex could inhibit oxida‑
tive stress and inflammation in airway epithelial cells through 
cell experiments and mouse models.

Moreover, SLNs can be modified to improve their targeting 
ability, thereby increasing the accumulation of drugs in 
targeted sites and reducing systemic toxicity. For the treatment 
of tuberculosis (64), Maretti et al (65) used SLN modified with 
mannose derivatives as nanocarriers of rifampicin, and tested 
the anti‑tuberculosis ability of the novel drug in J774 murine 
macrophage cells. Their results showed that SLNs modified 
with the surfactants (mannose derivatives) could improve the 
absorption capacity of macrophages for their encapsulated 
drugs. A similar study was carried out by Nimje et al (66), 
which revealed that mannose‑conjugated SLNs could deliver 
rifampicin more effectively than bare‑SLNs, which increased 
the therapeutic effect and reduced the side effects of the drug.

Polymeric nanocarriers. A polymer is a type of large molecule 
chemical compound, which is composed of numerous smaller 
homogeneous molecules. Polymers can be natural (albumin, 
gelatin, alginate, collagen, cyclodextrin and chitosan) or 
synthetic [poly‑lactic‑co‑glycolic acid (PLGA), polyacry‑
lates, polyethyleneimine (PEI), PEG, polyanhydrides and 

poly‑l‑lysine] (67). Polymers with particular biological and 
physicochemical advantages are used for the formulation 
of nanocarriers to deliver therapeutic and diagnostic drugs. 
Polymer‑based nanocarriers can deliver different agents, 
which are inserted into the surface of the polymer or dispersed 
in the polymeric matrix (68).

Aliphatic polyesters are the most commonly used 
polymer nanocarriers due to their excellent biocompatibility, 
controlled‑release properties and sufficient biodegradability 
under physiological conditions (69). Various forms of poly‑
meric nanocarriers have been used in preclinical experiments 
for the treatment of respiratory diseases (Table III). Among 
them, PLGA has been approved by the FDA for use as a 
drug delivery system. Türeli et al (70) prepared PLGA NPs 
loaded with ciprofloxacin and tested their therapeutic effects 
on bacterial infection‑induced cystic fibrosis in Calu‑3 and 
CFBE41o‑ cells. The results showed that the nanomedicine 
had high drug loading and permeability, which could not only 
achieve high and persistent local drug concentration, but also 
decrease the drug dose to reduce side effects. Through in vitro 
and in vivo experiments, Kim et al (71) revealed that the 
sustained‑release inhalation system assembled by DOX and 
PLGA had high encapsulation efficiency and good nebuliza‑
tion ability, could effectively inhibit the growth of tumor cells 
and was suitable for the treatment of metastatic lung cancer. A 
previous study in guinea pigs performed by Pandey et al (72) 
showed that the encapsulation of PLGA prolonged the 
elimination half‑life and average residence time of three 
anti‑tuberculosis drugs, thereby increasing the bioavail‑
ability and reducing the frequency of administration. Besides, 
Tomoda et al (73) demonstrated that PLGA NPs loaded with 
TAS‑103 enhanced drug toxicity to A549 lung cancer cells and 
increased the drug concentration in the lungs of rats. For gene 
transfer applications in the treatment of respiratory disease, 
PLGA is also considered a good choice. An in vitro study by 
Zou et al (74) reported that negatively charged bioadhesive 
PLGA NPs could be used as an efficient non‑viral vector for 
gene therapy in the treatment of lung cancer.

Although PLGA has numerous advantages, it also has 
several limitations as a pulmonary delivery system. For 
example, the slow degradation rate of PLGA may result in 
excessive accumulation of PLGA in the respiratory tract (75). 
The degradation rate of the drug depends on the composition 
and molecular weight of polymeric nanocarriers, and the 
release period varies from several weeks to several months. 
Moreover, continuous hydrolysis of PLGA may generate an 
acidic core within the drug delivery device, which lowers 
the pH of the microenvironment and damages pH‑sensitive 
encapsulated proteins, such as peptides and proteins (76). 
Additionally, due to the extreme hydrophobicity of PLGA, the 
encapsulation efficiency of low‑molecular‑weight hydrophilic 
drugs may be undesirably low and the hydrophobic surface 
may cause rapid protein adsorption, leading to the clearance of 
PLGA by alveolar phagocytes (77).

Solutions have been applied to optimize the design and 
overcome the problems of PLGA delivery devices. To over‑
come the accumulation of PLGA carriers, several polymers 
with faster degradation rates have been synthesized for drug 
delivery. Polybutylcyanoacrylate (PBCA) is a noncytotoxic 
and biodegradable NP that can be used for pulmonary 
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administration; in addition, it is pH‑sensitive and can be 
catalyzed by enzymes (78). Compared with free DOX, in vitro 
and in vivo studies by Melguizo et al (79) revealed that 
PBCA‑encapsulated DOX significantly enhanced the drug 
uptake of lung cancer cells, improved the antitumor activity 
of drugs and increased the survival rate of mice. Another 
approach is to use hydrophilic polymers to reduce accumula‑
tion of polymerics in the body. For stabilization of proteins 
within PLGA, pH‑sensitive drugs could be pre‑mixed with 
zinc or antacid excipients could be added to buffer the vehicle 
microclimate (80).

Polymers are important delivery carriers for nano‑gene 
drugs in gene therapy of respiratory diseases; as well as the 
aforementioned modified PLGA, PEI is also a promising 
polymer for delivering recombinant genes to mammalian cells 
due to its high transfection efficiency, biocompatibility and 
biodegradability (81,82). This polymer with positively charged 
groups is able to closely interact with negatively charged 
genes. Similarly, chitosan is another nanocarrier commonly 
used in gene therapy for drug delivery. It is positively charged 
under neutral and acidic pH conditions and is a biodegradable 
polymer synthesized through the deacetylation of chitin (83). 
In 2006, Howard et al (31) synthesized a NP system composed 
of siRNA and chitosan, and revealed that the complex had 
high transfection efficiency in vitro and in vivo, and it was 
considered a potential genetic medicine for mucosal disease. 
Beyond that, in order to improve the transfection efficiency 
of gene drugs, a variety of improved polymer carriers based 
on chitosan have been proposed. Germershaus et al (84) 
compared the performance of chitosan, trimethyl chitosan 
and PEGylated trimethyl chitosan as DNA carriers, and the 
results showed that compared with unmodified chitosan, both 
modified forms of chitosan exhibited improved cellular uptake 
and transfection efficiency. In addition, the quaternization 
of chitosan could effectively inhibit the pH dependence and 
aggregation of DNA complexes, and PEGylation could further 
improve the stability of colloids.

Dendrimers. A dendrimer is a type of polymer nanostructure 
that is different from traditional polymers. It has a highly 
branched monodisperse three‑dimensional structure. The 
multiple functional groups distributed on the surface of a 
dendrimer increase its versatility and biocompatibility as a 
nanocarrier (85). In addition, their external functional groups 
can be modified by other charged compounds through elec‑
trostatic interaction, and dendrimers with both hydrophobic 
and hydrophilic group structures can deliver a large number 
of drug molecules with different solubility (86). During the 
delivery process, the loaded drug can be combined with the 
functional groups on the surface of the dendrimer, or it can be 
wrapped in the molecular cavity of the dendrimer (87).

Based on these advantages, dendrimers have attracted the 
attention of researchers in the field of drug delivery due to their 
unique structural and physicochemical properties (Table IV). 
For example, a previous in vitro study by Bellini et al (88) 
repor ted that  four th‑generat ion polyamidoamide 
(G4‑PAMAM) dendrimers containing the anti‑tuberculosis 
drug rifampicin had high stability under physiological pH 
conditions, and the PAMAM dendrimers could be used as 
a pH switch to rapidly release drugs in the acidic area of 
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macrophages. Similarly, Rajabnezhad et al (89) synthesized 
different generations of PAMAM dendrimers encapsulating 
rifampicin to produce inhalable nanodrugs for the treat‑
ment of tuberculosis. Their results showed that compared 
with intravenous administration, third generation PAMAM 
dendrimers achieved sustained drug release, and significantly 
improved drug absorption and bioavailability. For the applica‑
tion of dendrimers in lung cancer, Conti et al (90) used an 
amine‑terminated G4‑PAMAM dendrimer (G4NH2) loaded 
with siRNA to decrease the expression of enhanced green 
fluorescent protein in a model of A549 cells, indicating that 
G4NH2‑siRNA could not only target alveolar epithelial cells, 
but could also effectively silence the target gene. Furthermore, 
Zhong et al (91) explored the effect of a complex composed 
of DOX and carboxyl‑terminated G4‑PAMAM dendrimers in 
lung metastasis, and confirmed that compared with intravenous 
administration, the complex prolonged the accumulation and 
retention time of the drug in the lung and reduced systemic 
toxicity, thereby enhancing the efficacy of DOX on melanoma 
lung metastasis and increasing the survival rate of mice. In 
addition, dendrimers have been used to treat inflammatory 
respiratory diseases related to asthma. Through a mouse 
lung inflammation model, Inapagolla et al (92) revealed that 
G4‑PAMAM conjugated with methylprednisolone (MP) 
might enhance the ability of MP to inhibit inflammation by 
prolonging the residence time of the drug within the lung.

Inorganic nanocarriers. There are several types of inorganic 
substances that have been used to synthesize NPs, including 
gold, silica, iron oxide, alumina and titanium dioxide. 
Inorganic NP carriers possess several advantages, such as 
high biocompatibility, high delivery efficiency, high stability, 
magnetic properties and resistance to microbial degrada‑
tion (93). Several iron oxide NPs have been approved by the 
European Union. Based on the plasmonic and magnetic char‑
acteristics of inorganic materials, they can also be used for 
diagnosis of respiratory diseases, such as positron emission 
tomography, computed tomography and magnetic resonance 
imaging (94). The external magnetic field can not only direct 
these magnetic NPs to the targeted sites, but also increase the 
temperature of these NPs (95). High temperature can induce 
apoptosis of target cells, including infected cells and cancer 
cells (86,96).

In addition to high‑temperature‑based targeted drug 
control, gold NPs (AuNPs), as typical inorganic NPs, are often 
used as nanocarriers in drug delivery systems for the treatment 
of respiratory diseases (Table V). For example, a previous 
study conducted by Chen et al (97) demonstrated that metho‑
trexate (MTX)‑AuNPs were more cytotoxic to tumor cell lines 
than free MTX, and MTX could inhibit tumor growth only 
when under AuNP encapsulation both in vitro and in vivo. 
Similarly, Brown et al (98) confirmed that AuNPs increased 
the toxicity of the antitumor drug oxaliplatin to lung cancer 
cell lines. Apart from the application in lung cancer treat‑
ment, Codullo et al (99) investigated the role of AuNP‑loaded 
imatinib in the treatment of lung fibrosis through cell experi‑
ments and mouse models, and the results showed that the 
complex could significantly improve the anti‑fibrotic efficacy 
of imatinib, thereby inhibiting the proliferation of fibroblasts 
and macrophages.

Despite these advantages, drug delivery systems using 
metal NPs as carriers still have some limitations. For example, 
when administered by intravenous injection, positively charged 
AuNPs are easily combined with negatively charged serum 
proteins in the blood and form aggregates (96). Based on this 
defect, previous studies have proposed an improved solution, that 
is, PEG modification of the surface to prevent the aggregation 
of AuNPs and thus improve their stability during storage (100). 
Omlor et al (101) modified AuNPs with PEG and citrate to 
reduce airway inflammation in a mouse model. Furthermore, 
an in vitro study performed by Park et al (102) combined 
cell‑penetrating peptides with PEG‑AuNPs to enhance the cell 
death‑inducing activity of the anticancer drug DOX. In addi‑
tion, the potential concentration‑dependent cytotoxicity and 
low excretion of inorganic nanocarriers also limit their clinical 
application to a certain extent. Therefore, systemic absorption 
and subsequent adverse events must be fully considered when 
designing and examining nanomedicine.

Protein nanocarriers. Protein NPs include a large number 
of classes, such as endogenous protein carriers conjugated 
with drugs, engineered proteins and combined platforms that 
rely on protein or peptide motifs for targeting delivery (103). 
Protein NPs have many advantages, including high biocom‑
patibility and solubility, biodegradability, modifiability, 
controlled‑release properties and targeted drug delivery (104). 
At present, a large number of preclinical experiments based on 
protein nanocarriers have been reported in the field of respira‑
tory diseases, particularly for respiratory infection (Table VI). 
Among them are virus‑like particles (VLPs), which are a type 
of protein NP assembled from viral proteins with diverse 
structures and functions (Table VI). The proteins of VLPs 
can be commercially expressed in numerous systems, such as 
prokaryotic systems (Escherichia coli) and eukaryotic systems 
(yeast and insect cells) (105). VLPs could be used as nanocar‑
riers for vaccines to treat infectious respiratory diseases, such 
as influenza virus and respiratory syncytial virus (RSV) infec‑
tion (106). For example, Coleman et al (107) proposed to use 
purified coronavirus spike protein NPs to load Middle East 
respiratory syndrome coronavirus (MERS‑CoV) and severe 
acute respiratory syndrome coronavirus (SARS‑CoV) protein 
antigens for vaccination. The results showed that this strategy 
could produce high titers of antibodies in mouse models. 
Additionally, Smith et al (108) and Lee et al (109) used bacu‑
lovirus vector and VLPs to combine with RSV fusion proteins 
to construct protein nanocarrier vaccines, respectively. The 
results demonstrated that in cotton rat and mouse models RSV 
replication was effectively inhibited in the lungs following 
intramuscular injection of vaccines, and nanocarriers 
promoted the immunogenicity of vaccines when compared 
with traditional formalin‑inactivated RSV. In addition to the 
application of vaccination strategies, protein nanocarriers have 
been used in other respiratory diseases. A previous in vitro 
study confirmed that the encapsulation of apigenin with bovine 
serum albumin could inhibit lung injury induced by immune 
responses by enhancing antioxidant activity (110).

The advantages and limitations of therapeutic nanomedicine 
in respiratory diseases. Inhaled administration is a 
non‑invasive drug delivery route. The drug is delivered through 
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the cavity of the respiratory tract and the mucous membrane 
to achieve local or systemic drug delivery. The special physi‑
ological structure of the lung determines the characteristics 
and advantages of inhaled administration. Firstly, pulmonary 
inhalation can achieve effective lung‑targeted medication and 
maintain the biological activity of the drug, which is suitable 
for the treatment of common respiratory diseases, including 
asthma, emphysema and chronic bronchitis (111). Secondly, 
in contrast to other routes of administration, such as oral and 
intramuscular injection, pulmonary inhalation takes effect 
rapidly (112). Thirdly, pulmonary inhalation can avoid hepatic 
first‑pass metabolism, decrease the dosage of administration 
and reduce systemic side effects (113).

Based on the basic advantages of pulmonary inhalation, 
the application of nanotechnology in drug delivery systems 
has further improved the efficacy of inhalation therapy for 
different respiratory diseases. In general, nanocarriers enhance 
cellular uptake and achieve therapeutic effects in the lungs 
with lower drug doses (70), enhance the solubility of drugs, 
particularly the delivery of hydrophobic molecules (37,86), 
enhance the stability of drugs under physiological condi‑
tions (88), achieve controlled‑release to prevent the rapid 
elimination of drugs (72,91,92) and result in targeted drug 
delivery (57,66,90).

Although nanocarriers have promoted the develop‑
ment of drugs related to respiratory diseases, the potential 
toxicity of NPs to the lung microenvironment or systemic 
toxicity is also the focus of current nanomedicine research. 
It has been reported that the size, surface charge, polarity 
and degradability of NPs are typical characteristics related to 
toxicity (114). Previous studies have demonstrated that inhala‑
tion of nanomaterials <100 nm is usually related to chronic 
toxicity (115,116). Therefore, in terms of particle size, the drug 
development process needs to fully balance the efficacy and 
toxicity of the nanodrug. However, a previous study evalu‑
ated the effects of particles with different sizes (50‑150 nm) 
and different materials (PEG‑ylated lipid particles, polyvinyl 
acetate and polystyrene) on mice, and found that acute respi‑
ratory toxicity was independent of particle size and only 
hydrophobic materials caused inflammation (117). In addition, 
Dailey et al (118) compared non‑biodegradable polymers and 
biodegradable polymers of the same size, and confirmed that 
NPs derived from biodegradable polymers produced less 
toxicity and inflammatory responses. Furthermore, the appli‑
cation of nanocarriers in pharmaceutical preparations may 
change the distribution behavior of the original drugs in the 
body, which may cause new unpredictable adverse reactions.

Briefly, in the process of developing nanomedicine for the 
treatment of respiratory diseases, it is necessary to systemati‑
cally explore the interaction between the nanomedicine and the 
respiratory system, including in vitro and in vivo detection 
methods to measure the genotoxicity, cytotoxicity and tissue 
toxicity of the drug (119), in order to thoroughly examine the 
safety, tolerability and therapeutic effect of NPs in treatment. 
Although some preclinical studies have shown promising appli‑
cation prospects, the current clinical trials of nanomedicine 
related to respiratory diseases remain limited, and the clinically 
known applications of nanocarriers are liposomes (48,49) in 
nontuberculous mycobacterial lung disease and lung cancer, and 
PLGA in pulmonary arterial hypertension (120).

Ta
bl

e 
V

I. 
Br

ie
f a

pp
lic

at
io

n 
of

 p
ro

te
in

 n
an

oc
ar

rie
rs

 in
 d

ru
g 

de
liv

er
y 

sy
st

em
s f

or
 th

e 
tre

at
m

en
t o

f r
es

pi
ra

to
ry

 d
is

ea
se

s.

 
 

 
 

 
 

M
et

ho
d

A
ut

ho
r 

C
ol

lo
id

al
 sy

st
em

 
A

pp
lic

at
io

n 
O

bj
ec

t o
f t

he
 st

ud
y 

D
ru

g 
C

ha
ra

ct
er

is
tic

s 
of

 a
dm

in
is

tra
tio

n 
K

ey
 fi

nd
in

gs
 

(R
ef

s.)

C
ol

em
an

 e
t a

l, 
20

14
 

Pu
rifi

ed
 

Va
cc

in
at

io
n 

M
ic

e 
M

ER
S‑

C
oV

 
~2

5 
nm

 
In

tra
m

us
cu

la
r 

Pr
od

uc
ed

 h
ig

h 
tit

er
 a

nt
ib

od
ie

s 
(1

07
)

 
co

ro
na

vi
ru

s  
st

ra
te

gi
es

 
 

an
d 

SA
R

S‑
C

oV
 

 
in

je
ct

io
n

 
sp

ik
e 

pr
ot

ei
n 

 
 

pr
ot

ei
n 

an
tig

en
s

Sm
ith

 e
t a

l, 
20

12
 

B
ac

ul
ov

iru
s v

ec
to

r 
Va

cc
in

at
io

n 
C

ot
to

n 
ra

t 
R

SV
 fu

si
on

 
40

 n
m

 
In

tra
m

us
cu

la
r 

In
du

ce
d 

ne
ut

ra
liz

in
g 

se
ru

m
 

(1
08

)
 

 
st

ra
te

gi
es

 
 

pr
ot

ei
ns

 
 

in
je

ct
io

n 
an

tib
od

ie
s a

nd
 in

hi
bi

te
d 

vi
ru

s 
 

 
 

 
 

 
 

re
pl

ic
at

io
n

Le
e 

et
 a

l, 
20

17
 

V
LP

 
Va

cc
in

at
io

n 
M

ic
e 

R
SV

 fu
si

on
 

60
‑1

20
 n

m
 

In
tra

m
us

cu
la

r 
In

du
ce

d 
di

st
in

ct
 in

na
te

 a
nd

 
(1

09
)

 
 

st
ra

te
gi

es
 

 
pr

ot
ei

ns
 

 
in

je
ct

io
n 

ad
ap

tiv
e 

ce
llu

la
r s

ub
se

ts
Pá

pa
y 

et
 a

l, 
20

17
 

B
ov

in
e 

se
ru

m
 

Pu
lm

on
ar

y 
Fr

an
z 

ce
ll 

ap
pa

ra
tu

s 
A

pi
ge

ni
n 

37
6±

7.
82

4 
nm

;  
N

A
 

Ef
fe

ct
iv

e 
ag

ai
ns

t o
xi

da
tiv

e 
(1

10
)

 
al

bu
m

in
 

in
fla

m
m

at
io

n 
 

 
Pd

I=
0.

28
5±

0.
01

;  
 

st
re

ss
‑in

du
ce

d 
lu

ng
 in

ju
ry

 
 

 
 

 
‑1

9.
20

±0
.8

18
 m

V

M
ER

S‑
C

oV
, M

id
dl

e 
Ea

st
 re

sp
ira

to
ry

 s
yn

dr
om

e 
co

ro
na

vi
ru

s;
 N

A
, n

ot
 a

va
ila

bl
e;

 P
dI

, p
ol

yd
is

pe
rs

ity
 in

de
x;

 R
SV

, r
es

pi
ra

to
ry

 s
yn

cy
tia

l v
iru

s;
 S

A
R

S‑
C

oV
, s

ev
er

e 
ac

ut
e 

re
sp

ira
to

ry
 s

yn
dr

om
e 

co
ro

na
vi

ru
s;

 
V

LP
, v

iru
s‑

lik
e 

pa
rti

cl
e.



LUO et al:  USE OF NANOTECHNOLOGY IN LUNG DISEASES14

3. Conclusions

Nanotechnology has become an important tool to overcome the 
defects of drugs, and to enable them to target specific cells or 
tissues passively or actively. The present review summarized the 
applications and advantages of NPs as drug delivery vehicles 
in respiratory diseases, such as lung cancer, asthma, chronic 
respiratory diseases, cystic fibrosis, tuberculosis and respira‑
tory infection. The combination of nanotechnology has further 
promoted the development of drugs for respiratory diseases 
based on the benefits of inhaled administration. However, 
although preclinical studies have shown broad development 
prospects, most relevant studies are still in the early stage of 
experimentation, and their clinical effects need to be further 
verified. Future studies should focus on the performance 
modification, molecular mechanism and potential toxicity of 
therapeutic nanomedicine in the process of treatment.
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