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Prostate cancer (PCa) is one of the most frequently diagnosed cancers in males
worldwide. Approximately 25% of all patients experience biochemical recurrence (BCR)
after radical prostatectomy (RP) and BCR indicates increased risk for metastasis and
castration resistance. PCa patients with highly glycolytic tumors have a worse prognosis.
Thus, this study aimed to explore glycolysis-based predictive biomarkers for BCR.
Expression data and clinical information of PCa samples were retrieved from three
publicly available datasets. One from The Cancer Genome Atlas (TCGA) dataset was
used as the training cohort, and two from the Gene Expression Omnibus (GEO) dataset
(GSE54460 and GSE70769) were used as validation cohorts. Using the training cohort,
univariate Cox regression survival analysis, robust likelihood-based survival model, and
stepwise multiply Cox analysis were sequentially applied to explore predictive glycolysis-
related candidates. A five-gene risk score was then constructed based on the Cox
coefficient as the following: (−0.8367*GYS2) + (0.3448*STMN1) + (0.3595*PPFIA4) +
(−0.1940*KDELR3) + (0.4779*ABCB6). Receiver operating characteristic curve (ROC)
analysis was used to identify the optimal cut-off point, and patients were divided into low
risk and high risk groups. Kaplan–Meier analysis revealed that high risk group had
significantly shorter BCR free survival time as compared with that in low risk group in
training and validation cohorts. In conclusion, our data support the glycolysis-based five-
gene signature as a novel and robust signature for predicting BCR of PCa patients.
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INTRODUCTION

Prostate cancer (PCa) is one of the most frequently diagnosed
solid malignancies in men and has become the fifth leading cause
of male cancer death worldwide (1, 2). Due to the widespread use
of prostate-specific antigen (PSA) serum test and the
improvement of overall longevity, the incidence of this disease
is increasing. Although radical prostatectomy (RP) leads to a
favorable rate of cancer control, approximately 25% of all
patients experience biochemical recurrence (BCR), which is
determined by rising of serum PSA levels within 10 years of
RP (3, 4). BCR indicates increased risk for metastasis and
castration resistant PCa (5, 6). Exploring gene expressions that
are closely correlated with BCR is of great importance. In this
regard, more informative markers for assessing increased risk of
BCR are highly needed.

Reprogramming of energy metabolism, especially abnormal
activation of glycolysis (also known as the Warburg effect) in the
presence of oxygen, has been recognized as one of the central
hallmarks of cancer (7, 8). Cancer cells exhibit a higher level of
glucose consumption and consequent lactate production (9).
Glycolysis facilitates conversion of nutrient uptake into
biomass and thereby sustains the rapid cancer cell growth (10).
Moreover, activation of glycolysis coupled to increased
production of lactic acid, promotes multiple cancer-promoting
processes, including tumor invasion and metastasis, angiogenesis,
suppression of the local anticancer immune response, as well as
hypoxia resistance (11, 12). It has been reported that PCa cells
develop high rates of glucose consumption in the metastatic stage
(13, 14). PCa patients with highly glycolytic tumors have a worse
prognosis (15). However, the association between the glycolysis-
related gene signature and biochemical recurrence of PCa is largely
unknown. We hypothesized that a signature based on glycolysis-
related genes might be a concise and practical tool for predicting
the BCR of PCa patients after RP. Here, we develop a glycolysis-
based five-gene signature for BCR after RP using large-scale gene
expression data obtained fromTheCancer GenomeAtlas (TCGA)
and validate it using twoGene ExpressionOmnibus (GEO) dataset
(GSE54460 and GSE70769).
METHODOLOGY AND METHODS

All analyses were processed using the R software (v. 3.6.3).

Data Acquisition
RNA-seq raw counts (Illumina Hiseq 2000v2) and clinical
information for TCGA prostate adenocarcinoma (TCGA-
PRAD, https://portal.gdc.cancer.gov/) dataset were downloaded
using TCGAbiolinks (Bioconductor version, Release 3.11)
package in R. This study complies with the publication
guidel ines of TCGA (http: / /cancergenome.nih.gov/
publications/publicationguidelines). The RNA-seq data of 100
patients (GSE54460) and the microarray data of 94 patients
(GSE70769) were downloaded from GEO dataset (https://www.
ncbi.nlm.nih.gov/gds). We used TCGA dataset as the training set
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and two GEO datasets as independent validation cohorts. There
are 408 patients with complete BCR information in TCGA
dataset. Among these, 48 cases had BCR, and 360 cases had no
BCR. Among the 100 patients from GSE54460, 97 had complete
data and were included in this study. Of these cases, 47 had BCR
and 50 had no BCR. Additionally, there are 45 cases with BCR in
92 patients with complete information from GSE70769
(Table 1). BCR is defined as two or more consecutively
elevated PSA results greater than 0.2 ng/ml.

Preliminary Screening of Genes
Since genes with no biologically meaningful expression levels are
not of interest in a biological point of view (16), we excluded
genes with very low expression level by selecting genes with their
expression level above 1 in >50% of the total samples. Moreover,
among the patients with the same cancer, different patient
experiences totally different clinical outcome. The different
mRNA expression levels result in diverse prognostic risks,
suggesting that the genes with higher variable expression
among different patients are more likely to have predictive
values (17, 18). To select genes with variable expressions, we
calculated median absolute deviation (MAD), a robust measure
of the variability of quantitative data, of every gene, and the genes
in the last 20 percent of the total expression variances
were excluded.
TABLE 1 | Clinical characteristics for study cohorts.

Covariate Training
(n = 408)

Validation I
(n = 92)

Validation II
(n = 97)

Age (years)
<70 371 NA 89
≥70 37 NA 8

Pathologic N
N0 290 NA NA
N1 66 NA NA
Unknown 52

Pathologic T
≤T2 150 48 81
≥T3 253 42 16
Unknown 5 2

RACE
White 338 NA 45
Black 46 NA 22
Asian 11 NA 0
Others 1 NA 0
Unknown 12 30

Surgical margins
Negative NA 50 54
Positive NA 42 38
Unknown 5

Gleason score
<8 239 75 84
≥8 169 15 13
Unknown 2

BCR
Yes 360 45 50
No 48 47 47

Time to BCR (months) 2.5–64.17 0.36–98.27 0–101.06
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Gene Set Selection
A glycolysis-related gene set (HALLMARK_GLYCOLYSIS)
containing 200 genes was collected from the Molecular
Signatures Database (MsigDB, v7.2).

Selection of BCR Free Survival-
Related Genes
The associationbetweenglycolysis-related genes and theBCRof the
patients was analyzed in the training cohort. Survival package in R
was used to perform the univariable cox proportional hazards
regression analysis. P < 0.05 was considered as statistically
significance, and the gene was selected as a BCR-related gene. We
then applied a robust likelihood-based survival modeling approach
to further identify BCR-related genes. The analysis was
implemented by using the rbsurv package in R, and the detailed
algorithm is summarized in the previous publication (19).

Construction and Validation of the Risk
Score Formula
Glycolysis-related genes identified in the training set from the
previous steps were further weighed by their estimate regression
coefficients in the multiply Cox regression analysis and thereby
the risk formula was calculated. The risk score for each patient in
the training set was calculated with this formula. A receiver
operating characteristic curve (ROC) was constructed using the
survival ROC package in R and the optimal cut-off point was
determined with the maximal sensitivity and specificity. ROC
Frontiers in Oncology | www.frontiersin.org 3
figure was plotted by ggplot2 in R. Based on the cut-off value, the
patients were classified into low-risk score and high-risk score
groups. “Survfit” function in survival package was used to plot
Kaplan–Meier curves for two distinct groups of patients and to
calculate P value from log rank test. The association between the
five-gene signature and clinical characteristics, as well as the
expression levels of five genes in recurrent PCa and non-
recurrent PCa were calculated and plotted using function
based on ggbetweenstats of the ggstatsplot R package. The
accuracy of the risk score formula was then further validated
by fitting in two independent validation cohorts.
RESULTS

The overall study procedures were summarized in Figure 1.
Univariate Cox proportional hazard model, robust likelihood-
based survival model and multivariate Cox proportional hazards
model were used to establish a five-gene signature that can
predict the BCR free survival.

Screening of BCR Free Survival-Related
Genes by Univariate Cox Proportional
Hazard Modeling
The patients in TCGA with complete BCR information (408
cases) were used as the training set. The 97 patients from
GSE54460 and 92 patients from GSE70769 with complete BCR
FIGURE 1 | Flow chart of methods for building the five-gene signature for prediction of BCR free survival of PCa patients.
April 2021 | Volume 11 | Article 625452
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information were used as validation cohorts. The demographic
and clinical characteristics of the three cohorts are presented in
Table 1. A univariate Cox proportional hazards regression model
was employed for training cohort using the coxph function in the
R package survival to identify an initial set of 27 BCR free
survival-related genes with the threshold of P value set as 0.05
(Table 2).

Establishment of a Glycolysis-Based Five-
Gene Signature by Robust Likelihood-
Based Survival and Multivariate Cox
Proportional Hazards Modeling
To increase the feasibility and reliability, we performed the
robust likelihood-based survival analysis using the R package
rbsurv. As shown in Table 3, 26 genes were selected using rbsurv.
Next, we subjected these genes to multivariable Cox analysis
using the training set, and each gene’s regression coefficient was
generated. This procedure constructed a prediction model
containing five genes: glycogen synthase 2 (GYS2), stathmin 1
(STMN1), PTPRF interacting protein alpha 4 (PPFIA4), KDEL
endoplasmic reticulum protein retention receptor 3 (KDELR3),
and ATP binding cassette subfamily B member 6 (ABCB6). The
risk formula used to calculate the risk score was as follows: risk
score = (−0.8367*GYS2) + (0.3448*STMN1) + (0.3595*PPFIA4) +
(−0.1940*KDELR3) + (0.4779*ABCB6). We then calculated the
risk score of each patient in training set using the risk formula.
As shown in Figure 2A, we visualized risk score distribution
and the dash line was used to determine the boundary between
Frontiers in Oncology | www.frontiersin.org 4
high risk group and low risk group. An optimal cut-off was
determined based on the ROC analysis (Figure 2B). As shown
in Figure 2B, we selected the point with the maximal
sensitivity and specificity as the cut-off point (value = 1.349)
and the patients in training set were divided into two groups,
high risk group (n = 130) and low risk group (n = 278)
(Figure 2A). The area under the ROC Curves (AUC) was
0.751 (Figure 2B). We evaluated the BCR free survival
using Kaplan-Meier method and log-rank test, and the results
showed that BCR free survival time of the high risk group
was significantly shorter than the low risk group (P <0.0001)
(Figure 2C).

Among the five genes, GYS2 and KDELR3 have negative
coefficients and were highly expressed in BCR free patients as
compared with that in BCR patients. In contrast, the levels of
genes with positive coefficients (STMN1, PPFIA4, and ABCB6)
were increased in BCR patients (Figure 3).
The Relationship Between Clinical
Characteristics and BCR Free Survival-
Related Prediction Model
Next, we analyzed the association between the risk score value
and clinical characteristics of the PCa patients. As shown in
Figure 4, the risk score value was higher in T3–4 than in T2
(P < 0.001), higher in N1 stage than N0 stage (P = 0.013), and
higher in Gleason score ≥ 8 than <7 (P < 0.001). No significance
was observed in age <70 and age ≥70 (Figure 4).
TABLE 2 | Twenty-seven genes significantly associated with the BCR of patients
in the training set (n = 408).

Gene Hazard Ratio CI95 P value

CENPA 1.64 1.32–2.05 9.00E-06
KIF20A 1.64 1.31–2.05 1.80E-05
HMMR 1.6 1.26–2.02 1.00E-04
CDK1 1.6 1.26–2.04 0.000114
VCAN 1.48 1.2–1.81 0.000204
AURKA 1.72 1.29–2.29 0.000208
FBP2 1.52 1.21–1.92 0.000415
STMN1 1.74 1.26–2.4 0.000769
DEPDC1 1.35 1.13–1.61 0.000816
COL5A1 1.58 1.19-2.11 0.001765
CHST1 1.72 1.21–2.46 0.002595
PPFIA4 1.36 1.11–1.66 0.002987
IGFBP3 1.59 1.17–2.16 0.003202
GNE 0.68 0.53–0.89 0.004686
KDELR3 0.64 0.47–0.88 0.006206
PAXIP1 2.19 1.22–3.92 0.008217
PYGB 0.53 0.32–0.85 0.009146
AK4 0.68 0.5–0.92 0.012745
ANKZF1 1.82 1.13–2.94 0.013724
TGFBI 1.53 1.07–2.19 0.0198
FUT8 1.85 1.1–3.1 0.020043
ABCB6 1.82 1.03–3.2 0.037675
GYS2 0.52 0.28–0.96 0.037812
TFF3 0.88 0.78–0.99 0.038472
ALDH9A1 0.55 0.3–0.98 0.041664
ANG 0.8 0.64–0.99 0.04322
SLC25A13 1.76 1.01–3.08 0.045132
TABLE 3 | Prognosis related genes signature screened using forward selection
in the training set (n = 408).

Gene nloglik AIC

TGFBI 253.77 509.54 *
TFF3 252.47 508.95 *
IGFBP3 250.92 507.85 *
FUT8 250.22 508.44 *
SLC25A13 248.44 506.88 *
COL5A1 247.83 507.67 *
CHST1 247.32 508.65 *
VCAN 246.72 509.43 *
ANG 246.36 510.73 *
ALDH9A1 245.29 510.57 *
GYS2 241.61 505.23 *
AK4 239.84 503.67 *
PYGB 239.61 505.23 *
GNE 239.34 506.68 *
STMN1 238.92 507.85 *
AURKA 238.44 508.88 *
DEPDC1 237.56 509.13 *
HMMR 237.16 510.31 *
KIF20A 236.94 511.87 *
CDK1 236.71 513.42 *
PAXIP1 236.67 515.33 *
PPFIA4 234.67 513.34 *
CENPA 234.09 514.17 *
KDELR3 231.55 511.10 *
FBP2 230.29 510.57 *
ABCB6 224.03 500.07 *
April 2021 | Volume 11 | Articl
*Selected.
e 625452

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Xu et al. The Signature Predicts Biochemical Recurrence
Screening of BCR Free Survival-Related
Clinical Characteristics
We screened the BCR free survival-related clinical characteristics
by performing Kaplan–Meier analyses in the training cohort. As
shown in Figure 5A, pathological T, pathological N, and Gleason
score were significantly associated with the BCR free survival of
PCa patients. Moreover, a forest plot was constructed using a
multivariable Cox regression analysis to visualize the distribution
of clinicopathological parameters, including age, pathological
T, pathological N, Gleason score and risk score. As shown in
Figure 5B, the identified five-gene signature was an independent
factor affecting BCR free survival in the training cohort.

Validation of the Five-Gene Signature for
BCR Free Survival Prediction
To validate the five-gene signature for BCR free survival
prediction, we applied the same analyses to the other two
independent validation cohorts, respectively. The distributions
of risk scores, BCR status and genes expression were presented in
Figures 6A and 7A. Moreover, the results of Kaplan–Meier
analysis in two validation cohorts revealed that the BCR free
survival time in patients with low risk was significantly longer
than that of the patients with high risk (GSE70769: P = 0.001;
GSE54460: P = 0.00019) (Figures 6B and 7B). Of note, in
consistent with the result in the training cohort, the risk score
was also an independent risk factor in two validation cohorts
Frontiers in Oncology | www.frontiersin.org 5
(GSE70769: HR = 2.6, P = 0.003; GSE54460: HR = 4.7, P = 0.002)
(Figures 6C and 7C).
DISCUSSION

Considering that one of the major turning points in PCa
development is the progression to BCR, it is highly desirable to
effectively assess PCa patients with increased risk of BCR (20, 21).
Accumulating researches have beenmade to identify biomarkers to
improve the prediction of patients with BCR. It has been
demonstrated that certain clinical parameters, including
pathologic stage, Gleason score, lymphonode metastasis, and
lymphovascular invasion, are associated with BCR (22–24).
Moreover, several gene signatures have been established to
predict BCR after prostatectomy. For instance, it has been shown
that the cell cycle progression (CCP) score, an RNA expression
signature based on the levels of 31 CCP genes, can predict BCR free
survival (25). Jiang et al. extracted 696 differentially expressed genes
from the TCGA dataset and developed a 15-gene signature
(SigMuc1NW) using Elasticnet for prediction of BCR (26). In
addition, signatures based on non-coding RNA, such as long
non-coding RNAs (lncRNAs) and microRNAs (miRNAs), also
have been established to predict BCR. Using lncRNAs that were
differentially expressed between tumor andnormal prostate tissues,
as well as between high and low Gleason score tumor tissues,
A B

C

FIGURE 2 | Risk score analysis based on five-gene signature in training cohort. (A) Distribution of five-gene-based risk scores, BCR free survival status, and gene
expression levels of patients in training cohort. (B) ROC curve analyses based on the five-gene signature. (C) Kaplan–Meier curves of BCR free survival according to
the five-gene signature. P value was calculated with the logrank test.
April 2021 | Volume 11 | Article 625452
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Shao et al. constructed a seven-lncRNA signature that can predict
BCR (27). Moreover, five miRNAs (miR-30c-5p/31-5p/141-3p/
148a-3p/miR-221-3p) were identified as independent prognostic
biomarkers for BCR (28). However, the predictive value of
glycolysis-related gene signature in BCR remains largely
unknown. Given the important roles of elevated glycolysis in
cancer development and progression, we would like to explore
whether it is possible to establish a robust glycolysis-based gene
signature to predict the BCR in PCa patients.

As compared with a single biomarker, integrating multiple
biomarkers into an aggregated model with bioinformatics analysis
Frontiers in Oncology | www.frontiersin.org 6
would substantially improve the predictive performance (29, 30).
Here, we performed a multistep analysis to identify a glycolysis-
based gene signature which could predict BCR free survival in
patients with PCa. Considering that differentially expressed genes
between normal tissues and malignant specimens may not be
associated with BCR at all, a univariable Cox analysis was carried
out for the primary screening. Robust likelihood-based survival
modeling, which selects predictive factors based on the partial
likelihood of the Cox model, is commonly used in construction of
predictive signature for cancers (31, 32).Weused robust likelihood-
based survival analysis and multiply Cox regression model to
FIGURE 3 | The expression of GYS2, KDELR3, STMN1, PPFIA4, and ABCB6 in BCR and BCR free patients. GYS2 and KDELR3 were highly expressed in BCR
free patients. In contrast, the expression levels of STMN1, PPFIA4, and ABCB6 were increased in BCR patients.
April 2021 | Volume 11 | Article 625452
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establish a five-gene signature with prediction value. Cut-off scores
are often set arbitrarily and vary between reports. ROC curve
analysis can be used as an alternative method in the selection and
validation of cut-off scores for determining clinically relevant
threshold (33, 34). We used ROC analysis to identify the optimal
cut-off point for dividingpatients into low risk andhigh risk groups.
We found that the BCR free survival time of high risk group was
significantly shortened. Importantly, results from the validation
cohorts confirmed the robustness of the glycolysis-based five-
gene signature, suggesting the excellent performance and
consistency of this model throughout the training cohort and two
validation cohorts. These data indicate that the five-gene signature
exhibits a robust prediction value for BCR free survival in patients
with PCa.

We identified five glycolysis-related mRNAs (GYS2, STMN1,
PPFIA4, KDELR3 and ABCB6) which were associated with BCR
after RP. Among the 5 genes, the expression levels of the genes with
negative coefficients (GYS2 and KDELR3) were increased in BCR
free patients. Moreover, STMN1, PPFIA4, and ABCB6 have
positive coefficients, and their expression levels were upregulated
in patients with BCR. It is of note that bulk tumormass is composed
of diverse cells, including malignant, stromal and immune cells
(35). Moreover, the datasets in current study are based on the
conventional bulk-level molecular profiling. The molecular profiles
Frontiers in Oncology | www.frontiersin.org 7
of these approaches represent an average readout from all cell types
within the tissue. The averaging over the individual cells leads to
information loss (36). Therefore, the change of the expression levels
of the five genes may partially be due to the alterations in stromal
amount. Recent developments in single-cell RNA sequencing
(scRNA-seq) have enabled the transcriptomes of single cells to be
sequenced in a high throughput manner (37). ScRNA-seq provides
a comprehensive and precise analysis of the cancer cell genome
(38). Further studies based on the new powerful approach in large
cohort of PCa patients will provide new insights into the
characteristics of the disease and facilitate the exploration of new
markers and therapeutic targets.

Some of the 5 genes have been implicated to be involved in
cancers, including PCa. GYS2 encodes a protein that catalyzes the
rate-limiting step in the synthesis of glycogen (39). It has been
reported that GYS2 acted as a tumor suppressor in hepatocellular
carcinoma (HCC) (40). The research found thatGYS2 inhibited the
proliferation of HCC cells via a negative feedback loop with p53
(40). A series studies have demonstrated the oncogenic role of
STMN1 in various kinds of cancers (41–43). STMN1 was
overexpressed in PCa and its expression was associated with the
malignant behavior of the disease (44). MiR-34a, a tumor
suppressor miRNA, inhibited the progressive phenotypes of PCa
cells via directly regulating STMN1 (45). PPFIA4 belongs to the
FIGURE 4 | The association between the five-gene signature and clinical characteristics of PCa patients. The distribution of risk scores was associated with pathologic T,
pathologic N, and Gleason score, but not age.
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liprin-alpha gene family and inhibition of PPFIA4 reduced
pancreatic cancer cell proliferation and invasion (46).
Moreover, suppression of PPFIA4 promoted chemosensitivity of
small lung cancer (SCL) cells under hypoxia (47).KDELR3 is a gene
which encodes a member of the KDEL endoplasmic reticulum
protein retention receptor family. The research by Marie et al.
showed that silencing of KDELR3 reduced lung colonization of
melanoma cells in experimentalmetastasis assays via regulating the
metastasis suppressor, KAI1 (48). In addition, overexpression of
ABCB6, a member of the ATP-binding cassette (ABC) transporter
superfamily, could enhance the accumulation of protoporphyrin IX
and improve the efficacy of 5-aminolevulinic acid-based
photodynamic therapy in glioma (49). Karatas et al. reported that
the expression of ABCB6 was elevated in PCa tissues as compared
Frontiers in Oncology | www.frontiersin.org 8
with that in normal prostate tissues. Consistently, they also found
that ABCB6 was overexpressed in recurrent PCa in comparison
with non-recurrent PCa (50). However, the unrecognized roles of
GYS2, PPFIA4 andKDELR3 inPCa are worth further investigating
to identify the biological functions and underlying mechanisms of
theirs in the development and progression of the disease. Further
delineation of molecules from the signature will provide new
insights into the etiology of the disease and might uncover
potential therapeutic targets.

In conclusion, we conducted an integrated study to develop a
glycolysis-based five-gene signature for the prediction of the BCR
free survival of PCa patients after RP. Future prospective clinical
trials are warranted to evaluate the clinical utilization of
this signature.
A

B

FIGURE 5 | Identification of BCR free survival related clinical characteristics using Kaplan–Meier analyses. (A) Pathologic T and Gleason score were significantly
associated with BCR free survival. (B) The forest plot of risk score and clinical parameters.
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A B

C

FIGURE 6 | Verification of five-gene signature in validation cohort (GSE70769). (A) Distribution of five-gene-based risk scores, BCR free survival status, and gene
expression levels of patients in validation cohort. (B) Kaplan–Meier curves of BCR free survival according to the five-gene signature. P value was calculated with the
logrank test. (C) The forest plot of risk score and clinical parameters.
A B

C

FIGURE 7 | Verification of five-gene signature in validation cohort (GSE54460). (A) Distribution of five-gene-based risk scores, BCR free survival status, and gene
expression levels of patients in validation cohort. (B) Kaplan–Meier curves of BCR free survival according to the five-gene signature. P value was calculated with the
logrank test. (C) The forest plot of risk score and clinical parameters.
Frontiers in Oncology | www.frontiersin.org April 2021 | Volume 11 | Article 6254529
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