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Potential for Prevention of HIV-1
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ABSTRACT Definition of the key parameters mediating effective antibody blocking
of HIV-1 acquisition within mucosal tissue may prove critical to effective vaccine de-
velopment and the prophylactic use of monoclonal antibodies. Although direct
antibody-mediated neutralization is highly effective against cell-free virus, antibodies
targeting different sites of envelope vulnerability may display differential activity
against mucosal infection. Nonneutralizing antibodies (nnAbs) may also impact mu-
cosal transmission events through Fc-gamma receptor (FcyR)-mediated inhibition. In
this study, a panel of broadly neutralizing antibodies (bnAbs) and nnAbs, including
those associated with protection in the RV144 vaccine trial, were screened for the
ability to block HIV-1 acquisition and replication across a range of cellular and mu-
cosal tissue models. Neutralization potency, as determined by the TZM-bl infection
assay, did not fully predict activity in mucosal tissue. CD4-binding site (CD4bs)-
specific bnAbs, in particular VRCO1, were consistent in blocking HIV-1 infection
across all cellular and tissue models. Membrane-proximal external region (MPER)
(2F5) and outer domain glycan (2G12) bnAbs were also efficient in preventing infec-
tion of mucosal tissues, while the protective efficacy of bnAbs targeting V1-V2 gly-
cans (PG9 and PG16) was more variable. In contrast, nnAbs alone and in combina-
tions, while active in a range of cellular assays, were poorly protective against HIV-1
infection of mucosal tissues. These data suggest that tissue resident effector cell
numbers and low FcyR expression may limit the potential of nnAbs to prevent es-
tablishment of the initial foci of infection. The solid protection provided by specific
bnAbs clearly demonstrates their superior potential over that of nonneutralizing an-
tibodies for preventing HIV-1 infection at the mucosal portals of infection.

IMPORTANCE Key parameters mediating effective antibody blocking of HIV-1 acqui-
sition within mucosal tissue have not been defined. While bnAbs are highly effective
against cell-free virus, they are not induced by current vaccine candidates. However,
nnAbs, readily induced by vaccines, can trigger antibody-dependent cellular effector
functions, through engagement of their Fc-gamma receptors. Fc-mediated antiviral
activity has been implicated as a secondary correlate of decreased HIV-1 risk in the
RV144 vaccine efficacy trial, suggesting that protection might be mediated in the
absence of classical neutralization. To aid vaccine design and selection of antibodies
for use in passive protection strategies, we assessed a range of bnAbs and nnAbs for
their potential to block ex vivo challenge of mucosal tissues. Our data clearly indi-
cate the superior efficacy of neutralizing antibodies in preventing mucosal acquisi-
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tion of infection. These results underscore the importance of maintaining the central
focus of HIV-1 vaccine research on the induction of potently neutralizing antibodies.

KEYWORDS HIV vaccines, human immunodeficiency virus, mucosal immunity,
neutralizing antibodies, nonneutralizing antibodies

he induction of broadly neutralizing antibodies (bnAbs) remains a key focus of

human immunodeficiency virus type 1 (HIV-1) vaccine research; however, this goal
has yet to be realized. Classical neutralization is thought to require binding of the
antibody to the trimeric envelope spike, blocking key epitopes on the surface of the
virus, inhibiting engagement with cell receptors, and preventing conformational
change required for viral fusion and entry (1). During the natural course of HIV-1
infection, ~50% of HIV-1-infected individuals develop neutralizing antibodies (nAbs)
capable of inhibiting more than 50% of viral isolates (2), with ~10% developing high
levels of bnAbs capable of inhibiting 90% of viruses. While both bnAbs and nAbs
require a period of months to years to develop (3), nonneutralizing antibodies (nnAbs)
are found in all HIV-1-infected individuals from the acute stage of infection onwards (4).
These nnAbs are thought to target a diversity of envelope structures in addition to
functional trimers that include noncleaved trimers, dimers, and monomers, as well as
gp41 stumps that have shed gp120. The extent to which these structures are expressed
on infectious virus and/or infected cells may prove critical to any potential antiviral
activity (5, 6). Nevertheless, binding of the Fc region of immunoglobulin G (IgG) to
Fc-gamma receptors (FcyRs) can engage a range of effector cells capable of mediating
potent antiviral activity. The extent to which Fc-effector functions can impact on initial
events determining mucosal infection may prove critical to vaccine design.

Two key observations are cited in support of the potential role for Fc-effector
functions contributing to mucosal protection. The first was the observation that the
solid passive protection mediated by the b12 nAb against vaginal simian-human
immunodeficiency virus (SHIV) challenge in the nonhuman primate model (NHP) was
reduced by introducing the LALA mutation that impaired its binding to FcyRs (7). These
data suggest that binding to FcyRs may augment, but is not essential for, the protective
activity of nAbs. The extent to which FcyR-mediated engagement of mucosal effector
cells versus the role of FcyR extending the half-life of CD4-binding site (CD4bs)
antibodies contributed to the protective efficacy of b12 has yet to be resolved (8). The
second key observation was that the marginal protection (31%) provided by the RV144
Thai phase Il trial correlated with high concentrations of anti-V1-V2 nnAbs and an
absence of nAbs against circulating viral strains (9). Although mechanistic correlates
remain elusive, reduced risk correlated to Fc-mediated effector functions of nnAbs
targeting the V1-V2 region of the HIV-1 envelope.

The Fc-mediated effector functions of both nabs and nnAbs are dependent upon
the engagement of Fc receptors leading to activation of effector cells and further
downstream activities, such as antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular viral inhibition (ADCVI), or antibody-dependent cellular
phagocytosis (ADCP). ADCC requires engagement of FcyRs by effector cells (natural
killer [NK] cells, neutrophils, and macrophages) capable of eliminating infected cells
following their recognition by binding antibodies. Importantly, ADCC targets infected
cells, cells that have bound virus, and cells binding shed viral envelope (5, 10, 11). The
inverse correlation with infection risk and high levels of serum V1-V2 loop antibodies
capable of mediating ADCC (12-14) has driven speculation that protection in RV144
was partially due to ADCC-mediating antibodies (15). ADCVI and ADCC activities likely
overlap; however, ADCVI measures the additional contribution of noncytolytic mech-
anisms, such as FcyR-triggered production of B-chemokines that can also contribute to
viral inhibition of cell-free virus (16). ADCP targets cell-free virus and prevents infection
of antigen-presenting cells (macrophages and dendritic cells [DC]) through FcyR-
dependent phagocytosis of opsonized viral particles (17). This may have particular
relevance given the potential role of mucosal antigen-presenting cells in the uptake
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and subsequent presentation of HIV-1 to CD4™ target cells (18-21), facilitating dissem-
ination through cis- and trans-infection pathways (22). Additionally, phagocytosis of
opsonized virions may itself reduce the probability of successful infection of tissue
resident CD4™ T cells, the primary targets of mucosal infection in humans and ma-
caques, by reducing the half-life of infectious virus (23-25).

To date, little is known about the critical parameters mediating effective antibody
blocking of HIV-1 acquisition within mucosal tissue. To bridge this gap, we assessed the
relative antiviral potencies of a panel of neutralizing and nonneutralizing antibodies,
including those associated with protection in the RV144 vaccine trial, across a range of
tissue and cellular models designed to mimic the initial events required to establish
mucosal infection. To assess the relative efficacy of bnAbs, we chose representative
monoclonal antibodies (MAbs) targeting four major sites of envelope vulnerability: the
CD4-binding site (b12, VRCO1, and CH31), membrane-proximal external regions (MPERs)
(2F5 and 4E10), V1-V2 glycan Env regions (PG9 and PG16), and outer domain glycans
(2G12). To assess the potential of nnAbs to block infection and/or onward transmission
from mucosal tissue, we selected two individual nnAbs targeting the C1 region of
gp120 (A32) and cluster | of gp41 (4B3) previously reported to show high levels of ADCC
and ADCP in in vitro assays (26, 27). In addition, we assembled three nnAb combina-
tions. Combination 1 was 7B2/CH58/CH90, targeting the principal immunodominant
domain (PID) of gp41 (7B2), the V2 region of gp120 (CH58), and the CD4-induced (CD4i)
cluster 1 region (CH90); all are known to display ADCC activity in a range of in vitro
models (15, 28), and 7B2 in combination with CH58 shows enhanced capacity to
capture of infectious virions (29). Combination 2 was 7B2/CH58/CH22, combining 7B2
and CH58 with CH22 targeting the V3 region of gp120, also with known ADCC activity
and limited tier 1 neutralization (30). Combination 3 was F240/M785-U1/N10-U1, all
focused on different epitopes within the C1 region of gp41 and previously shown to
exhibit ADCC activity (31, 32).

RESULTS

TZM-bl and peripheral blood mononuclear cell (PBMC) assays differentiate
FcR-dependent function. Initial studies assessed the ability of antibodies to block
HIV-1g,, infection using an indicator cell line (TZM-bl) devoid of FcR. Known bnAbs
VRCO1, CH31, b12, PGY, and PG16 demonstrated significant reduction in infection (Fig.
1A and Table 1). The inhibitory activity of CH31 was reduced when presented as
monomeric IgA2 (mlgA2) or dimeric IgA2 (digA2) compared to IgG (Table 1). In contrast,
MPER bnAbs failed to demonstrate significant inhibition in the absence of FcR engage-
ment, while 2G12 provided only a modest reduction in infection at the highest
concentration tested (50 wg/ml). None of the nnAbs or HIV-IG preparations demon-
strated inhibition in the absence of FcR.

bnAbs active in the TZM-bl assay were also active in PBMC (Fig. 1B) and, although
individual antibodies showed some differences in potency between the two assays
(Table 1), there was no evidence that the presence of FcR in the PBMC assay had a
major impact on activity. In contrast, the activity of MPER bnAbs 2F5 IgG and 4E10 and
glycan-specific 2G12 showed enhanced activity in PBMC cultures. Strikingly, the nnAb
combinations, nnAb A32, and both HIV-IG B and C pools demonstrated measurable
levels of HIV-1g,, inhibition in PBMC cultures (Fig. 1B and Table 1), although only HIV-IG
C generated a 90% inhibitory concentration (IC,).

Antibody inhibition in macrophage and dendritic cell cultures. To further in-
vestigate the ability of the antibodies to block HIV-14,, infection in FcR-positive cells,
subsequent experiments were performed in macrophage and dendritic cell models, as
previously described (24). Fc receptor expression was determined for the different
cellular models (Fig. 2). All IgG bnAbs displayed potent inhibition of macrophage
infection (Fig. 3A). Interestingly, IgA forms of CH31 were less effective than IgG, while
2F5 dIgA was completely inactive. With the exception of A32, all nnAbs and both HIV-IG
preparations were effective against macrophage infection. A similar pattern was evi-
dent for direct infection of dendritic cells. However, the difference in activity between
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FIG 1 Inhibition of single antibodies and antibody combinations in TZM-bl cells and PBMC. Shown are results for inhibition of HIV-1g_
by antibody panels (50 pg/ml of single antibodies; 25 ug/ml of each in combinations) in the direct infection of TZM-bl (n = 3) (A) and
PBMC (n = 3) (B). Data are presented as percent infection compared to the HIV-1;, -positive control. One-way ANOVA with Dunnett’s
multiple-comparison test followed by an unpaired t test was used to compare the antibodies with the CH65 isotype controls. ND, not
done. ¥, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

CH31 IgG and both mIgA2 and digA2 was more pronounced, while the activity of some
of the nnAbs failed to reach significance (4B3 and 7B2/CH58/CH90) (Fig. 3B). To
complement these studies, the ability of antibodies to inhibit trans-infection from DC
to CD4™ T cells was also assessed. All IgG bnAbs were effective against trans-infection.
IgA versions were also active in this assay (Fig. 3C), reflective of their activity in TZM-bl
cells (Fig. TA). In contrast, nnAbs and HIV-IG B failed to show significant inhibition, the
exception being HIV-IG C, which reduced trans-infection by 89.5% (standard deviation
[SD], 9.2; P < 0.01 [Table 2]).

Inhibitory activity in mucosal tissue explants. To model the activity of antibodies
at the mucosal portals of infection, their potential to inhibit direct HIV-1g,, infection of
mucosal tissue explant cultures (penile glans, ectocervical, and colorectal) was assessed
(24). The location, phenotype, and number of cells expressing the range of FcR and
their relative levels of expression across these three different tissue models are de-
scribed in reference 33. All CD4bs bnAbs were active across the three explant models
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TABLE 1 Summary of HIV-14,, neutralization data in TZM-bl cells and PBMC®

Journal of Virology

1C50 IC80 1C90

Antibody Antibody Specificity TZM-bl PBMC TZM-bl PBMC TZM-bl PBMC
VRCO01 IgG 0.015 0.062 0.042 0.465 0.087 1.253
CH31IgG 0.322 0.060 1.621 0.444 6.125 1.643
CH31 migA2 CD4-binding site 2.867 0.439 14.052 6.133 35.205 15.528
CH31 digA2 2.671 1.076 11.506 13.287 23.082 27.912
b12 IgG 0.013 0.167 0.036 1.243 0.070 3.638
2F51gG Membrane-Proximal X 20.219 X 23.236 X 25.204
2F5 dIgA External Region X ND X ND X ND
4E10 IgG (MPER) X 2.253 X 13.963 X 24.416
2G12 IgG V3 Glycan X 8.731 X 18.289 X 24.735
PGY IgG V1-V2 Glycan 0.007 0.001 0.019 0.007 0.036 0.019
PG16 IgG 0.011 0.002 0.056 0.536 0.243 9.274
7B2/CH58/CH90 X 1.159 X 11.324 X X
7B2/CH58/CH22 Various (IgG) X 1.018 X 18.775 X X
F240/M785-U1/N10-U1 X X X X X X
HIV-IG B Polyclonal X 2.984 X 24.393 X X
HIV-IG C X 1.573 X 12.045 X 31.5637
4B3 IgG gp41 X X X X X X
A32 lgG CD4i Cluster 1 X 28.256 X X X X
CH65 IgG Flu Haemagglutinin X X X X X X
CH65 IgA X X X X X X

ACs05, ICgps, and 1Cq0s (in micrograms per milliliter) were determined from neutralization data of HIV-1-specific antibodies in TZM-bl cells (n

3) or PBMC (n = 3). X, no neutralization seen at 25 ug/ml (antibody combinations) or 50 ug/ml (single antibodies). ND, not done.

(Fig. 4), with statistical significance in penile and cervical tissues. The lack of significance
in colorectal tissue, despite major reductions in HIV-14,, infection, reflects the high
variability in levels of infection in the positive controls (Fig. 4 and Table 2). MPER-
specific 2F5 1gG also displayed potent inhibition across the different tissue models, as
previously described (34); however, 2F5 dIgA failed to show activity in the penile and
cervical models. MPER-specific 4E10 appeared to be active only in colorectal tissue (Fig.
4Q). The activity of glycan-specific bnAbs was more mixed. PG9 demonstrated good

A 100-
L B u [ Macrophages
g%’ 754 Bl Dendritic Cells
R 1 PBMC
Q
£35 50
x .8
w >
® 5 25
04 L L -

CD16 CD32 CDé64 CD89

B
Macrophages Dendritic Cells PBMC
BEEOO0O0OODDODCOCD MNNNNN
D16 + + + + o+ o+ o+ 4+ - - - - - - - -
CD32 + + + + - - - - + + + + - - - -
D64 +  + -+ o+ - -+ o+ - -+ o+ = -
89 + -+ - o+ -+ -+ -+ -+ -+ -

FIG 2 Fc receptor phenotyping of macrophages, dendritic cells, and PBMC used in the cellular inhibition
assays. (A) Flow cytometry analysis of the percent expression of CD16, CD32, CD64, and CD89 FcR
expression on total viable macrophages, dendritic cells, and PBMC used in the cellular inhibition assays
(n = 3). (B) Boolean gating analysis of the FcR expression on total viable cells to show the combinatorial
variability of the Fc receptors.
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FIG 3 Inhibition of single antibodies and antibody combinations in macrophages, dendritic cells, and DC-to-CD4 T-cell inhibition assays.
Shown are results of inhibition of HIV-1;,, by antibody panels (50 ug/ml of single antibodies; 25 wg/ml of each in combinations) in the
direct infection of macrophages (n = 3) (A) and dendritic cells (n = 3) (B) and trans-infection of CD4* T cells from dendritic cells (n =
3) (Q). (For HIV-IG B and C, n = 1 in panels A and B.) Data are presented as percent infection compared to the HIV-1;,, -positive control.
One-way ANOVA with Dunnett’s multiple-comparison test followed by an unpaired t test was used to compare the antibodies with the
CH65 isotype controls. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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TABLE 2 Summary of percentage HIV-1g,, inhibition for all inhibition assays?

Journal of Virology

Cellular Tissue Tissue Migratory Cells-CD4+ T-Cells
Antibody Antibody Specificity TZM-bl | PBMC _ [Macrophages| Dendritic Cells | DC-T Cells | Penile Glans | Ectocervical | Colorectal | Penile Glans [ Ectocervical | _Colorectal
Mean| SD |Mean| SD |Mean| SD | Mean SD Mean| SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD |Mean| SD

VRCO1 9 +0.7 00.0 EIU) N +0.0 (ON 0.0 XN £0.0 +12.9 QEEKN +5.4 ECIHN +12.2 IRUDGE +0.0 [RUIGE +0.0 Jerg:N+3.8
CH31IgG ) +8.7 (O +0.0 4.0 +22.6 | 66.3 [£37.2 +19.3 +13.7| 76.1 [ +41.9 [ 2.7 0.4 RUIKE+0.0
CH31 migA2 CD4-binding site +4.5 00.0 ) +35.0| 54 +39.4 YW +11.8 +15.7 | 60.7 | £33.9 +1.7 [ +23.8 IRUIGN +0.0 EOIXE+0.0
CH31 digA2 ) +4.3 00.0 gEIN} +36.0| 23.1 [ +22.7 +13.0 +21.9| 62.3 | £35.7 | 69.6 | +48.3 Jl 9.6 KN +0.3 RUDXE+0.0
b12 00.0 EKd] N +1.9 Cl +0.4 [ETOXD  +0.0 GN +0.0 JRGOIGE +0.0 JEOIGN +0.0 | 47.6 | +83.9 JROIKGE +0.0 ROIGE +0.0 EGIXN-+0.0
2F519G Membrane-Proximal | 47.0 [+13.0 Q0N +0.0 LGN 0.3 OGN  +2.2 (O £0.0 YR +6.3 [RCEXON +11.7 BEEXON 4.3 [ +30.7 +12.1 1) +0.0
2F5 dIgA External Region 11.3 (139 | ND ND [ -3.7 [£225( 13.0 | +31.8 +26.1| 9.3 |46.7| -6.0 | +40.9 7.7 | 1.1 [+13.0| 4.0 |164.6| 31.6 [£50.6
4E10 (MPER) 37.0 [+3.6 OGN +0.0 R +1.6 00.0 EEEYK:] (KGN +0.0 | 43.3 | +87.0( 30.2 | +50.2 +13.6| 28.2 [+24.5| 55.3 | +57.0|-14.6 [+112.8
2G12 V3 Glycan 41.0 |3.6 ON +0.0 9.9 IEN ON  +0.0 (O +0.0 | 41.8 | +84 +14.1 6.2 | 612 [ 422 28 £16.5 +27.5
PG9 V12 Glycan 96.0 X (VON +0.0 00.0 3] +1.8 00.0 JENKN 90 +18.7 |l +6.1 | 35.7 [ +62.2| -5.5 | +60.1 +5.6 | 28.5 |+43.0
PG16 8 12.5 +22.5 L +4.1 QL 3.6 (WOl +0.1 | 30.4 [+37.2] 455 [+251| 11.9 [+83.5] -94 | +9.6 | 54.2 | +53.2| 28.5 |+54.2
7B2/CH58/CH90 -55.8 [+46.2 +2.1 @l +1.0 | 56.5 | +22.8 9.8 (1332 6.4 |[+35.1| 11.5 [+422| 10.2 [+10.4| 6.7 |[+42.1|-23.6 [+19.7| 12.9 |+45.8 100%
7B2/CH58/CH22 Various -2.8 |£30.7 | 5.3 2.6 +23.0 | 30.7 |+81.2| 49.8 | +44.6| 32.8 | £39.0| 45.2 | +50.0| 8.8 |+47.7( 5.1 |+14.3| 16.1 [+46.9
F240/M785-U1/N10-U1 22.0 |+16.6 | 41.7 | +16.4 +2.7 G +24 | -16.0 [ +70.8| 45.3 [ +30.4| 51.3 [ +43.1 R:ENE +1.9 | 14.2 | #42.1| -26.0 | #10.2| 25.3 |+39.4
HIV-IG B Polyclonal 39.7 [£3.2 N +3.7 00.0 EVZN 00.0 N/A 14.1 [ £80.2| 62.5 [ +19.5| 52.1 | +59.5 QEIN@ +4.7 | 42.8 |+326( 6.4 | £7.6 | 47.8 [+41.3
HIV-IG C 37.3 [+14.3 L 1.3 ON N/A 00.0 N/A +9.2 | 59.2 | £25.0| 65.1 | +15.7 +27.4| 22.4 |+27.1| 33.5 | +5.4 | 13.7 [+28.1
48B3 gp41 -57.3 [£30.1 | 21.4 [£31.1 L 0.7 | 739 | #4563 | 47.9 [+48.7| 6.9 [+19.3| 41.8 [+13.3| 51.4 [+28.8| 1.1 [£10.6|-18.7 [ £25.2|-31.7 [+47.1
A32 CD4i Cluster 1 16.0 [+7.2 8 +7.8 | -9.5 |+37.1| -24 | +34.3 |[-18.0 | +52.0| 42.3 | +26.8| 57.7 | +40.5| 77.5 | +49.2] 22.2 | +30.5| -5.2 | +8.6 | 12.8 [+58.6
CH65 IgG Flu Haemagglutinin 6.3 332 |-17.9|£74.6| 1.5 [ £3.0 | 126 | £21.7 [ 10.2 [£25.9| 0.4 [#41.4] 9.2 [£229] -9.3 |£74.8| 7.7 [#44.1| -5.1 | £9.1 | 7.5 [£27.0
CH65 IgA -17.3 [46.7 13.8 [$49.3] -02 | 1.1 | 149 | 82 8.4 |+21.6]| 41.0 | #19.7| 53 | +4.6 | 23.9 |+51.0| 22.2 | +11.8 | -28.8 | £39.2| 12.6 |+13.3 <0%

aPercent inhibition of single antibodies (50 wg/ml) and antibody combinations (25 ug/ml each). Means and SDs are included.

>2 SD. ND, not done; N/A, not available (n = 1).

activity in penile and cervical tissues but poor activity in colorectal explants. In contrast,
2G12 was active only in colorectal tissue, while PG16 was ineffective at preventing
infection in any of the tissue models. nnAbs failed to demonstrate significant inhibition
in any of the mucosal tissue models (Fig. 4). However, a major reduction of infection
was observed for the F240/M785-U1/N10-U1 combination (89.7% * 1.9% [Table 2]).
HIV-IG B and C displayed a range of reductions in infection across the models, reaching
significance in cervical (B and C) and colorectal (B only) tissues.

Inhibition of trans-infection by mucosal tissue emigrants. A critical step in HIV-1
transmission may be the dissemination of infection beyond the initial foci of primary
infection. Using an established model designed to mimic these events (24), cells
migrating out of tissue explants following HIV-14,, viral exposure were collected and
cocultured with CD4* target cells in the presence of antibody (Fig. 5). Across all tissue
models, CD4bs-specific antibodies were very efficient at blocking onward transmission
of HIV-1g,, to the CD4™ target cells, with levels of inhibition ranging between 89.4 and
100% for IgG and IgA forms. The MPER-specific antibodies were less efficient at
inhibiting infection, with only 2F5 IgG demonstrating any significant ability to block
onward infection of HIV-1g, across the three models. Glycan-specific antibodies
showed a more diverse ability to inhibit onward infection, where significant reduction
was observed only for 2G12 and PG9. nnAbs and HIV-IG B and C failed to inhibit onward
infection in any of the migratory tissue cell models (Fig. 5).

DISCUSSION

This study set out to investigate the functional activity of neutralizing and nonneu-
tralizing antibodies in a series of cellular and tissue explant models designed to mimic
the early transmission events at the mucosal portals of infection.

CD4bs-specific bnAbs were efficient at inhibiting HIV-15,, infection across all mod-
els. There was little difference in activity between PBMC and TZM-bl assays, suggesting
that inhibitory activity was not dependent upon of FcyR engagement. Monomeric and
dimeric IgA versions of CH31, unable to engage FcyR, were also active across the
models. Furthermore, all CD4bs bnAbs were active against cell-cell transmission in both
cellular and tissue models. The observation that VRCO1 provided the most consistent
inhibition across all infection models underscores the potential importance of the
conserved CD4bs as a target for vaccine design (35) and monoclonal prevention
strategies (36). These data mirror passive-infusion experiments with nonhuman pri-
mates (NHPs) demonstrating potent efficacy against mucosal challenge (36).

V1-V2 glycan-specific bnAbs, PG9 and PG16, demonstrated good levels of inhibition
across all cellular models but more variable results in tissue models. PG9 demonstrated
good levels of inhibition in penile glans and ectocervical tissues but was less effective
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FIG 4 Inhibition by single antibodies and antibody combinations in mucosal tissue explants. Shown are results of inhibition of HIV-15, by
antibody panels (50 ug/ml of single antibodies; 25 ug/ml of each in combinations) in the direct infection of penile glans (n = 3) (A), ectocervical
(n = 2 for HIV-IG B and C; n = 3 for remaining Abs) (B), and colorectal (n = 3) (C) tissues. Data are presented as percent infection compared to
the HIV-1,,, -positive control. One-way ANOVA with Dunnett’s multiple-comparison test followed by an unpaired t test was used to compare the
antibodies with the CH65 isotype controls. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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FIG 5 Inhibition by single antibodies and antibody combinations of HIV-1g,, infection from mucosal migratory cells to CD4* target
cells. Shown are results of inhibition of HIV-1;,, by antibody panels (50 ug/ml of single antibodies; 25 wg/ml of each in combinations)
in preventing the onward infection of CD4* T cells by migratory cells isolated from penile glans (n = 3) (A), ectocervical (n = 2 for
HIV-IG B and C; n = 3 for remaining Abs) (B) and colorectal (n = 3) (C) tissues. Data are presented as percent infection compared
to the HIV-1g,,-positive control. One-way ANOVA with Dunnett’s multiple-comparison test followed by an unpaired t test was used
to compare the antibodies with the CH65 isotype controls. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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against direct infection of colorectal tissue and was active only against onward trans-
mission by ectocervical migratory cells. PG16, in contrast, was ineffective against
HIV-1g,, infection in all tissue models. Differences across tissues may reflect potential
reactivity with mammalian carbohydrates where PG16 binds complex-type glycans
more tightly than Man5GIcNAc2, while PG9 prefers Man5GIcNAc2 (37); alternatively,
this may reflect known differences in trimer dependence (38, 39): PG9 is able to weakly
bind monomeric gp120 in addition to trimeric Env, but PG16 is able to bind only the
latter. An alternative ex vivo study using colorectal and ectocervical tissue explants
demonstrated sustained inhibition of viral replication by PG9 and PG16 in an ectocer-
vical tissue model but loss of viral control within the colorectal tissue after 21 days in
culture (40). Significant differences in methodology are likely to explain the variance in
the observed levels of inhibition; nevertheless, viral rebound in colorectal tissue reflects
the lack of inhibition observed in our study. Heterogeneity in glycosylation of HIV-1 Env
leaves these antibodies vulnerable to viral escape (41, 42). The higher levels of HIV-1
replication in colorectal tissue likely enhance the chance of observing viral outgrowth
by the proportion of virions not recognized by these glycan-dependent antibodies. The
lower potency of PG9 relative to VRCOT mirrors that seen in NHP passive-infusion
studies (36).

Interestingly, the V3 glycan-specific antibody 2G12, although performing poorly for
classical neutralization in the TZM-bl assay, performed well across all inhibition assays,
with the notable exception of penile glans tissue, and exerted similar levels of inhibition
against onward transmission by migratory cells across the tissue types. Lack of activity
in TZM-bl cells likely reflects the kinetics of 2G12 neutralization (43). The potency of
2G12 in mucosal tissue explants concords with that seen in NHP passive-protection
studies (44).

The MPER-specific bnAb 2F5 IgG also performed well across all cellular and tissue
models (Table 2), consistent with the results of in vivo NHP challenge experiments (34,
45), but was ineffective in the TZM-bl assay. Interestingly, 2F5 dIgA was ineffective in
the majority of assays, with the notable exception of colorectal tissue. These observa-
tions confirm previous studies showing reduced activity for polymeric digA and pigM
isotypes (46, 47) and likely reflect the known influence of FcyR engagement on the
neutralizing activity of 2F5 IgG (48). In contrast, MPER-specific 4E10, despite demon-
strating good levels of inhibition across cellular models, was only able to inhibit viral
infection in colorectal tissue and was inactive against onward transmission by migra-
tory cells. The inhibitory activity of 4E10 in the colorectal tissue is in concordance with
NHP studies demonstrating that 4E10 protects against intrarectal challenge with
SHIVg,, (45). The weak activity of 4E10 against onward dissemination of virus reflects
earlier reports of poor activity against cell-to-cell spread of HIV-1 (49). The lack of
activity in the cervical and penile glans tissues is in concordance with similar observa-
tions in an alternative cervical tissue model (40). The predictive nature of these
observations is unclear given that 4E10, as a single monoclonal antibody, has not been
tested against vaginal challenge in the SHIV model. It is also possible that potential
polyreactivity for mammalian cells could have influenced activity in these different
mucosal models (50).

To assess the potential of Fc-mediated effector functions to block infection and/or
onward transmission from mucosal tissue, we selected two individual nnAbs (4B3 and
A32) previously reported to show high levels of ADCP and ADCC in in vitro assays (26,
27). 4B3 displayed inhibitory activity only in macrophages, as previously described (27),
while A32 was active only in PBMC cultures. Critically, neither antibody displayed
potent inhibition in any of the mucosal tissue models.

The three nnAb combinations demonstrated variable levels of inhibition in PBMC
cultures, good levels of inhibition in macrophage cultures, and again more variable
levels in dendritic cell models. These antibodies were less active when assessed
individually (data not shown), supporting previous observations that specific antibody
combinations synergize for increased antiviral activity (51). Both macrophages and
dendritic cells can mediate ADCP, ADCC, and ADCVI (reviewed in reference 52). These
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data extend previous observations of the inhibitory potential of 7B2, CH22, and F240 in
macrophage and dendritic cell models (28, 53) and likely reflect the high levels of FcyR
expression on these in vitro-derived cells (Fig. 2). In contrast, none of the nnAb
combinations were effective at preventing onward cell-cell transmission by in vitro-
derived DC or tissue migratory cells. Furthermore, the nnAb combinations were unable
to significantly inhibit infection across the three tissue models, with one notable
exception in which the third combination (F240/M785-U1/N10-U1) was able to reduce
infection of colorectal explants by 89.7% (*1.9%).

The trend for increased activity with increased polyclonality was also evident for the
two polyclonal HIV-IG sera (B and C). While both sera displayed little activity with
respect to classical neutralization in the TZM-bl assay, both demonstrated robust
activity across PBMC, macrophage, and dendritic cell cultures and variable levels of
inhibition in the three tissue models, providing the highest levels of inhibition in
colorectal tissue. However, both were ineffective in blocking onward transmission by
tissue migratory cells to CD4™ T cells.

These data demonstrate some important features. First, activity in the TZM-bl assay
showed a moderate correlation to activity in penile and cervical tissue models (R? =
0.64 and P = 0.0001 and R? = 0.54 and P = 0.0007, respectively). However, there was
no correlation (P < 0.05; not significant) with activity in the colorectal model. Further-
more, the TZM-bl assay was not fully predictive of inhibition for some specific antibod-
ies, specifically 2F5 and 2G12 being more active and PG9 and PG16 less active in tissue
versus TZM-bl cells. Second, activity of nnAbs in PBMC, macrophage, and dendritic cell
assays did not translate to equivalent activity in tissue, and there was no correlation for
any of these cellular models with activity in tissue. There was, however, an apparent
trend for increased inhibition with nnAb polyclonality (HIV-IG > MAb combinations >
individual MAbs). Nevertheless, activity of nnAbs in tissue was low to absent, with the
notable exceptions of HIV-IG (B and C) and a MAb combination (F240/M785-U1/N10-
U1) in colorectal tissue. It is, however, possible that these modest effects might
contribute to activity of bnAbs in the context of polyclonal response to vaccination;
assessment of bnAbs in combination with nnAbs merits further investigation.

ADCC, ADCP, and ADCVI have been proposed as potential mechanisms by which
antibodies (both nAb and nnAbs) might impact transmission events. It is clear from the
current study that individual nnAb with known ADCC activity (26), while active in PBMC
cultures, were ineffective in mucosal tissues. This likely reflects the very low numbers of
resident ADCC effector cells within these tissues (33). Likewise, nnAbs with known
potent ADCP and ADCVI activity (26, 27) were also ineffective at protecting mucosal
tissue from infection. Again, these results reflect low FcR expression in penile and
cervical tissues, while the increased activities of the two HIV-IGs mirror the trend for a
higher number of effector cells in colorectal tissue as reported in our recent charac-
terization of FcR expression across these different models (33). Interestingly, the trend
for increased antiviral activity in colorectal tissue was also observed for 4E10 IgG and
2F5 dIgA. These data, combined with our earlier studies (33), suggest that resident
effector cell numbers and low FcyR expression limit the potential of nnAbs to prevent
the initial foci of infection within these mucosal tissue sites. This is perhaps unsurprising
given that the predominant targets of infection are CD4* T cells that lack FcyR
expression (23-25). This is compounded by the inability of nnAbs or HIV-IG to block
onward cell-cell transmission by migratory cells emigrating from these tissue sites, likely
essential in rapid dissemination of infection (54). These data reflect previous cellular
studies that demonstrate that nnAbs are ineffective against cell-cell transmission (55).
The observed inferiority of nnAbs to block initial mucosal infection is in concordance
with the reported inability of nnAb and HIV-IG to prevent mucosal SHIV acquisition in
NHP studies (27, 28, 56, 57), contrasting with the sterile protection mediated by a
number of bnAbs (58).

A number of limitations should be considered when interpreting this study. First,
experiments were performed with a single viral isolate (HIV-1g,,) known to replicate
efficiently in primary cells (CD4 T cells, macrophages, and dendritic cells) while univer-
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sally targeting CD4 T cells in mucosal models (23, 59, 60). Furthermore, HIV-1g,, is a tier
1B neutralization-sensitive virus; therefore, while the observed superiority of bnAbs in
preventing HIV-1 infection will certainly be generally applicable, the activity of individ-
ual monoclonal antibodies is likely to vary with different viral isolates and their
neutralization sensitivities. Nevertheless, the approach described in this publication
provides an important benchmark for evaluation of additional antibodies and viral
strains. Second, the high variability in viral replication between tissue donors means
that lower, but potentially meaningful, levels of inhibition may not be apparent in this
model; further, the maximal concentration of antibody used (50 wg/ml) does not
preclude potential inhibition with higher concentrations. Third, all IgG antibodies were
expressed within a common recombinant IgG1 isotype. We cannot exclude that
expression within a different isotype backbone, in particular 1gG3, with a greater
potential to engage FcR effector cells (61, 62) might have generated different results.
Finally, and perhaps most importantly, the tissue models used in this study assess only
the impact of resident effector cells on the establishment of mucosal infection. This
precludes the potential influx of effector cells, such as neutrophils, natural killer cells,
macrophages, and dendritic cells, in response to the chemotactic signals induced by
HIV-1 infection (63). The potential of infiltrating FcyR effector cells to modulate the
establishment of infection warrants further investigation. It is of interest to note that R.
Astronomo et al. have obtained results similar to those reported here in explant
cultures in vitro and have confirmed limited protection of nonneutralizing antibodies in
vivo with high-dose intrarectal challenges (unpublished data). Furthermore, previous
NHP studies have suggested that while nnAbs have an ability to limit the number of
transmitter/founder viruses (28) and reduced the viral set point postinfection (27), they
are inferior to bnAbs in preventing acquisition of infection.

This study provides important mechanistic insight on the differential activities of
bnAbs and nnAbs in preventing infection at the mucosal tissue level. The solid
protection provided by bnAbs, in particular those targeting the CD4bs, clearly demon-
strates their superior potential over nonneutralizing antibodies for preventing HIV-1
infection at the mucosal portals of infection.

MATERIALS AND METHODS

Antibodies and reagents. Antibodies b12, 4E10, 2F5 IgG and dIgA, PG9, PG16, 4B3, and 2G12 were
obtained from Polymun Scientificc GmbH (Austria). Expression plasmids for antibody VRCO1 were
obtained from Dennis Burton, Scripps Research Institute (La Jolla, CA), and antibodies were produced as
recombinant IgG1 in 293T cells. A32, 7B2, CH22, CH31, CH58, and CH90 were produced as recombinant
19G1 (also CH31 mIgA2 and dIgA2 [64]) in CHO cells, as previously described (28, 61). A32, 7B2, CH90, and
CH22 contained the AAA mutations (S298A, E333A, and K334A) optimized for binding to FcyRllla (CD16)
and to augment antibody ADCC activity (65). The CH65 isotype control is an IgG1 bnAb recognizing
influenza virus hemagglutinin (66). F240, M785-U1, and N10-U1 IgG1 were kindly provided by George
Lewis (Institute of Human Virology, Baltimore, MD). HIV-IG B and C were kindly provided by David
Montefiori, Duke University. The following reagents were obtained through the NIH AIDS Research and
Reference Reagent Program, Division of AIDS, NIAID, NIH: TZM-bl cells were from John C. Kappes, Xiaoyun
Wu, and Tranzyme Inc; PM-1 cells were from Paulo Lusso and Robert Gallo; and HIV-1,,, was donated by
Suzanne Gartner, Mikulas Popovic, and Robert Gallo.

Tissue samples. Ectocervical tissue was acquired from women undergoing planned therapeutic
hysterectomy at St. Mary’s Hospital (London, United Kingdom). Penile glans tissue was acquired from
men undergoing elective gender reassignment surgery at Charing Cross Hospital (London, United
Kingdom). Surgically resected specimens of colorectal tissue were collected at St. Mary’s Hospital from
patients undergoing rectocele repair and colectomy for colorectal cancer. Only healthy tissue obtained
10 to 15 cm away from any tumor was employed.

Ethics statement. Written informed consent was obtained from all donors. All tissues were collected
under protocols approved by the Imperial College NHS Trust Tissue Bank and the National Research
Ethics Committee in accordance with the Human Tissue Act 2004. Approval for this project was granted
by the Imperial College Healthcare Tissue Bank, under their HTA research license, and ethics thus
conveyed through this process by the Multi Research Ethics Committee (MREC), Wales.

Cell lines. TZM-bl cells (NIH AIDS Reagent Program) were cultured in complete Dulbecco modified
Eagle medium (DMEM) in a 95% humidified incubator with 5% CO, at 37°C. PM-1 cells (NIH AIDS Reagent
Program) were grown in suspension in complete RPMI medium in a 95% humidified incubator with 5%
Co, at 37°C.

TZM-bl neutralization assay. TZM-bl cells were utilized to assess the potential neutralizing ability
of antibodies to HIV-1g,,. Test antibodies were titrated 1:4 from a starting concentration of 50 ug/ml.
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Positive control (virus plus cells only) and negative control (cells only) wells were included in the assay
setup. The cells were incubated in a 95% humidified incubator with 5% CO, at 37°C for 36 to 72 h.

Postincubation, all supernatant was removed from the cells, which were washed once with 200 ul of
phosphate-buffered saline (PBS). Luciferase lysis buffer was diluted 1:5 with distilled water (dH,0), and
100 wl was added to all wells. Plates were placed at —80°C for at least 2 h to allow for full lysis. Postlysis,
the plates were thawed and 50 ul of the lysate was transferred to a white 96-well high-binding plate.
Luciferase substrate was reconstituted by adding 10 ml of luciferase buffer to the lyophilized substrate.
Fifty microliters of luciferase substrate was added to the lysate and mixed well. Plates were read
immediately in relative light units (RLU) using a FLUOstar Omega plate reader (BMG Labtech, United
Kingdom). Ninety percent, 80%, and 50% inhibitory concentrations (ICq, ICg,, and ICs,, respectively) were
calculated according to linear regression of the antibody titration using GraphPad Prism7.

PBMC. Peripheral blood mononuclear cells (PBMC) were obtained from leukocyte cones (NHS Blood
and Transplant, Collingdale, United Kingdom). Leukocytes were separated by Histopaque (Sigma, United
Kingdom) gradient centrifugation. Before HIV-1 infection, PBMC were activated with 5 pug/ml of phyto-
hemagglutinin (PHA; Sigma, United Kingdom) and 10 U/ml of interleukin-2 (IL-2; Novartis, United
Kingdom) in complete RPMI medium for 3 days.

Monocyte-derived macrophages (MDM). Freshly isolated PBMC were washed and resuspended at
3 X 10%/ml in serum-free AIM-V medium containing 20 ng/ml of granulocyte-macrophage colony-
stimulating factor (GM-CSF). Cells were seeded at 3 X 10°in 100 ul in flat-bottomed high-binding 96-well
plates and incubated at 37°C (5% CO.). After 3 to 4 days, fresh serum-free AIM-V medium supplemented
with 20 ng/ml of GM-CSF was added and the cells were cultured for a total of 7 days.

Monocyte-derived dendritic cells (MDDC). Freshly isolated PBMC were used to separate mononu-
clear cells by CD14 positive selection using an AutoMacs separation system. Twenty microliters of CD14
MicroBeads was added per 107 cells and incubated for 20 min at 4°C. Cells were washed once with
AutoMacs running buffer by centrifugation and resuspended in 2 ml of AutoMacs running buffer for
magnetic separation. CD14-positive cells were resuspended in 40 ml of complete RPMI medium sup-
plemented with 30 ng/ml of IL-4 and 25 ng/ml of GM-CSF and cultured for 3 to 4 days at 37°C (5% CO,).
Medium was replaced after 3 to 4 days with fresh complete RPMI medium supplemented with 30 ng/ml
of IL-4 and 25 ng/ml of GM-CSF and incubated for a further 3 days at 37°C (5% CO,).

Flow cytometry staining. MDM, MDDC, or PBMC were stained using a multicolored flow cytometry
panel designed to determine Fc receptor expression. Cells were stained with CD3 V450 (UCHT1), CD14
Qdot 605 (T[u]K4) (Invitrogen), CD16 Pacific Orange (3G8) (Invitrogen), CD11c A700 (B-ly6), CD123
phycoerythrin (PE)-Cy5 (9F5), CD32 allophycocyanin (APC) (FLI8.26), CD64 APC H7 (10.1), CD89 PE (A59),
and CD19 fluorescein isothiocyanate (FITC) (HIB19). Unless otherwise specified, all antibodies were
sourced from BD Biosciences. Dead cells were excluded from analysis through staining with Aqua
viability dye (Invitrogen).

Flow cytometry acquisition and analysis. Samples were acquired using an LSRIIFortessa
fluorescence-activated cell sorter (FACS) (BD Biosciences) and analyzed using FlowJo (Tree Star, Ashland,
OR) and PESTLE and SPICE (National Institute of Allergy and Infectious Diseases, USA). Compensation
matrices were created on FlowJo using single-stained anti-mouse Ig, k/negative-control compensation
beads (BD Biosciences).

MDM inhibition assay. Antibodies were prepared at 100 wg/ml of AIM-V medium and incubated 1:1
with cell-free HIV-1g,, (10% 50% tissue culture infective doses [TCID,]) for 1 h at 37°C. The virus-antibody
suspension was added to 7-day-old macrophage cultures and incubated for 2 h at 37°C. Postincubation,
cells were washed 3 times with PBS and antibodies at 50 wg/ml in 200 ul of AIM-V medium plus 20 ng/ml
of GM-CSF. The cells were further incubated for 7 days in a 95% humidified incubator with 5% CO, at
37°C. All assays were performed in triplicate and included controls: medium-only, virus-only, and
antibody isotype controls at the same concentration as the test antibodies.

MDDC inhibition assay. Antibodies were prepared at 100 ug/ml in complete RPMI medium and
incubated 1:1 with cell-free HIV-1,,, (10# TCID,,) for 1 h at 37°C. A total of 4 X 10* MDDC were added
in 100 wl of complete RPMI medium to the virus-antibody suspension and incubated overnight 37°C.
Postincubation, cells were washed 3 times with PBS by centrifugation and antibodies were added at 50
ng/mlin 200 ul of complete RPMI medium plus 30 ng/ml of IL-4 and 25 ng/ml of GM-CSF. The cells were
further incubated for 7 days in a 95% humidified incubator with 5% CO, at 37°C. All assays were
performed in triplicate and included controls: medium-only, virus-only, and antibody isotype controls at
the same concentration as the test antibodies.

MDDC-PM-1 T cell trans-infection inhibition assay. MDDC at 2 X 10 per well were incubated with
cell-free HIV-1g,, (10* TCID,,) for 1 h at 37°C. Postincubation, MDDC were washed 3 times with PBS by
centrifugation and 50 ug/ml of antibody was incubated with the cells for 30 min at 37°C. Postincubation,
4 X 10* PM-1 T cells were added per well and the cells were further incubated for 7 days in a 95%
humidified incubator with 5% CO, at 37°C. All assays were performed in triplicate and included controls:
medium-only, virus-only, and antibody isotype controls at the same concentration as the test antibodies.

Mucosal tissue explant inhibition assay. Antibodies were prepared at 100 png/ml of complete RPMI
medium and incubated 1:1 with cell free HIV-1g,, (2 X 104 TCID,,) for 1 h at 37°C. Tissue explants were
cut to 3 mm? and added to the virus/antibody suspension for overnight incubation at 37°C. Postincu-
bation, tissues were washed 3 times with PBS and antibodies were added at 50 wg/ml in 200 ul of
complete RPMI medium. The tissues were further incubated for a total of 21 days in a 95% humidified
incubator with 5% CO, at 37°C, with feeding every 3 to 4 days. All assays were performed in triplicate and
included controls: medium-only and antibody isotype controls at the same concentration as the test
antibodies.
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Mucosal migratory cells. Post-overnight infection, migratory cells were collected from the tissue
explants and washed three times with PBS by centrifugation (67, 68). The cells were further incubated
with 50 png/ml of antibody and 4 X 104 PM-1 T cells for 7 days in a 95% humidified incubator with 5%
CO, at 37°C.
Detection of p24. p24 content in culture supernatant was measured using an enzyme-linked
immunosorbent assay (ELISA) (AALTO, IRE) or by a high-sensitivity RETROTEK p24 ELISA kit (Gentaur),
where lower levels of p24 were produced.
Statistical analysis. Graphs show mean values with standard deviation error bars. One-way analysis
of variance (ANOVA) followed by unpaired t test with Dunnett’s correction was used to compare the
different antibodies with the CH65 isotype control antibodies. All statistical analyses were performed
using Prism 7 (GraphPad Software, Inc., La Jolla, CA).
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